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Sufficient condition for Gaussian departure in turbulence
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The interaction of two isotropic turbulent fields of equal integral scale but different kinetic energy generates
the simplest kind of inhomogeneous turbulent field. In this paper we present a numerical experiment where two
time decaying isotropic fields of kinetic energies £; and E, initially match over a narrow region. Within this
region the kinetic energy varies as a hyperbolic tangent. The following temporal evolution produces a shearless
mixing. The anisotropy and intermittency of velocity and velocity derivative statistics is observed. In particular
the asymptotic behavior in time and as a function of the energy ratio E,/E,— is discussed. This limit
corresponds to the maximum observable turbulent energy gradient for a given E; and is obtained through the
limit £,—0. A field with E|/E,— % represents a mixing which could be observed near a surface subject to a
very small velocity gradient separating two turbulent fields, one of which is nearly quiescent. In this condition
the turbulent penetration is maximum and reaches a value equal to 1.2 times the nominal mixing layer width.
The experiment shows that the presence of a turbulent energy gradient is sufficient for the appearance of
intermittency and that during the mixing process the pressure transport is not negligible with respect to the
turbulent velocity transport. These findings may open the way to the hypothesis that the presence of a gradient
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of turbulent energy is the minimal requirement for Gaussian departure in turbulence.
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I. INTRODUCTION

A turbulent shearless mixing layer is generated by the
interaction of two homogeneous isotropic turbulent (HIT)
fields, see definition diagrams in Figs. 1 and 2 and the flow
visualizations in Fig. 3. This kind of mixing is characterized
by the absence of a mean shear, so that there is no production
of turbulent kinetic energy and no mean convective trans-
port. The turbulence spreading is caused only by the fluctu-
ating pressure and velocity fields. The inhomogeneous statis-
tics are typically due to the presence of the gradients of
turbulent kinetic energy and integral scale. The shearless tur-
bulence mixing was first experimentally investigated by Gil-
bert [1] and by Veeravalli and Warhaft [2] by means of pas-
sive grid generated turbulence. Later on, numerical
investigations were carried out by Briggs er al. [3] and
Knaepen et al. [4], and more recently by Tordella and Tovi-
eno [5,6]. All these studies considered a decaying turbulent
mixing.

In all studies, apart from that of Gilbert, where the turbu-
lent energy ratio was very low, the mixing layer was ob-
served to be highly intermittent and the transverse velocity
fluctuations seen to have large skewness. Across the mixing
the distributions of the second, third and fourth order mo-
ments collapse when the mixing layer width is used as length
scale [2,5,6].

In passive grid laboratory experiments the gradients of
integral scale and kinetic energy are intrinsically linked. In
past studies the ratio of the integral scale of the interacting
turbulence fields was in the range 1.3 [1]-4.3 [2] with a ratio
of kinetic energies in the range 1.5 [1]-23 [2]. In numerical
[5] or active grid experiments these two parameters can be
independently varied.
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In the present study, a mixing configuration in which the
integral scale is homogeneous is considered. The ratio of the
turbulent kinetic energies has been chosen as the sole control
parameter and is varied from 1.5 to 10° Re, of the high
turbulent energy field is 45. The aim of this study is to show
the intermittent behavior of such a configuration that in the
past was considered to have almost Gaussian velocity statis-
tics. This interpretation was motivated by the absence of both
a kinetic energy production and an integral scale variation,
two typical sources of intermittency and was also supported
by laboratory observations carried out in the absence of a
sufficiently high kinetic energy gradient [1]. Another aim of
this numerical experiment is to reach the asymptotic condi-
tion where the kinetic energy ratio E=E,/E, goes to infinity.
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FIG. 1. Scheme of the flow. Direction x is the mixing direction.
The high-energy (E;) and low-energy (E,) regions are separated by
mixing layers of conventional thickness A(7) defined by mapping
the low energy side of the mixing layer to zero and the high-energy
side to one. A(z) is equal to the distance between the points with
normalized energy values 0.25 and 0.75 [2,5].
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FIG. 2. Scheme of the flow. Reference frame: y,,y, are normal
to x, that is the direction of the flow inhomogeneity. The flow is
homogeneous in all planes normal to this direction.

This last condition is relevant in applications concerning the
diffusion of a turbulent field in a region of quiescent fluid,
where extreme bursts of rate of strain and vorticity can be
expected [7]. The presence of such events is shown by high
values of skewness and kurtosis.

