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A relativistic effect that occurs in a magnetized plasma irradiated by a circularly polarized wave is identified
and analyzed: the usual plasma frequency associated with longitudinal oscillations splits into two new frequen-
cies. We set up a Hamiltonian description of the plasma dynamic in order to identify this effect that results
from the coupling between the plasma oscillation and the transverse circular motion driven by both the
magnetic and wave fields. Within the small oscillations approximation, we compute for right- and left-handed
polarization the two characteristics frequencies of the electron oscillations as functions of the field and wave
parameters. We also describe the electron trajectories in the wave, magnetic, and restoring plasma fields. This
new class of oscillations is rotational and therefore radiate suggesting a method for the diagnostics of strong
static magnetic field in laser-plasma experiments.
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I. INTRODUCTION

The interaction between intense laser light and plasma is
known to produce a plethora of nonlinear relativistic effects
�1� such as fast particle productions �2–5�, harmonics gen-
eration �6�, or self-focussing. Among these effects, the gen-
eration by circularly polarized �CP� radiation of strong qua-
sistatic axial magnetic field has attracted particular attention
in the recent years �7–13�. This so-called inverse Faraday
effect �IFE� that results from the absorption by the plasma of
the angular momentum carried by a CP wave, was first pre-
dicted by Pitaevskii �14� and later rediscovered in plasmas
by Deschamps et al. and Steiger and Wood �15�. IFE has
been recently deeply revisited by Kostyukov et al. on the
basis of a Hamiltonian analysis �7�. Measurement of such
very large axial magnetic field, in the mega-Gauss range,
generated by CP laser pulse at 1015 W cm−2 has been re-
cently reported by Horovitz �16,17� and by Najmudin et al.
�18� during interaction of CP laser pulse with an underdense
plasma at ultrahigh intensity 1019 W cm−2.

Here, our aim is to study the effect of such a strong axial
static magnetic field on the bulk electrons collective dynam-
ics. At the single particle level, the relativistic nonlinear elec-
tron orbit in a intense CP laser field has been thoroughly
studied and is known to be the superposition of uniform drift
motion and a circular motion �19�. When a homogeneous
magnetic field is added, the motion remains near integrable.
At the macroscopic level, in a magnetized plasma, electron
plasma oscillation along the direction of a magnetic field are
pure longitudinal wave which are not affected by the pres-
ence of the field �20�; the electrons motions are simple co-
herent oscillations with frequency �p. Perpendicular to the
magnetic field, this frequency is shifted up to the upper hy-
brid frequency

�uh = ��p
2 + �c

2, �1�

where �c is the electron cyclotron frequency. The major re-
sults of this paper is that when CP transverse wave is added

to the system, the electron oscillation frequency along the
magnetic field line splits into two, hereafter so called upper
�+ and lower �− frequencies, given by the formulas �for a
right-hand circularly polarized wave�
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A= eE
mec� , where E is the wave electric field, �0 a relativistic

transverse energy defined later and �, the ratio of the cyclo-
tron to the wave frequency.

This splitting of the Langmuir mode arises when a intense
circularly polarized wave propagates in a magnetized plasma
because the collective longitudinal oscillations driven by the
restoring plasma field and the transverse circular motion
driven by both the wave and magnetic fields are phase cor-
related. The purpose of this present work is to analyze within
a Hamiltonian framework this complex collective response,
to show up the splitting of the plasma frequency into two
frequencies and to compute these two characteristics fre-
quencies. The corresponding two frequencies rotational os-
cillation of the electrons in the wave, magnetic and restoring
plasma fields is described. We also highlight the differences
between right and left-handed polarization. We use the usual
convention: for the right-hand circularly polarized mode �ab-
breviated as the R-mode in our paper�, the wave fields rotate
in the same direction as the electrons gyrate about the mag-
netic field lines. L-mode refers to the reversed situation.

