
Estimation of parameters in nonlinear systems using balanced synchronization

Henry D. I. Abarbanel*
Department of Physics and Marine Physical Laboratory (Scripps Institution of Oceanography), University of California, San Diego, La

Jolla, California 92093-0402, USA

Daniel R. Creveling†

Department of Physics and Institute for Nonlinear Science, University of California, San Diego, La Jolla, California 92093-0402, USA

James M. Jeanne‡

Graduate Program in Computational Neurobiology and Institute for Nonlinear Science, University of California, San Diego, La Jolla,
California 92093-0402, USA

�Received 30 July 2007; published 28 January 2008�

Using synchronization between observations and a model with undetermined parameters is a natural way to
complete the specification of the model. The quality of the synchronization, a cost function to be minimized,
typically is evaluated by a least squares difference between the data time series and the model time series. If
the coupling between the data and the model is too strong, this cost function is small for any data and any
model and the variation of the cost function with respect to the parameters of interest is too small to permit
selection of an optimal value of the parameters. We introduce two methods for balancing the competing desires
of a small cost function for the quality of the synchronization and the numerical ability to determine parameters
accurately. One method of “balanced” synchronization adds to the synchronization cost function a requirement
that the conditional Lyapunov exponent of the model system, conditioned on being driven by the data remain
negative but small in magnitude. The other method allows the coupling between the data and the model to vary
in time according to the error in synchronization. This method succeeds because the data and the model exhibit
generalized synchronization in the region where the parameters of the model are well determined. Examples
are explored which have deterministic chaos with and without noise in the data signal.
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I. INTRODUCTION

Estimating parameters in a nonlinear dynamical model,
given observed data, is an important aspect of developing
predictive models of physical and biological systems �1–10�.
Setting aside the issues of noise and experimental errors in
acquiring the data and errors in the models themselves, one
still has a significant challenge in estimating these param-
eters, especially when the dynamical behavior can be cha-
otic. As we recall below, the presence of positive Lyapunov
exponents in this setting means that the numerical evaluation
of a cost function representing parameter estimation quality,
often a least squares metric, may suffer from sensitive de-
pendence on initial conditions �11,12�.

There have been a few investigations into the use of syn-
chronization between the source of the experimental data and
the model system, and these have shown substantial promise
in successfully performing the desired model parameter esti-
mation �6,7,9,10,13,14�. We will examine a class of such
proposed synchronization methods for this problem and
show that they suffer other deficiencies when the coupling,
which we generically call K, between the observations and
the model is too large. When K is large, synchronization is
dictated by the manner of driving the model with the data, so

the estimation metric is small. When K is too small, the data
and the model do not synchronize, and information is not
passed precisely between the data and the model whose pa-
rameters we wish to determine �6�. When K is too large, the
desired sharp minimum in the estimation metric as a function
of the parameters is removed.

In this paper we explore two methods for balancing these
desired properties: small estimation metric for determining
model parameter values and automatic synchronization of
model and data signals without a loss of parameter estima-
tion capability. We seek a balance between these behaviors,
and we call the general method “balanced synchronization.”

The problem we address can be cast into the following
format. We imagine there is a physical or biological system
whose state is determined by the N-dimensional vector x�t�
= �x1�t� ,x2�t� , . . . ,xN�t��, where measurements are made on
the system at time intervals �. Starting with some initial time
t0, measurements are made at times t0+m�; m
=0,1 ,2 , . . . ,M, resulting in observations x�m�=x�t0+m��.
We assume this sampling is adequate to determine the fre-
quencies of importance in the operation of the system of
interest: � is small enough and M� is large enough.

One component of the state is now measured and stored
for use in determining parameters in a model describing the
physics of interest. This could be an arbitrary scalar function
of the system’s state h�x�t�� but we will take it as one of the
state variables itself, namely, x1�t�. The other N−1 state vari-
ables u�t�= �x2�t� ,x3�t� , . . . ,xN�t�� are unobserved. If they
were, the analysis would proceed in a parallel fashion to
what we present here.
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The observed �or “driver”� system satisfies the differential
equations

dx1�t�
dt

= F1„x1�t�,u�t�,p… ,

du�t�
dt

= G„x1�t�,u�t�,p… , �1�

where the vector fields F1�¯� and G�¯� are presumed
known, and the trajectories x�t�= �x1�t� ,u�t�� are determined
by the initial conditions x�t0� and the P parameters p
= �p1 , p2 , . . . , pP�.