A description of the numerical experiment is given in Sec.
II. Data on the degree of anisotropy observed in the second
and third order velocity moments are described in Sec. III,
where an interpretation based on Yoshizawa’s hypothesis is
also given. In Sec. IV we present the two types of asymptot-
ics considered: the temporal asymptotics of the second and
third order velocity moments, and the asymptotics with re-
spect to the turbulent kinetic energy ratio of the velocity
skewness, kurtosis and mixing penetration. In addition, a
smaller set of data on the temporal asymptotics of third and
fourth order moments of the velocity derivative is also dis-
cussed in this last section. The concluding remarks are pre-
sented in Sec. V.
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II. NUMERICAL EXPERIMENT

Navier-Stokes equations are numerically solved with a
fully dealiazed (3/2 rule) Fourier-Galerkin pseudospectral
method [8]. The computational domain is a parallelepiped
with periodic boundary conditions in all directions, see Fig.
1. Tests were performed on a 47(21)? parallelepiped domain
with 256 X 1282 points. Further tests with a 87(2)? paral-
lelepiped with 512 1282 points were used to obtain an es-
timate of the numerical accuracy. The Taylor-microscale
Reynolds number Re,, corresponding to the high-energy
field, is equal to 45 for both spatial discretizations of the
direct numerical simulations (DNS).

In the initial condition, the two isotropic turbulent fields
are matched by means of a hyperbolic tangent function. This
transition layer represents 1/40 of the 47 domain, and 1/80
of the 8 domain. The matched field is

u(x) =u;(x)p(x) + wy(x)[1 - p(x)], (1)

1 X X
plx)= 5{ 1+ tanh(az)tanh<a
(2)

where the suffixes 1,2 indicate high- and low-energy sides of
the mixing respectively, x is the inhomogeneous direction, L
is the width of the computational domain in the x direction.
Constant a in Eq. (2) determines the initial mixing layer
thickness A, conventionally defined as the distance between
the points with normalized energy values 0.25 and 0.75 when
the low-energy side is mapped to zero and the high-energy
side to one. When a=127 the ratio A/L is about 0.026, for
a=201r the ratio A/L is about 0.015. These values have been

FIG. 3. (Color) Visualization
at two time instants of contours of
kinetic energy E(x,y,y2,t)/E{(0)
in a plane at constant y,, E;/E,
=6.7, Re,=45: (a) t/7=0.8, (b)
t/ 7=2.5.
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SUFFICIENT CONDITION FOR GAUSSIAN DEPARTURE...

TABLE 1. Statistical properties of the high-energy HIT field u,
at t=0. E is the normalized turbulent kinetic energy, S; and K, are
the velocity skewness and kurtosis, and Sy, and K, are the
velocity longitudinal derivative skewness and kurtosis, and Sg,/gy.1
and K,z are the velocity transversal derivative skewness and
kurtosis. The field u; was obtained from the data base by Wray
1998 [9]. Note, that these statistical properties are the same for all
the considered low-energy fields u,, since they were obtained by
multiplying the initial high-energy field by a constant.

Velocity statistics

E, S K,

1.01+0.08 1.6X1072£0.12 2.85£0.2
Velocity derivative statistics

S outox Kouran Soutay.1 Kuay1

-0.42+0.08 3.61£0.2 -0.40+0.08 3.53+0.2

chosen so that this initial thickness is large enough to be
resolved but small enough to have large regions of homoge-
neous turbulence during the simulations. This technique of
generating the transition layer is similar to that used in
Briggs et al. [3] and Knaepen et al. [4]. The matching on
which the initial condition is built up is a linear superposition
of the two isotropic fields as indicated in Egs. (1) and (2). A
set of statistical properties of the high kinetic energy HIT
field is shown in Table I. Since the low-energy field u, is
obtained by multiplying the initial velocity field u; by a con-
stant, the numerical experiment carried out by mixing these
fields is a turbulent mixing with different energies but of
equal integral scale. It should be noted that, by doing so, the
mean pressure along the mixing direction is not constant.
However, the mean pressure gradient is opposite to the gra-
dient of turbulent kinetic energy and thus no mean velocity
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field is generated, see the Appendix. Examples of the shear-
less mixing obtained in this way for direct numerical simu-
lation can be found in Refs. [3] and [5]. The initial spectra of
the two HIT fields are shown in Fig. 4. In this figure the
temporal decay of the two isotropic turbulent fields is shown
together with, as a reference, the decay of the homogeneous
and isotropic turbulence simulated in one of the computa-
tional domains used to simulate the turbulent shearless mix-
ing [(27)? X 87,1282 X 512]. In Fig. 4 the estimate of the
time instant where the self-similar decay of the mixing starts
is also shown.