This paper is organized as follows. In the next section, we
set up the relativistic hamiltonian describing the electron os-
cillations embedded in an externally magnetized plasmas ir-
radiated by an intense CP laser wave. In our study, the mag-
netic field in the plasma is supposed to be given; we do not
address the issues of the self-generation of large magnetic
field. Then to separate fast and slow dynamics and to regard
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the electron dynamics in the rest frame of the wave, we
perform two successive canonical transformations. In Sec.
III, based on the transformed Hamiltonian, we discover a
fixed point function of the fields parameters and perform a
local analysis in the harmonic approximation which yields to
a set of two linear coupled oscillators describing, respec-
tively, the electron dynamics in the longitudinal and in the
transverse direction. Then, we calculate the characteristic
frequencies of this collective electron dynamics and describe
the electron orbits as a function of the field and wave param-
eters. In Sec. 4, we summarize and discuss our main results.
Finally, last but not least, we mention the potential of this
effect with regards to the diagnostics of strong static mag-
netic field in laser-plasma experiments. Throughout, in order
to simplify this study, we will use the inverse of the wave
frequency � as a unit of time, c the speed of light as a unit of
velocity, the electron charge e and mass me as units of charge
and mass, respectively,

e = me = c = � = 1. �3�

II. ANALYSIS OF THE ELECTRON DYNAMICS

Below we only perform the full computation for an
R-wave. A summary of the derivation for the L-mode is
given at the end of this section.

A. Hamiltonian

Let us consider the following fields in the plasma: a static
homogeneous magnetic field B0=�ez, the electromagnetic

field of an R wave plus the electric field of a plasma wave
�see Fig. 1�. �ex ,ey ,ez� is a Cartesian basis and � is the
amplitude of the uniform magnetic field. The potential asso-
ciated with the magnetic field reads

A0 = �xey �4�

and the one associated with the CP laser radiation reads

A� = A cos�kz − t�ex − A sin�kz − t�ey . �5�

A and k are, respectively, the wave amplitude and the wave
vector. We will refer to the axial or longitudinal direction as
the direction along ez and to the transverse direction to any
direction in the plane �ex ,ey�. The collective response is
modeled by the electrostatic potential ��z� produced by the
displacement of a slab of electrons from position z=0 to
position z, i.e.,

��z� =
1

2
�p

2z2. �6�

In normalized units, the time-dependent relativistic hamil-
tonian describing the interaction between an electron and the
potentials A�r , t�=A0�x�+A��z , t� and ��z� reads

H�r,P,t� = �1 + �P + A�r,t��2 + ��z� . �7�

Inserting Eqs. �4�–�6� into Eq. �7�, we get the following
Hamiltonian:

H�x,y,z,Px,Py,Pz,t� = �1 + Pz
2 + �Px + A cos�kz − t��2 + �Py − A sin�kz − t� + �x�2 +

1

2
�p

2z2. �8�

This Hamiltonian seems not to be integrable. Nevertheless, the characteristic of the collective electron dynamics can be
obtained within the small oscillations approximations. In order to make further progress, two successive canonical transfor-
mations are performed. The first canonical change of variables �x ,y ,z , Px , Py , Pz�→ �Q ,Y ,Z , PQ , PY , PZ� allow us to separate
the fast dynamic occurring on the cyclotron time scale from the slow dynamic of the drift motion. It is given by the following
generating function:
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FIG. 1. The interaction of a relativistic electron with a static
homogeneous magnetic field B0=�ez and a circularly polarized
powerful laser wave.
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FIG. 2. Meaning of the variables.

J. ROBICHE AND J. M. RAX PHYSICAL REVIEW E 77, 016402 �2008�

016402-2



F3�Q,Y,Z;Px,Py,Pz� =
PxPy

�
−

Px
2 tan Q

2�
− YPy − ZPz. �9�

This transformation introduce the gyroangle Q, the transverse momentum PQ, and the guiding center coordinates �Y ,
−PY /��. Other coordinates z
Z and PZ
 Pz are not modified by this transformation. Expressed with the set of variables
�Q ,Y ,Z , PQ , PY , PZ�, the transformed Hamiltonian �8� reads

H�Q,Z,PQ,PZ,t� = �1 + A2 + PZ
2 + 2�PQ + 2A�2�PQ cos�Q + �kZ − t�� +

1

2
�p

2Z2. �10�

To analyze the electron dynamics in the rest frame of the
wave, i.e., to eliminate the time dependence in Eq. �10�, we
perform the second canonical transformation
�Q ,Y ,Z , PQ , PY , PZ�→ �� ,Y ,Z ,J , PY , P� given by

F2�Q,Y,Z;J,PY,P;t� = J�Q + �kZ − t�� + YPY + ZP .