The time series information x1�t� �the “data”� is now
passed to the receiver system which is our model for the
process describing the observations. For this paper we take
this model to be precisely that used in generating the data, so
we know the dynamics, but assume we do not know the
parameters q= �q1 ,q2 , . . . ,qP� of the receiver �the model�.
The state of the receiver is given by y�t�
= �y1�t� ,y2�t� , . . . ,yN�t��= �y1�t� ,v�t��. Without coupling to
the data our model satisfies

dy1�t�
dt

= F1„y1�t�,v�t�,q… ,

dv�t�
dt

= G„y1�t�,v�t�,q… , �2�

and we seek to determine the q given a times series x1�t� �5�.
For this purpose, we couple the receiver system to the

input signal x1�t� using

dy1�t�
dt

= F1„y1�t�,v�t�,q… + K„x1�t� − y1�t�… ,

dv�t�
dt

= G„y1�t�,v�t�,q… . �3�

Had the signal h�x�t�� been measured, the coupling term
would have been K�h�x�t��−h�y�t��� �5�. The idea is that for
some range of K the receiver �model� will synchronize to the
data y1�t��x1�t�, and this synchronization will be “most ac-
curate” when we vary the parameters in the model and
achieve q=p �6�.

The synchronization we consider here is “identity” syn-
chronization which assumes that we know the model vector
field �F1�¯� ,G�¯�� exactly, that it matches the dynamics of
the data source exactly, and that only the particular param-
eters p utilized in generating the data are not known. We will
proceed with this scenario while acknowledging that this is
unlikely to precisely be the case in practice. Instead we will
have measured some quantity, call it x1�t�, and have done our
best to determine a model vector field—or differential
equations—and wish to establish the parameters of that
model. Further, we generally assume there is no uncertainty
in either the data, expressed as noise in the data or inaccura-
cies in the measurements, or in the model. Our point of view
is that the exploration we report here will be the starting

point for more realistic situations where these and other com-
plications, such as the model being wrong, are present. In
two cases we explore the sensitivity of the methods to noise
in the signal x1�t� transmitted from the data to the model.

Moving beyond these cautionary remarks, we need a prin-
ciple to assist in estimating the q. A natural choice similar to
that used in Ref. �6� is a least squares criterion involving
minimizing the cost function

C�q� =
1

2
� dt„x1�t� − y1�t;q�…2 =

�

2 	
m=1

M

„x1�m� − y1�m,q�…2,

�4�

where we have made explicit the dependence of the receiver
�model� solution on the parameters q. t= t0+m� as above.

The minimization involves seeking a zero of

�C�q�
�q�

=� dt„y1�t;q� − x1�t�…
�y1�t;q�

�q�

, �5�

for �=1,2 , . . . , P. The q giving these zeros will be our esti-
mate of the model parameters q needed to match the settings
p of the data source. Formally we also desire that the P
� P matrix

�2C�q�
�q� � q�

�6�

is positive definite.
The quantity

�y1�t;q�
�q�

�7�

is determined, along with

�v�t;q�
�q�

�8�

by

d

dt

�y1�t;q�

�q

�v�t;q�
�q

� = �D · F„y1�t;q�,v�t;q�… − K 0

0 0
��

�

�y1�t;q�

�q

�v�t;q�
�q

� +
�F�y,q�

�q
, �9�

where D ·F is the N�N Jacobian matrix

D · Fij�y� =
�Fi�y�

�yj
; i, j = 1,2, . . . ,N �10�

of the model dynamics, and the matrix involving K is also
N�N with only the upper left diagonal element nonzero.
F�y� is the total N-dimensional vector field F�y�
= (F1�y1 ,v� ,G�y1 ,v�).

We need to face the issue of stability as the eigenvalues of
the Jacobian D ·F�y� iterated along the orbit y�t� may have

ABARBANEL, CREVELING, AND JEANNE PHYSICAL REVIEW E 77, 016208 �2008�

016208-2



positive conditional Lyapunov exponents; conditioned on the
driving signal x1�t�. These are found in the usual way by
concatenating products of the matrices D ·F(y�t�)−K and re-
lying on the Oseledec theorem to assure us of the existence
of the eigenvalues of the iterated product. If there are posi-
tive conditional Lyapunov exponents, then the synchroniza-
tion manifold y1�t�=x1�t� is not stable to small perturbations,
and the evaluation of the derivatives of the cost function �5�
is numerically quite uncertain �8,11,12�.