Let us now consider the flow symmetry. It can be seen
that a shearless mixing is a flow in which only one direction
of inhomogeneity is present, as a consequence any plane
normal to the inhomogeneous direction is homogeneous.
This corresponds to a cylindrical symmetry. See the refer-
ence frame scheme in Fig. 2.

The time integration is carried out by means of a four-
stage fourth-order explicit Runge-Kutta scheme. Statistics
are obtained by averaging over planes normal to the inhomo-
geneous direction, see Fig. 2.

The initial conditions were generated from the homoge-
neous and isotropic turbulent field produced by Wray [9],
which is a classic data set often used in literature. A poste-
riori, it is possible to obtain numerical accuracy estimates.
The raw data by Wray has an inhomogeneity level on the
kinetic energy of about =8% and skewness and kurtosis val-
ues slightly different from those of the statistical equilibrium
(0.02£0.12 instead of 0 and 2.8 =0.2 instead of 3, respec-
tively). As far as our set of direct numerical simulations is
concerned, the increase in width of the computational do-
main from 47 to 87 (from 256 to 512 grid points) allowed
an estimate of the relative accuracy to be obtained. For the
maximum values of the distributions across the mixing, the
accuracy is of about 5% for the skewness, and of about 8%
for the kurtosis.

In Fig. 8, which summarizes the results regarding the
maximum values reached by the velocity skewness and kur-
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FIG. 5. Anisotropy of the turbulent second and third order mo-
ments at the center of the mixing layer. The horizontal dashed line
in (a) indicates the isotropic reference value. The horizontal dotted
line in (b) indicates the estimate of the asymptotic value.

tosis within the mixing and the results about the penetration,
it can be seen that the simulations with initial A/L=1/40 and
1/80 yield data which collapse in a satisfactory way. On
checking the symmetry of the numerical solutions, which,
due to the periodicity of the boundary conditions, contain
two mixings, see scheme in Fig. 1, it was verified that the
doubling of the computational domain induces a decrease of
the asymmetry from 10 to 5 % for the skewness and from 20
to 15 % for the kurtosis.

III. ANISOTROPY AND YOSHIZAWA’S HYPOTHESIS

In isotropic turbulence the normalized second order mo-
ment of the velocity components, normalized with the sum
ur+ v%+v§, is 1/3, while the third order moment is zero. In
the present flow the field anisotropy develops during the
mixing process. The value of the normalized moments vary
in time and reach an asymptotic value after few time units,
see Fig. 5. The time unit 7 is defined as 7'=l(0)/E%/2(0),
where [ is the integral scale, here uniform across the mixing,
and E, is the turbulent kinetic energy of the high-energy side
of the mixing.

An initial turbulent energy gradient VE=(E,—E,)/(24A)
corresponds to each value of £=FE,/E,. The width A is de-
fined by mapping the low-energy side of the mixing layer to
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zero and the high-energy side to one, and it is equal to the
distance between the points with energy values 0.25 and
0.75, as in the paper by Veeravalli and Warhaft [2] (in the
following referred to as VW). The turbulent energy gradients
can be normalized by the value of the high-energy field, and
by the value of the mixing thickness A(r). It should be no-
ticed that by doing so, the normalized gradient value has the
upper limit of 0.5, which is reached in the limit for E, going
to zero.

In Fig. 5(a) the time evolution inside the mixing of the
second order moment u?/(u?>+v7+v3) is shown. After a lin-
ear growth the curves bend toward the asymptotic value,
which is in the range 0.37-0.39 for a kinetic energy ratio
growing from 4 to 10* (this corresponds to a normalized
gradient of turbulent kinetic energy from 0.37 to 0.50, or, by
supposing a mixing in air with a Re, =45 in the high-energy
side, to a dimensional gradient from 1.8 to 2.4 m/ s?).

As a consequence of the cylindrical symmetry of this
mixing, it follows that the second order moments i/ (u?
+v2403), v3/ (W2 +v3+0v3) are equal and range from 0.315 to
0.305 when & varies from 4 to 10*. The anisotropy level,
defined as the difference between the second-moment values
referred to the isotropic value, can be considered mild (16%
for £=12, 25% for £=10%) given that the accuracy in the
original data base used to build the initial condition [9] is of
about 8% as far as both the homogeneity and isotropy are
concerned. It should be considered that this level of initial
accuracy of homogeneity and isotropy is excellent in nomi-
nal HIT numerical fields. In higher resolution fields (1024%)
the accuracy is similar [10]. o

_Figure 5(a) indicates that the value 0.39 for u*/ (u2+v%
+v%) is reached by increasing &€ from 12 to 10*. This value
can be considered as an approximation of the asymptotic
value attainable by increasing the turbulent energy gradient.
It is important to note that in literature concerning the shear-
less mixing, almost all authors report a near homogeneity in
the second-order velocity moments regardless of the obser-
vation method used, numerical or laboratory [2,3,5].