�11�

With this new set of variables �� ,Y ,Z ,J , PY , P�, Hamiltonian
�10� becomes autonomous

H��,Z,J,P� = �1 + A2 + 2�J + �P + kJ�2 + 2A�2�J cos �

+
1

2
�p

2Z2 − J . �12�

These two transformations generate a new set of canonical
variables related to the old set by

x = −
PY

�
+�2J

�
sin�� − �kZ − t�� , �13a�

y = Y −�2J

�
cos�� − �kZ − t�� , �13b�

z = Z , �13c�

Px = �2�J cos�� − �kZ − t�� , �13d�

Py = PY , �13e�

Pz = P + kJ . �13f�

These new variables have the following meaning �see Fig.
2�, �2J

� is the gyration radius, � the difference between the
gyroangle and the wave phase, �2�J the transverse momen-
tum. The linear momentum Pz= P+kJ depends on the two
canonical momentum P and J. Thus, the plasma oscillations
along the magnetic field is correlated to the transverse elec-
tron dynamics driven by both the CP wave and the static
field. As we stated in the Introduction, this coupling between
the longitudinal and the transverse degree of freedoms in-
duces a splitting of the plasma frequency into two frequen-
cies �+ and �− which are function of the magnetic field �
and of the CP laser amplitude A �see Eq. �2��. Note that the
old position z is equal to the new coordinate Z. Thus, the
electron oscillations along the magnetic field correspond to
the usual Langmuir oscillations at �p.

The generation through two successive CT of suitable ca-
nonical variables for the analysis of our system turns out to
be fruitful. With these new canonical variables, the Hamil-
tonian �12� reveals the existence of an elliptic fixed point
where the system is in stable equilibrium. This equilibrium
leads us itself to analyze the electron collective motion
within the small oscillations approximations. As a prelimi-
nary step, we determine below the characteristics of this
fixed point.
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FIG. 3. Phase portrait in the �� ,J� plane showing for a R wave
a fixed point located �0=0 and J0=0.0268. Plasma frequency is
�p=0.1.
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FIG. 4. Gyration radius at the fixed point for the R wave �a�
�upper curve is for �=1, lower curve is for �=0.1� and the L wave
�b� �upper curve is for �=0.1, lower curve is for �=1� as a func-
tion of the amplitude parameter A and for �=0.1,0.1,0.5, and 1.
This radius increases with the magnetic field for the R wave while
decreases for the L wave �see Fig. 5�.
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B. Study of the fixed point

The phase portrait of Fig. 3 shows the results of the inte-
gration of the equation of motion associated with the Hamil-
tonian �12� for parameters A=1, �=0.1, and �p=0.1. This
portrait reveals the existence of an elliptic fixed point located
at �0=0, J0=0.0267 near which the dynamics is weakly non
linear. In the following, the subscript 0 will refer to quanti-
ties evaluated at the fixed point. To find the location of this
fixed point, we set to zero the time derivatives of the canoni-
cal coordinates

� �H

��
�

0
= 0, �14a�

� �H

�Z
�

0
= 0, �14b�

� �H

�P
�

0
= 0, �14c�

� �H

�J
�

0
= 0. �14d�

The first three conditions yields

�0 = 0 mod���, Z0 = 0 and P0 + k J0 = 0, �15�

whereas the last conditions on �H /�J yields to an implicit
expression for J0

� +
A� cos �0

�2�J0

�0
− 1 = 0, �16�

where

�0 = �1 + A2 + 2�J0 + 2A�2�J0 cos �0 �17�

must not be confused with the electron energy at the fixed
point equals to �0−J0 �see Eq. �12� evaluated at the fixed
point�. The angle �0 is multivalued, but as �0��, condition
�16� set the value �0 to 0, otherwise, this could never be
satisfied. From Eq. �16� and for �0=0 we obtain the follow-
ing condition:

�2�J0 =
A�

�0 − �
�18�

which is a fourth order algebraic equation for the transverse
momentum X�A ,��
�2�J0

X4 + 2AX3 + �1 + A2 − �2�X2 − 2A�2X − �2A2 = 0.