The conditional Lyapunov exponents, however, can be
made negative by increasing the magnitude of K. When the
largest conditional Lyapunov exponent has become negative,
then the synchronization manifold is stable to small pertur-
bations, and evaluating the derivatives of the cost function is
straightforward.

As K becomes large, the term K(x1�t�−y1�t�) dominates
the right-hand side of the evolution equation for y1�t� unless
x1�t�−y1�t�� 1

K or smaller. As this happens, all the deriva-
tives in Eq. �5� approach zero, and we have little numerical
variation of the derivatives as functions of the parameters q.
Simply stated the minimum we seek of the cost function
becomes so flat in q space it is numerically extremely diffi-
cult to locate. So as we tame the numerical instability asso-
ciated with chaos in the model dynamical system, we may
send ourselves into a regime where the evaluation of the
parameters q by minimizing the cost function becomes
harder and harder.

In addition, when K is large, the dynamics of the model
are entrained by the driving K(x1�t�−y1�t�) and any model is
forced to follow x1�t�. The ability to distinguish among mod-
els is thus lost.

We require a balance between these unacceptable limits,
and to accomplish that, we need a way to choose a value of
K that just leads to the largest conditional Lyapunov expo-
nent being negative, yet is not such a large value of K that
we lose the ability to see variations in the q. We call this
“balanced synchronization,” and we now explore two ways
to achieve this. Following an exploration of these ideas in the
Lorenz system and in a model of the RF Colpitts oscillator,
we report on laboratory experiments with analog circuits rep-
resenting the Lorenz driver and “model” system.

II. BALANCED SYNCHRONIZATION

A. Controlling the largest conditional Lyapunov exponent

For synchronization of the experimental data x1�t� and the
model system to be effective in estimating the q, the largest
conditional Lyapunov exponent must be negative �1�. Since
we are depending on synchronization to drive the model dy-
namical variables �y1�t� ,v�t�� to those taken on by the ob-
served signal �x1�t� ,u�t��, if synchronization fails, the foun-
dation of the method would fail �5�.

The conditional Lyapunov exponents are evaluated by
perturbing the receiving or model system from the synchro-
nization manifold x�t�=y�t�. Linearizing this perturbed dy-
namics we have for ��t�=y�t�−x�t�

d��t�
dt

= �D · F„x�t�… − K� · ��t� , �11�

where

K = K 0

0 0
� . �12�

Recalling that we sample the data and the model at time
intervals � we may interpret this differential equation as a
map between values of the perturbation at “time” n and time
n+1:

��n + 1� = D · H„x�n�… · ��n� , �13�

where

D · H„x�n�… = I + ��D · F„x�n�… − K� , �14�

and I is the unit N�N matrix.
To find all of the conditional Lyapunov exponents, we

need to iterate this map and evaluate the eigenvalues of the
resulting product of matrices. We, however, do not require all
of the conditional Lyapunov exponents, just the largest, and
this entails a much easier calculation.

Take an arbitrary unit vector w in the N-dimensional
space and multiply it by the iterated “effective” Jacobian

D · H�x�L = D · H„x�L�… · D · H„x�L − 1�… ¯ D · H„x�1�… ,

�15�

which carries the linearized perturbation at “time” 1 to its
value at “time” L+1. Multiply the vector D ·H�x�Lw by its
transpose

„D · H�x�Lw…

T · „D · H�x�Lw… . �16�

This grows as e2L��q,K� for large L. The quantity

1

2L
ln„D · H�x�Lw…

T · „D · H�x�Lw… , �17�

is just ��q ,K�, the largest conditional Lyapunov exponent.
We wish to have ��q ,K� slightly negative �11�.