The anisotropy of the third-order velocity moments is
more enhanced than that of the second-moments. This can be
observed in Fig. 5(b), where the time evolution of the third
order moment u’ normalized with the total kinetic energy
flow in the mixing direction u*+vju+vsu is plotted. The
estimate of the temporal asymptotic value we obtained is
0.53£0.03 and does not depend on . If the level of aniso-
tropy is defined as the difference between the third moments
divided by their mean, an anisotropy of 80% is obtained.
This means that, for all the energy ratios, nearly one half of
the turbulent kinetic energy flow across the mixing is due to
the self transport of u°. Let us note that at the initial instant,
when the mixing process starts, the quantity u’/(u*+viu
+v5u) is not defined because both the numerator and the
denominator are both zero. This is numerically verified
through the large dispersion of the initial values associated to
different £. Of course, this dispersion is also due to the non-
perfect homogeneity of the HIT data base used to build the
initial condition, see Sec. II. The data dispersion is however
reduced as the mixing process advances. After 6 times scales
it is less than 10%.
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It is possible to analyze this result by means of simplify-
ing hypotheses currently found in literature. (a) The pressure
transport is almost proportional to the convective transport
associated to the fluctuations (Tennekes and Lumley [11],
Yoshizawa [12,13]). (b) The dissipative scales are nearly iso-
tropic [14]. (¢) The second order moments are almost isotro-
pic as observed in shearless turbulent mixings and also con-
firmed by the present numerical experiment, as discussed
above.

Let us now consider the one point second order moment
equations

ot +dad =-2p ' apu+2p " pdu—2e, + v&i?, (3)

ﬁ,v_iz+ ﬁxl)iTMZ 2p_1p<9yiv,- - 281;,- + V&iv_%, i=1,2, (4)

where u is the fluctuating velocity in the inhomogeneous
direction x, v;,v, are the fluctuation components in the plane
normal to x and €,, ¢, are the dissipation terms in the mixing
and normal directions, respectively.

The pressure strain terms pd.u and Poyv;, in the absence

£

of a mean flow, are of the order of b(puiuj—%pb@i), see, for
instance, Monin and Yaglom [15] [Vol. 1, Eq. 6.12, p. 379],
where ¢ is the total dissipation and b is the turbulent kinetic
energy per unit of mass. Since, as previously explained, ex-
periments show no appreciable difference in the second order
moments in the mixing, see condition (c) above, the pressure
strain terms are neglected.
Condition (a) implies that we can write

u+ 2v?u

5 )

—pu=ap
for any value of position x along the mixing and for any time
instant ¢. The difference between Eq. (3) and (4) gives

31% = v}) + 0,6 —vlu) ~ = 2p7 o pu - 2, ~ £,). (6)

By condition (b) ?zv_lz and by condition (c) &,~¢, . Thus,
the unsteady term on the left hand side as well as the second
term on the right-hand side can be neglected and it follows
that

3,6’ = vlu) = - 2p7'a,pui. (7)

Integration of Eq. (7) with respect to x leads to

ul - vizu =-2p'pu+C

but, considering that all quantities in this equation vanish
outside the mixing (i.e., for x— * ), the integration con-
stant C is equal to zero. Thus

uS—UI-Tuz -2p"'pu. (8)

By inserting the previous relation into Eq. (5), it is possible
to write

vi = BM3, = . (9)

Then, by defining ® the proportion of the turbulent kinetic
energy flow associated to the u fluctuation, it follows that
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u’ 1

b= :
(uw’+2v;u) 1+2B

(10)

We have computed the constant « for the present experi-
ments and found, in asymptotic temporal condition and for
£ e[12,10%], an average value of 0.37 +0.03. This gives 8
~0.36 and ® ~0.58. This last value contrasts with our nu-
merical experimental value of ®=0.53 %+ 0.03 shown in Fig.
5(b).

We have verified that @ and B remain almost constant
during the decay and when varying the shearless mixing pa-
rameter £, a fact which confirms that the pressure transport
correlation is almost proportional to the convective transport
associated to the fluctuations and confirm the Yoshizawa hy-
pothesis that when the turbulent field does not possess a
unidirectional mean flow, the velocity turbulent transport
term is not dominating the pressure transport [12,13,16]. In
the present mixing both the advection and the production rate
of the turbulent energy are zero and thus the turbulent trans-
port (velocity and pressure) rate is of the same order of the
dissipation rate.