�19�

A parametric study of the four roots show that there is
only one positive real root for the relevant values of the
parameters 1�A�10 and 0���1. Inserting values �15�
and the unique positive solution of Eq. �19� into Eq. �13�, we
obtain the electron orbit at the fixed point: a uniform circular

motion with radius �2J0

� and frequency equals the wave fre-
quency �=1.

The gyration radius �normalized to the wavelength ac-

cording to our unit choice �3�� at the fixed point 	=�2J0

� is
plotted on Fig. 4 for R-wave �a� and L-wave �b�. We observe
a weaker increase with A of 	 in the L-wave than in the
R-wave. The asymptotic value of the gyration radius c /� is
reached once A�2. The variation of the gyroradius with the
magnetic field is depicted in Fig. 5 for both R and L wave. In
the absence of magnetic field, the gyration radius of an elec-
tron in a CP wave is given by A /�1+A2 �19�. When a ho-
mogeneous magnetic field is added, we observe that this ra-
dius increases with the magnetic field for a right-hand
polarized wave while it decreases for the left-handed polar-
ization. This original result is explained �and depicted on
Fig. 6� by noting that for the R-wave, the centrifugal force
points in the opposite direction than both the electric force
and the Laplace force. On the contrary, for a L-wave, the
Laplace force and the electric force point in opposite direc-
tion. It results that for the R-wave �respectively, L-wave�, the
required radius for which the forces balance is larger �respec-
tively smaller� than the orbit radius of an electron in a CP
wave.

C. Linearized dynamics

We now perform a local analysis and restrict ourselves to
small oscillation. Within this regime, we expand the Hamil-
tonian �12� around the fixed point and keep only the qua-
dratic terms

H��,Z;J,P� � �0 − J0 +
1

2
� �2H

��2 �
0
�2 +

1

2
� �2H

�Z2 �
0
Z2

+
1

2
� �2H

�J2 �
0
�J − J0�2 +

1

2
� �2H

�P2�
0
�P − P0�2

+ � �2H

�J � P
�

0
�J − J0��P − P0� , �20�

where the term �0−J0 results from the injection of the fixed
point coordinates �15� and �18� into the Hamiltonian �12�.
The explicit computation of the second derivatives at the
fixed point is straightforward and yields the following ex-
pression:

� �2H

�J2 �
0

=
k2 − 1

�0
−

A�2

�0�2�J0�3/2 , �21a�
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FIG. 5. Gyration radius at the fixed point for the R and L waves
as a function of the magnetic field � for A=1. As �→0, both value
reduce to A /�1+A2, the electron gyration radius in a CP wave.
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� �2H

��2 �
0

= −
A2�

�0��0 − ��
, �21b�

� �2H

�Z2 �
0

= �p
2, �21c�

� �2H

�P2�
0

=
1

�0
, �21d�

� �2H

�J � P
�

0
=

k

�0
. �21e�

The crossed derivative Eq. �21e�, i.e., the coupling term into
Hamiltonian �20�, involves the wave vector k which is evalu-
ated self-consistently by considering the wave equation with
a source term given by the conduction current −�p

2Ve in-
duced by the electron motion at the fixed point

� �2

�t2 − �2�A� = − �p
2Ve, �22�

where A� is given by Eq. �5� and Ve is the velocity of the
electrons in the transverse direction. This velocity is obtained
by taking the derivatives of the coordinates Eqs. �13a� and
�13b� at the fixed point

Ve =
�2�J0

�
�cos�kz − t�

sin�kz − t� 	 =
A

�0 − �
�cos�kz − t�

sin�kz − t� 	 .

�23�

Inserting this current into the wave equation �22�, we readily
obtain the nonlinear dispersion relation

k2 = 1 −
�p

2

�0�A,�� − �
. �24�

This is apparently the result obtained by Akhiezer and
Polovin �21� when they considered the propagation of a CP
wave in a plasma. However, in the nonlinear formula �24�,

the quantity �0 is calculated self-consistently from Eq. �17�
which depends on the magnetic field and on the wave ampli-
tude.