This suggests that we replace the least squares cost func-
tion with the balanced cost function

C�q,K� =
1

2
� dtf�„x1�t� − y1�t;q�…2� +

1

2
„��q,K� − �…2,

�18�

where � is a small negative number and f�x2� a function
which vanishes as x2 near x=0. This enforces synchroniza-
tion by asking that the first term be small, but does not allow
K to be so large that ��q ,K� is too negative. As an approxi-
mation to this cost function for K large, we may estimate the
first term as being of order 1

K2 , as x1�t�−y1�t ,q�� 1
K while the

second grows as K2. If the total cost function is approxi-
mated as

A

K2 + BK2, �19�

with A and B constants, this has a minimum at approximately
K�� A

B
�1/4. So K remains bounded, and there is a balance

between the smallness of the synchronization error and the
magnitude of the synchronization coupling strength K.
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B. Balancing the magnitude of K: Dynamical coupling

Another idea is to allow the magnitude of the coupling K
to vary in a manner which makes it grow when the data and
the model are out of synchronization, while it decreases
when they have synchronized. For this purpose we look at
the following differential equations for y1�t�, v�t�, and K�t�

dy1�t�
dt

= F1„y1�t�,v�t�,q… + K�t�„x1�t� − y1�t�… ,

dv�t�
dt

= G„y1�t�,v�t�,q… ,

dK�t�
dt

= − aK�t� + g�„x�t� − y�t�…2� , �20�

where a�0, g�0�=0, and for small argument g�x2��x2. The
solution to the K�t� differential equation

K�t� = e−atK�t = 0� + �
0

t

dt�e−a�t−t��g�„x�t�� − y�t��…2� ,

�21�

shows that the initial value of K�t=0� is unimportant when
ta�0. If g�x2� is bounded by a constant C, K�t�	

C
a . This

means that the coupling is again balanced, but this time by
the requirements of synchronization on the magnitude of
g�x2� and the tendency for K to vanish. As time goes by there
are intervals when the synchronization is lost and (x�t��
−y�t��)2 grows, this leads to a growth in the magnitude of
K�t� improving the synchronization. The balance between
these two effects, decay of K�t� to zero and growth of K�t� to
strengthen synchronization, is the embodiment of balanced
synchronization in this method.

For our investigations we explored two different functions
of the synchronization error x1�t�−y1�t�

dK�t�
dt

= − aK�t� + tanh�„x�t� − y�t�…2� ,

dK�t�
dt

= − aK�t� + „x�t� − y�t�…2. �22�

In the first K�t�	
1
a , while for the second the perturbation to

K�t� can be quite large.
In this approach to balanced synchronization, we can

never have identity synchronization x�t�=y�t�, as the driving
system �the data� is N dimensional (x�t�) while the model
system is �N+1�-dimensional (y�t� ,K�t�). If the coupling pa-
rameter K�t� were constant, identity synchronization would
be possible. In our formulation of a criterion as given below
for determining the parameters q, we still use the notion of
identity synchronization, and this may be approximately cor-
rect as the variation of K�t� is bounded. Nonetheless, as we
will show below, the determination of parameters in the
model using this method works quite well. It is worth asking
why the determination of parameters might be so accurate
using this K�t� method.

Now generalized synchronization between these two dy-
namical systems is possible �15,16�. To test for this we use
the variant of the auxiliary system method as discussed by
Tang et al. �19�. In this approach the signal from the driving
system x1�t� is repeatedly presented to the model system
y�t� ,K�t�, Eq. �20�. In each presentation the model system is
taken to be in a different state by adjusting either the time at
which x1�t� is presented or adjusting the initial conditions of
the model system. In effect, the state of the model system is
different for each presentation. If we call the model output
from presentation n=1,2 , . . . , ;y�n��t�, then after a transient,
these outputs from the various realizations of the model
should agree: y�n��t�=y�n���t�; n�n�. We now look at these
balanced synchronization methods in several examples.

III. EXAMPLES

A. The Lorenz model

Our first example is that of the Lorenz system. We have
three dynamical equations for the driving oscillator

dx1�t�
dt

= 
„x2�t� − x1�t�… ,

dx2�t�
dt

= − x2�t� + RDx1�t� − x1�t�x3�t� ,

dx3�t�
dt

= − bx3�t� + x1�t�x2�t� , �23�

and three equations for the driven receiver

dy1�t�
dt

= 
„y2�t� − y1�t�… + K11„x1�t� − y1�t�… ,

dy2�t�
dt

= − y2�t� + Ry1�t� − y1�t�y3�t� ,

dy3�t�
dt

= − by3�t� + y1�t�y2�t� . �24�

1. Controlling the largest conditional Lyapunov exponent

We chose conventional values for the parameters 
 and b
�11�: 
=16.0 and b=4.0. In the driver oscillator we selected
RD=45.92. As described above, we chose a cost function
which balances the least squares deviation of the driver input
x1�t� and the output y1�t� against the deviation of the largest
CLE ��K11,R� from a small negative number �=−0.05:

C�K11,R� =
1

2T
�

0

T

„x1�t� − y1�t�…2dt +
1

2
„��K11,R� − �…2,

�25�

and varied K11 and R. We plot the value of C�K11,R� at its
minimum for a given R as we vary K11, Cmin�R�. Then we
search over R for a minimum in the two variables R and K11.
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We selected T=5000 samples of the driving Lorenz model
trajectory and the driven trajectory.