IV. INTERMITTENCY ASYMPTOTIC BEHAVIOR

In this section we consider the asymptotic behavior with
regards to the variation of the parameter that controls this
kind of shearless mixing layer, that is the initial energy ratio
E=E,/E, between the high-energy turbulent field 1 and the
low-energy turbulent field 2. As stated above, this ratio is
unequivocally linked to the turbulent kinetic energy gradient.
In this work, €& was varied between 1.5 and 10°. The two
external fields show, for moderate values of &, decay expo-
nents which are very close, so that the two homogeneous
turbulences external to the mixing decay in a similar way
and the value of E|/E, remains quite constant during the
time interval considered [5,6].

After few initial eddy turnover times 7=1[(0)/ E}/ 2(0),
where [ is the initial integral scale (homogeneous through the
whole domain) and E,(0) is the initial energy of the high-
energy side, a true mixing layer begins to emerge from the
initial conditions and reaches a self-similar state. This means
that all normalized moment distributions across the mixing
collapse to a single curve when the position is normalized
with the mixing layer thickness, which is defined as the dis-
tance between the points with normalized energy (E
—-E,)/(E,-E,) equal to 1/4 and 3/4, see sketch in Fig. 1.
This definition has been used in many previous works on
shearless mixing [2,3,5].

Results from numerical simulations show that the mixing
layer is highly intermittent in the self-similar stage of decay,
and its intermittency is dependent on £. In order to analyze
the flow intermittency, moments of the component u, that is
the component in the direction of the flow of turbulent ki-
netic energy, were computed (the averages are computed by
integrating over planes at x=const). A particular focus was
placed on the skewness S=u’/(u?)*? and kurtosis K
=u*/(u?)?.

The velocity fluctuation u is responsible for the energy
transport across the mixing. The skewness distribution is a

016309-5



TORDELLA, IOVIENO, AND BAILEY

2.5
[ OOOOG
: MR
2r OO ...00..........0000000000
F °
o O
k1.57 R AAAAAAAAAAAAAAAAAAAAAAAA“
] [ ®a ]
s F L .l-.
= ¥=..- E/E=12 L LT T T e
B A E/E,=40
*Q ° E/E,=300
05 . E/E=10'
L - Homogeneous turbulence
o%IIIIEE&$%{£}}I
4 10
(@) 74
1.2 r
s
08 .
L __m-- -
V)§ 0.6:
04|
0.2 B //7 - - — V&W, 3,3:1 Perforated plate, E//EZ:6A27
L —@—— V&W, 3:1 Bar grid, E /E,=6.19
T RN RN AR AT R S
0.5 1 1.5 2 2.5 3 3.5
(b) 174

FIG. 6. Temporal evolution of the maximum of the skewness
S=u?/(u?)¥? in the mixing for various energy ratios ranging from
12 to 10*. (a) Numerical experiments at Re,=45. Empty symbols
refer to simulations in a (277)% X 87 domain, the others to simula-
tions in a (27)2 X 47r domain. The dashed line is the value of the
reference skewness in a simulation of homogeneous and isotropic
turbulence carried out on the same computational domain, bars rep-
resent the maximum fluctuations of this skewness. (b) Laboratory
data at Rey=44.5 (perforated plate experiment) and Re,=78.1 (bar
grid experiment) from wind tunnel experiments where a spatial de-
cay is observed [2]. The time in laboratory experiments has there-
fore been computed using Taylor’s hypothesis, as t=d/ U, where d
is the distance from the grid and U is the mean velocity across the
grids.