In the small amplitude approximation, the motion equa-
tion derived from the Hamiltonian �20� yields to the follow-
ing linear system of coupled harmonic oscillators

d�

dt
= � �2H

�J2 �
0
�J − J0� + � �2H

�J � P
�

0
�P − P0� , �25a�

dJ

dt
= − � �2H

��2 �
0
� , �25b�

dZ

dt
= � �2H

�P2�
0
�P − P0� + � �2H

�J � P
�

0
�J − J0� , �25c�

dP

dt
= − � �2H

�Z2 �
0
Z . �25d�

The standard independent normal mode techniques applied
to the system �25� gives us the time evolution of the canoni-
cal variables as a linear superposition of harmonic oscilla-
tions

��t� = �+ sin��+t� + �− sin��−t� , �26a�

J�t� = J0 + J+ sin��+t� + J− sin��−t� , �26b�

Z�t� = Z+ sin��+t� + Z− sin��−t� , �26c�

P�t� = P0 + P+ sin��+t� + P− sin��−t� , �26d�

with upper and lower frequency given by

�±
R�A,�,�p� =�BR�A,�,�p�

2
±

�BR�A,�,�p�2 − 4CR�A,�,�p�
2

. �27�
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FIG. 6. The effect of the polarization on the orbit radius. For the
L mode, the Laplace force −ev
B0 is directed in the outward di-
rection as the centrifugal force me�

2r. On the contrary, for the R
mode, the Laplace force points in the inward direction. 0 2 4 6 8 10
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FIG. 7. Energy at the fixed point normalized to the electron
mass in a CP wave �0�A ,0�=�1+A2 versus wave parameter A for
magnetic field ��0.1, 0.2, 0.5, and 1. �a� R wave �upper curve is
for �=1�; �b� L wave �lower curve is for �=1�.
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The quantities BR�A ,� ,�p� and CR�A ,� ,�p� are given by

BR�A,�,�p� = � �2H

�J2 �
0
� �2H

��2 �
0

+ � �2H

�P2�
0
� �2H

�Z2 �
0
,

�28a�

CR�A,�,�p� = � �2H

�J2 �
0
� �2H

��2 �
0
� �2H

�P2�
0
� �2H

�Z2 �
0

− �� �2H

�J � P
�

0
�2� �2H

�Z2 �
0
� �2H

��2 �
0

�28b�

whose explicit analytical expression are obtained by substi-
tuting Eqs. �21� into Eq. �28�

BR =
A2��p

2

�0
2��0 − ��2 +

��0 − ��2

�0
2 +

�p
2

�0
, �29a�

CR = �p
2 ��0 − ��2

�0
3 +

A2��p
2

�0
3��0 − ��

. �29b�

The subscript R stands for the right-hand circular polariza-
tion. Equation �27� �or, equivalently, Eq. �2� stated in the
Introduction� is one of the main result of this study and gives
the two characteristic frequencies of the electron oscillation
in a magnetized plasma irradiated by an intense CP R-wave
as a function of the wave A, magnetic �, and plasma �p
parameters. The corresponding results has been also obtained
for the L-mode. This last task is summarized in the next
section.

Before studying the result �27�, let us consider the zero
magnetic field limit. For �→0 we get �+=1 and �−
=�p /�0

1/2. Moreover, the longitudinal collective motion is no
longer coupled to the transverse motion and we have the
classical oscillations Z�t�=Z−sin��p /�0

1/2t�. �As �→0, sec-
ond derivative of the Hamiltonian with respect to � tends to
zero, see Eq. �21b� so that J becomes a constant of the mo-
tion; therefore we have J=J0 in Eq. �25c��. However, the
transverse dynamics remains coupled to the longitudinal os-
cillations �see Eq. �21a��.