As we see in Fig. 1 there is a clear minimum in Cmin�R� at
R=RD. In Fig. 2 we plot the cost function C�K11,R�. In the
latter there is again a clear minimum for K11�9 and at R
=RD. This minimum results from the balance in the cost
function between the two terms. Were the second term ab-
sent, we would see the cost function simply flatten out as K11
increased. Since ��K11,R� grows as K11 we find the desired
balancing of the coupling as discussed above.

2. Balancing the magnitude of K

In this case we replace the driven system
(y1�t� ,y2�t� ,y3�t�) above with

dy1�t�
dt

= 
„y2�t� − y1�t�… + K�t�„x1�t� − y1�t�… ,

dy2�t�
dt

= − y2�t� + Ry1�t� − y1�t�y3�t� ,

dy3�t�
dt

= − by3�t� + y1�t�y2�t� ,

dK�t�
dt

= − aK�t� + g„�2�t�… , �26�

where �2�t� is the squared error (x1�t�−y1�t�)2 if we use just
the scalar data. If we reconstruct state space using time delay
variables, the scalar data is replaced by the D-dimensional
vector x�t�= �x1�t� ,x1�t−T�� ,x1�t−2T�� , . . . ,x1(t− �D
−1�T�)� and the reconstructed state space vector of the
model y�t�= �y1�t� ,y1�t−T�� ,y1�t−2T�� , . . . ,y1(t− �D
−1�T�)�. Then �2�t�= �x�t�−y�t��2. With our choice of time
step in solving the Lorenz equations, we select T�=0.1, us-
ing the first minimum of average mutual information as a
criterion. Using false nearest neighbors we find D=3.

3. Unbounded forcing function g†�2
„t…‡ :g„z…=z2

We first choose as a forcing in the K�t� equation, g�z�
=z2, and

dK�t�
dt

= − aK�t� +
„x1�t� − y1…

2

A2 , �27�

with A=a=0.05.
We have evaluated the average squared error

1

T
�

t0

T+t0

„x1�t� − y1�t�…2dt �28�

and the “cost” function

1

T
�

t0

T+t0

tanh�„x1�t� − y1�t�…2�dt �29�

for use in determining the parameter R in Eq. �24�.
In Fig. 3 we show the integrated error Eq. �28� as a func-

tion of R when we use only the scalar values x1�t� and y1�t�
in our error estimates. In Fig. 4 we show the same quantity
when we use reconstructed time delay state space in the error
estimate. In Fig. 5 we show the cost function Eq. �29� when
only the scalars x1�t� and y1�t� are used in evaluating the
error. In Fig. 6 we use time delay reconstruction of the phase
space.

In each case there is a clear minimum at the value R
=RD=45.92.

4. Bounded forcing function g†�„t…‡ :g„z…=4 tanh„z2
…

We now choose as a forcing in the K�t� equation, g�z�
=4 tanh�z2�, and

dK�t�
dt

= − aK�t� + 4.0 tanh� „x1�t� − y1…�2A2 , �30�

with A=a=0.05.
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FIG. 1. The cost function C�K11,R� Eq. �25� as a function of R
at the minimum value of K11 for each R.
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FIG. 2. �Color online� The cost function C�K11,R� Eq. �25� as a
function of R and K11. The balancing effect of the “cost” for the
requirement of the conditional Lyapunov exponent to be slightly
negative leads to a clear minimum here.
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Again we evaluated the integrated error �Eq. �28�� and the
cost function �Eq. �29�� as a function of R, and the results are
essentially the same as for g�z�=z2 above. We do not show
them here.