principal indicator of intermittent behavior. It vanishes in
homogeneous isotropic turbulent flows and thus it remains
close to zero in the fields external to the mixing. The skew-
ness takes a positive value within the mixing layer. Figure
6(a) shows the time evolution of the maximum of the skew-
ness for four simulations with energy ratios between 12 and
10*. During the initial eddy turn-over times the skewness
increases steadily, before bending at a time varying from 1.5
(£=12) to 4 (£=10%). At this point the mixing layer enters a
near self-similar stage of evolution. Figure 6(b) shows the
time evolution of the maximum of the skewness in the VW
experiments, the 3,3:1 perforated plate experiment, where £
=6.27, and the 3:1 bar grid experiment, where £=6.19.
Since in the laboratory all the statistics decay in space, we
have estimated an equivalent temporal decay by using Tay-
lor’s hypothesis. The corresponding time in laboratory ex-
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periments has been computed as t=d/U, where d is the dis-
tance from the grid and U is the mean velocity across the
grids [2]. By comparing parts (a) and (b) of Fig. 6 one can
see a good agreement. The distribution with the lowest value
of £ in part (a), which is 12, start to bend at 1.5-1.7 eddy
turn-over times and has values of S,,,, approaching those of
Ref. [2]. Note that in the laboratory experiment the ratio of
macroscales is about 1.5 (this value is estimated by consid-
ering the finiteness of Re, according to Sreenivasan [17]).
This agrees with the finding [5,6] that if the gradient of ki-
netic energy and macroscale are concurrent the mixing pro-
cess is enhanced. In fact, one sees here that a higher energy
gradient, £=12, produces the same skewness as the gradient
of scale associated with the lower-energy gradient £=6.19 in
the VW experiment. In our numerical experiment, for the
higher £ ratios, we note a sort of damped oscillation that
appears beyond the first maximum. This seems to also be
shown by the 3:1 bar grid experiment, see Fig. 6(b).

The value of maximum skewness inside the mixing layer
as a function of the energy ratio is depicted in Fig. 8(a). For
values of E,/E, lower than 107 it scales almost linearly with
the logarithm of the energy ratio, which is in fair agreement
with the scaling exponent of 0.29 found in Ref. [5].

Figure 7 shows the temporal evolution of the maximum of
the kurtosis inside the layer. Here again the comparison be-
tween our numerical data and the data of the VW experiment
is presented. The numerical and laboratory results contrast
well for comparable values of E,/E,. A high peak is shown
at the end of the formation time interval where the mixing
process develops. This peak is followed by a decrease, that
could be interpreted as the fact that the more extreme inter-
mittent turbulent events take place at the end of the forma-
tion interval and before the self-similarity sets in. In the nu-
merical experiments for these time scale units that last longer
than those in the laboratory, the decrease is followed by an-
other damped increase-decrease cycle, as in the skewness
case. The time asymptotic values were estimated by averag-
ing over the last cycle. Note that data in Figs. 6 and 7 from
laboratory experiments were obtained in the presence of con-
current gradients of integral scale and kinetic energy. Also in
the kurtosis case, it can be observed that a higher-energy
gradient produces the same intermittency than a gradient of
scale associated with a lower energy gradient [5,6].

The distribution of the peak of kurtosis inside the mixing
is shown in Fig. 8(b). From this figure it can be noted that the
kurtosis reaches very high values, much higher than the
value of 3, that is the Gaussian reference value indicated in
the figure by the dashed line. The kurtosis asymptote is in
fact close to 10.5, which indicates the presence in the mixing
layer of extremely intense intermittent events.

A similar behavior of the skewness and kurtosis maxima
can be seen in the mixing penetration, defined as the instan-
taneous position along the x direction of the maximum of the
skewness normalized with the instantaneous mixing layer
thickness A(z), see Fig. 8(c). The penetration becomes con-
stant in the self-similar evolution. The penetration physically
highlights the region of maximum intermittency, which is
located in the low energy side of the mixing layer. An in-
crease of the energy ratio enhances the penetration of the
high-energy side into the low-energy side. An asymptotic
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_FIG. 7. Temporal evolution of the maximum of the kurtosis K
=u*/(4?)? in the mixing for various energy ratios ranging from 12
to 10*. (a) Numerical experiments at Re, =45, empty symbols refer
to simulations in a (277)2 X 87 domain, the others to simulations in
a (271)% X 47 domain. The dashed line is the value of the reference
kurtosis in a simulation of homogeneous and isotropic turbulence
carried out on the same computational domain. The bars represent
the maximum fluctuations of this kurtosis. (b) Laboratory data at
Re)=44.5 (perforated plate experiment) and Re,=78.1 (bar grid
experiment) from wind tunnel experiments where a spatial decay is
observed [2]. The time in laboratory experiments has therefore been
computed using Taylor’s hypothesis, as t=d/U, where d is the dis-
tance from the grid and U is the mean velocity across the grids.

value of about 1.2A is obtained for £— %, which gives an
indication of the penetration of an isotropic turbulent field
into a quiescent field.