D. Left-handed polarization wave

We now briefly consider the case of a left-hand polarized
light for which the electric field rotates in the opposite direc-
tion than the electrons and highlight the main difference with
the R-wave case. Performing the same change of canonical
variables, the transformed hamiltonian modeling the collec-
tive electron dynamics in a magnetized plasma irradiated by
an intense L-wave reads

H��,Z,J,P� = �1 + A2 + 2�J + �P − kJ�2 + 2A�2�J cos �

+
1

2
�p

2Z2 + J �30�

which differs from Eq. �12� by the plus sign of the second
term of the right hand side and by the sign in the coupling
term �P−kJ�. The fixed point of the Hamiltonian �30� are
given by

�0 = � , �31a�

P0 = kJ0, �31b�

Z0 = 0, �31c�

A�

�2�J0

= �0 + � , �31d�

where the quantity �0 reads

�0 = �1 + A2 + 2�J0 − 2A�2�J0. �32�

From Eq. �31d�, the transverse momentum at the fixed
point X�A ,��=�2�J0 is the solution of the equation

X4 − 2AX3 + �1 + A2 − �2�X2 + 2A�2X − �2A2 = 0 �33�

which differs from Eq. �19� by the sign of the odd power
coefficients. Performing the same step than to derive Eq. �24�
from Eq. �22�, we obtain the self-consistent wave vector kL
for the L wave

kL
2 = 1 −

�p
2

�0 + �
. �34�

The characteristics frequencies �± for the L-mode are still
given by Eq. �27� but with BR and CR replaced by BL and CL

BL = −
A2��p

2

�0
2��0 + ��2 +

��0 + ��2

�0
2 +

�p
2

�0
, �35�

CL = �p
2 ��0 + ��2

�0
3 −

A2��p
2

�0
3��0 + ��

�36�

with �0 given by Eq. �32� and �2�J0 given by the unique
positive root of Eq. �33�. The readers could think that BL and
CL could be obtained from BR and CR by reversing the mag-
netic field �→−�; however, Eqs. �32� and �33� differ from
their counterparts Eqs. �17� and �19� so that the computation
for the L-wave case must be also fully performed.

III. DISCUSSION AND CONCLUSION

Based on our Hamiltonian analysis of the small oscilla-
tions in a magnetized plasma irradiated by an intense CP
wave, we discover that the classical Langmuir mode turns
into a rotational two frequencies oscillations. The explicit
expression for the two frequencies are given by Eq. �27� �or
Eq. �2��. Static magnetic field of the order of 100 mega-
Gauss and more have been reported in many laser-plasma
experiments �18� and confirmed by several fluid simulations.
Thus, for Nd-glass laser operating at wavelength �

=1.06 
m, the parameter �=
�c

� =10−2� B
MGauss

� is of the order
of 1 and less. The following discussion aims to evaluate the
presently reported effects for moderate relativistic intensity
A�1 and moderate strong field ��1 in an underdense
plasma �p�0.1. The relevance of these effects with regards
to the diagnostics of strong fields in plasma is argued at the
end of the paper.
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The electron energy at the equilibrium is given by �0
−J0 for the R-wave and by �0+J0 for the L-wave. To bring
out the influence of the magnetic field on the kinetic energy
carried by the particles, we have normalized these energies to
�1+A2, the electron energy in a CP wave �19�. Figure 7
displays the variation of these energies with the magnetic
field � for the R-wave �a� �the upper curve corresponds to
�=1� and the L wave �b� �the lower curve corresponds to
�=1�. The effect of the magnetic field presents a sharp
variation at subrelativistic energy and reaches in the R wave
�respectively, L-wave� case a maximum �respectively, mini-
mum� for wave parameters A�1 �respectively, A�2�; at
higher intensity, the wave field exceeds the magnetic field
and the impact of � becomes less and less significant with
respect to the carried energy.

Electron orbits in the phase plane �z , P� obtained with the
numerical solutions of the motion equations associated to the
exact Hamiltonian are shown in Fig. 8 for �a� �=0 and �b�
for �=0.1. The wave parameter has value A=1, plasma fre-
quency is �p=0.1 and the transverses action J has been set
for this instance to its equilibrium value J0. The furthest out
curve corresponds to the largest value of initial momentum
P0 which ranges from 0 to 5
10−1 in steps of 5
10−2.
When �=0, the orbits present a single frequency periodic
behavior and we found a angular frequency �p=0.083 cor-
responding to plasma frequency with relativistic mass cor-
rection �p / �1+A2�1/4. When magnetic field is added, how-
ever, the orbits present an obvious two frequencies periodic
behavior; particles orbits are ellipsoidal-like curves-radially
modulated by a high frequency component �+: the combina-
tion of a CP wave and of a magnetic field induce a splitting
of the classical plasma frequency.