An alternative measure of the anisotropy is given by the
velocity gradient statistics. We have computed the third and
fourth order moments of both the longitudinal velocity de-
rivative du/dx and transverse velocity derivative du/dy;
(no summation over i). These are defined as

Sowan = (Il ax)1[ (ul ax)* %,

Sauray, = (uldy)I[(duldy,)* P2, i=1,2,

K gy = (0ul 3x)* [ (9ul ox)* T2,
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FIG. 8. (a) Maximum of the skewness, (b) estimate of the
asymptotic kurtosis value as a function of the initial energy ratio
(the horizontal dashed line indicates the Gaussian reference value),
and (c) normalized position of the maximum of the skewness in the
mixing layer as a function of the initial energy ratio. Note that one
can expect a higher level of intermittency in the data of Ref. [2]
since these experiments had non-unity integral scale ratio (I,/l,
=1.5).

Kouay, = (0uldy) [ (ouldy,)’ T, i=1,2.

The averages are computed by integrating over planes at x
=const. Figure 9 shows the time evolution of the peak of the
longitudinal and transverse velocity derivative skewness and
kurtosis within the mixing. The figure includes, for compari-
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FIG. 9. (Color online) Temporal evolution of the peak of the velocity derivative statistics within the mixing. (a) Longitudinal velocity
derivative skewness. (b) Longitudinal velocity derivative kurtosis. (c) Transverse velocity derivative skewness. (d) Transverse velocity
derivative kurtosis. The instantaneous values in the high and low homogeneous regions external to the mixing are shown with the red
(dashed) and green (dash-dotted) lines, respectively. The violet (dotted) line is the reference value for Rey =45 deduced from Figs. 5 and 6

in Ref. [18].

son, the values measured in the two homogeneous and iso-
tropic turbulent fields outside the mixing and the values de-
duced from Figs. 5 and 6 of the review by Sreenivasan and
Antonia [18] for Re, =45.

We observe that the temporal evolution of all these veloc-
ity derivative statistics during the mixing decay presents an
initial transient which is very similar to that shown by the
velocity statistics, the transient length is the same in the two
cases and there is no lag. The maximum values are always
reached at t/ 7~4 and increase with £. The longitudinal de-
rivative moments are always larger than the transverse de-
rivative moments, the difference decreases with the increase
of &. For instance, for £=10%, absolute values as high as 4
—5 are reached for the skewness, while values of 55 and 38
are measured for the longitudinal and transverse kurtosis,
respectively. The anisotropy picture yielded by these velocity
derivative corresponds to that of a higher intermittency along
the inhomogeneous direction than across it.

V. CONCLUSIONS

We considered the simplest kind of turbulent shearless
mixing process which is due to the interaction of two isotro-
pic turbulent fields with different kinetic energy but the same

spectrum shape. This mixing is characterized by the absence
of advection, production of turbulent kinetic energy, and an
integral scale gradient. Such a situation can be seen as the
simplest form of turbulence inhomogeneity that can lead to a
departure from Gaussianity. The study was carried out by
means of Navier-Stokes direct numerical simulations based
on a fully dealiazed Fourier-Galerkin pseudospectral method
of integration. The data base was analyzed through single-
point statistics involving the velocity and pressure fluctua-
tions.

We determined the temporal asymptotic behavior of the
self-similar state. We also obtained the asymptotics for very
high-energy ratios between the isotropic turbulent fields
which, through their interaction, initiate the mixing process.
The infinite limit of the turbulent energy ratio corresponds to
the interaction of a region of isotropic turbulence with a rela-
tively still fluid. In this limit the turbulent energy gradient
reaches the maximum observable value associated to a given
energy in the high energy side of the mixing. In this limit the
mixing penetration is maximum and is as deep as 1.2 times
the mixing thickness.

We observed the intermittency and anisotropy of the mix-
ings. Anisotropy was found to be mild for second order mo-
ments, on the contrary it was very intense in third and fourth
order moments. The time asymptotic behavior of the aniso-
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FIG. 10. (Color online) (a) Profiles of the mean pressure and
second order moment of the velocity component in the mixing di-
rection, simulation with initial energy ratio E,/E,=60. (b) Mean
flow acceleration, gradient of the second order moment of the ve-
locity component in the mixing direction and of the mean pressure.
Simulation with initial energy ratio E;/E,=60. Air at standard
conditions.

tropy was almost independent of the turbulent energy ratio
(i.e., turbulent energy gradient). The anisotropy observed
through the third and fourth order moments of the velocity
derivatives (longitudinal and transverse) is also very intense,
but depends on the turbulent energy ratio.