The generic trajectory of an electron in the wave, mag-
netic and restoring plasma fields are shown on Fig. 9 for R
wave �a� and L wave �b�. For both polarization, the initial
conditions are z0=0, J=J0 and P= P0+0.1 �thus pz�t=0�
=0.1mec�; initial angle is �0=0 for the R mode and � for the
L mode. These trajectories corresponds to oscillations in the
longitudinal direction plus a gyration in the transverse plane.

The upper and lower frequencies Eqs. �27� are functions
of the wave parameter A, of the magnetic field � and of the

plasma density through �p. We present on Fig. 10, for the
instance �p=0.1, the variation of the lower frequency �−
normalized to �p / �1+A2�1/4=�p /�0�A ,0� with A and � for
the R wave �a� and L wave �b�. When �=0, we recover the
classical value; electrons oscillates at the classical pulsation
�−=�p /�0

1/2. For the R wave, the impact of the magnetic
field is maximal at low intensity A�1; at mildly relativistic
energy A�1, lower frequency �− is about few to 10% larger
than �p /�0. However, when A�2, lower frequency �− do
not depart from the plasma frequency with relativistic mass.
The variations of the lower frequency for the L mode with A
and � are weaker than for the R mode; the impact of the
magnetic field reaches a maximum for relativistic amplitude
A�1.

The variation of the upper frequency �+ is shown in Fig.
11 for the R mode �a� and L mode �b�. We observe that for
both modes the lower the wave amplitude, the stronger the
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FIG. 8. Phase portrait in the �z , P� plane for �=0 �a� and for a
magnetized plasma �=0.1 �b�.
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impact of the magnetic field. For �=0, the upper frequency
reduces to the wave frequency. For A→0, we have the ex-
pected results �+=1�

�

�0
.

Figure 12 shows the variation of the lower frequency nor-
malized to �p / �1+A2�1/4 with the magnetic field for A=1
�solid lines� and A=2 �dashed lines�. For moderate intensity
A=1, the lower frequency associated with the electron oscil-
lations is practically the same for both polarization. The de-
viation from the value �p / �1+A2�1/4 is 1% percent at �
=0.1 and reaches 6% at �=1. This effect is weaker for A
=2 as the fraction of the energy carried by the cyclotron
motion decreases as the intensity increases.

Figures 13 and 14 show, respectively, the upper and lower
frequency associated with the R and L mode for �a� �p
=0.1 and �b� �p=0.4 as a function of the magnetic field. The
wave parameter is A=1. For the R mode, upper and lower
frequencies get closer when the magnetic field increases
while depart from each others for the L mode.

We discovered that the electron oscillations in a magne-
tized plasma irradiated by a CP wave must be described by
the combination of two motions: an oscillation z�t� at main
pulsation �− along the magnetic field modulated by a high
frequency component at �+ plus a transverse motion given
by

x =�2J�t�
�

sin���t� − kZ�t� ± t� , �37a�

y = −�2J�t�
�

cos���t� − kZ�t� ± t� , �37b�

where ��t� and Z�t� and J�t� are given by Eq. �26�. For small
oscillations, we have J±�J0 and therefore we can neglect
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FIG. 11. �Color online� The upper frequency �+ normalized to
� as a function of wave and magnetic field parameter. Plasma fre-
quency is �p=0.1.
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quency with relativistic mass �p / �1+A2�1/4 ��p=0.1� as a function
of the magnetic field � for A=1 �solid lines� and A=2 �dashed
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to the L mode.

0 0.2 0.4 0.6 0.8 1

0.2

0.6

1

0 0.2 0.4 0.6 0.8 1

0.2

0.6

1

Ω

Ω

ω+
ω

ω+
ω

−

−

(a)

(b)

FIG. 13. The lower �− �lower curve� and upper frequency �+

�upper curve� normalized to the wave frequency � versus the mag-
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the variation of the transverse action into Eq. �37�. Being
rotational, these two frequencies electron oscillations emits
electromagnetic radiation whose spectrum shows peaks
power centered on the frequencies �, �+��c�, and �−��c�

and their harmonics. As such, the spectrum analysis of the
power radiated by these new kind of oscillations could pro-
vide a promising tool for the diagnostic of strong magnetic
field generated in laser-plasma experiments.
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