Despite having no gradient of integral scale, no mean
shear, and thus no advection and no production of turbulent
kinetic energy, all mixings showed a departure from a Gauss-
ian state for any turbulent energy ratio. This signifies that the
absence of these flow properties does not imply a condition
of no intermittency. On the contrary the intermittency is
highly dependent on the turbulent energy ratio between the
two interacting fields. The intermittency has a constant as-
ymptote when this ratio approaches to infinity, which is con-
sistent with the maximum value of the turbulent energy gra-
dient that can be asymptotically attained in this limit. It is
deduced that the presence of a gradient of turbulent kinetic
energy is a sufficient condition for the onset of intermittency.
For any turbulent energy ratio we verified that the pressure

PHYSICAL REVIEW E 77, 016309 (2008)

transport is not negligible with regard to the velocity trans-
port as in recirculating turbulent flows.

In conclusion, by assuming that the interaction of two
isotropic turbulent fields with different kinetic energy but the
same integral scale is the nonhomogeneous turbulent flow
with the lowest level of dynamical complexity, we propose
the hypothesis that the existence of a gradient of turbulent
energy is the minimal requirement for Gaussian departure in
turbulence, since there is experimental evidence that it is a
sufficient condition to promote intermittency.
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APPENDIX: MEAN PRESSURE FIELD IN THE
TURBULENT SHEARLESS MIXING FLOW

The shearless turbulent mixing that we have studied is a
flow where the average momentum is zero since the initial
condition and the boundary conditions are such as to not
generate a mean flow. It should be noted that the laboratory
configuration, at least, those to date, is somehow different. In
fact, when the two interacting homogeneous isotropic turbu-
lent fields are generated by grids placed in a wind tunnel, a
mean (homogeneous, i.e., shearless) flow is present in the
normal direction to the mixing. However, it is true that an
acceleration along the mixing direction could emerge if the
initial gradients of mean pressure and turbulent kinetic en-
ergy do not compensate. As in the laboratory situation, this
mean flow would remain homogeneous, thus also in this case
the mixing would be shearless (i.e., devoid of the production
of turbulent kinetic energy). Let us first consider the aver-
aged Navier-Stokes equations without the introduction of
any model. The mean momentum equation is

GU;+ UU; == (1p)iP = duai; + WU, (A1)

where the capital letters denote mean quantities, the small
letters fluctuations, and the overline denotes the statistical
average. For t=0 we have U;=0 and the only nonzero de-
rivative is in the x direction, so that these equations reduce to

aU=—(1/p)a,P—du?, (A2)

where U is the mean velocity in the mixing direction. It can
be seen that if the initial pressure gradient term balances the
gradient of the part of the initial turbulent kinetic energy
associated to the fluctuations in the x direction (#>=2/3K),
the acceleration term d,U is zero. In such a situation, a mean
field will be absent. On the contrary, for example, in the
hypothetical case of an initial kinetic energy gradient facing
a zero pressure gradient, a mean homogeneous (without
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shear) flow will be generated. In the present numerical ex-
periment the initial velocity field is first introduced. Then, as
is standard practice, the code builds the pressure field by
using the Poisson equation obtained from the divergence of
the momentum balance. Periodicity conditions plus a condi-
tion fixing the average pressure p, value in the entire domain
are used. Since the field is incompressible, the divergence of
U, is zero and we obtain the following averaged equation:

At t=0 the fluctuating velocity field is statistically uniform
apart from in the x direction (note: that it remains so during
the mixing process). By also considering the symmetries of
the initial velocity field, and in particular the fact that, out-
side the mixing, the field is uniform, we obtain

P Plp=—Fu>, 9Plp=—du’. (A4)

Consequently, by coming back to Eq. (A2), one can see that
no mean acceleration is generated at r=0. Figure 10 shows
the terms in Eq. (A2)—the pressure and turbulent Kkinetic
energy gradients and d,U—in two instants. We have consid-
ered the field configuration observed in the laboratory ex-
periment by Veeravalli and Warhaft (3:1 perforated plate ex-
periment, air flow at standard conditions), which is actually
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the field configuration that we tried to reproduce in this nu-
merical experiment. In particular, we have estimated the di-
mensional values of the pressure gradients and pressure dif-
ference between the high turbulent energy and low-energy
regions of the mixing. If (dP/dx),x=is the maximum value
of the mean pressure gradient and AP=the pressure differ-
ence between the two homogeneous regions, we have at the
initial instant of the simulations

E|/E;=6.6, (dP/dx),,=1.39Pa/m,

AP=230X 102 Pa, 2A=2cm,

E|/E, =40, (dP/dx)my.,=1.60Pa/m,

AP=271 X102 Pa, 2A=2cm,

E|/E, =60, (dP/dx)mn.=1.62Pa/m,

AP=272X 102 Pa, 2A=2 cm.

It can be observed that these pressure differences are very
small. As a consequence, measurements in the laboratory
should be very difficult.
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