To illustrate the generalized synchronization operating in
the determination of the parameter R, we presented the same
driving signal x1�t� to the model system in Eq. �26� with
different initial conditions for �y1�t=0� ,y2�t=0� ,y3�t
=0� ,K�t=0��. If the data system x�t� and the model with
time-dependent coupling show generalized synchronization,
then after a transient, the output y�t� ,K�t� should be the same
for each presentation. In Fig. 7 we plot y1�t� for three pre-
sentations of the same driver data x1�t� when the receiver
system �y1�t� ,y2�t� ,y3�t� ,K�t�� begins in three different ini-
tial conditions. In Fig. 8 we plot K�t� for three presentations

of the same driver data x1�t� when the receiver system
(y1�t� ,y2�t� ,y3�t� ,K�t�) begins in three different initial con-
ditions. This provides graphic, quantitative evidence for gen-
eralized synchronization between the three-dimensional
driver system and the four-dimensional receiver system.

B. The Colpitts oscillator

The Colpitts oscillator is an electronic circuit using a bi-
polar junction transistor as the nonlinear gain element
�17,18�. The three dynamical equations for this oscillator are

dx1�t�
dt

= �Dx2�t� ,
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FIG. 3. Lorenz system g�z�=z2 forcing in the K�t� equation. The
error is evaluated using only scalar signals.
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FIG. 4. Lorenz system g�z�=z2 forcing in the K�t� equation. The
error is evaluated using time delay reconstructed phase space
signals.
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dx2�t�
dt

= − �D„x1�t� + x3�t�… − qx2�t� ,

dx3�t�
dt

= „x2�t� + 1 − e−x1�t�
… . �31�

Using the following parameter values �D=0.08, q
=0.6898, and =6.2723 �17� we explored a range of values
of �. For ��3 or so, we found chaotic behavior of the
oscillator, and we collected “data” x�t� from solving these
equations for �D=5.0.

1. Controlling the largest conditional Lyapunov exponent

Using the output of this system we drove another Colpitts
oscillator with x1�t�

dy1�t�
dt

= �Dy2�t� + K„x1�t� − y1�t�… ,

dy2�t�
dt

= − �„y1�t� + y3�t�… − qy2�t� ,

dy3�t�
dt

= „y2�t� + 1 − e−y1�t�
… . �32�

We again chose a cost function which balances the least
squares deviation of the driver input x1�t� and the output
y1�t� against the deviation of the largest CLE ��K ,�� from a
small negative number �=−0.05:

C�K,�� =
1

2T
�

0

T

„x1�t� − y1�t�…2dt +
1

2
„��K,�� − �…2,

�33�

and varied K and �.
In Fig. 9 we show C�K ,��. As in the case for the Lorenz

system, there is a clear minimum establishing a value for
K�1 and indicating that �=�D=0.08.

2. Balancing the magnitude of K

Using the same time series x1�t�, we then solved the fol-
lowing equations:

dy1�t�
dt

= �y2�t� + K�t�„x1�t� − y1�t�… ,

dy2�t�
dt

= − �D„y1�t� + y3�t�… − qy2�t� ,
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FIG. 7. g�z�=tanh�z2� forcing in the K�t� equation. Evidence for
generalized synchronization of the three-dimensional Lorenz sys-
tem (x1�t� ,x2�t� ,x3�t�) with the four-dimensional system
(y1�t� ,y2�t� ,y3�t� ,K�t�) using the auxiliary system method. This
shows the output y1�t� upon presentation of the same input signal
x1�t� for three different initial conditions �IC� for the four-
dimensional receiver system.
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FIG. 8. g�z�=tanh�z2� forcing in the K�t� equation. Evidence for
generalized synchronization of the three dimensional Lorenz system
(x1�t� ,x2�t� ,x3�t�) with the four-dimensional system
(y1�t� ,y2�t� ,y3�t� ,K�t�) using the auxiliary system method. This
shows the output K�t� upon presentation of the same input signal
x1�t� for three different initial conditions for the four-dimensional
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FIG. 9. �Color online� C�K ,�� using the CLE method, Eq. �33�,
for Colpitts oscillator driven by x1�t� data to determine the coupling
parameter K and the model parameter �.
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dy3�t�
dt

= „y2�t� + 1 − e−y1�t�
… ,

dK�t�
dt

= − aK�t� + tanh„�2�t�/2… , �34�

with �2�t�= (x1�t�−y1�t�)2 when we use scalar values of the
data only and �2�t�= �x�t�−y�t��2 when we use time delay
reconstructed phase space values from x1�t� and y1�t� for the
data and the model respectively. a=0.03 in our calculations.

Along with the time dependence of K�t� we recorded the
following phase space estimation error indicating the quality
of the matching of the data and the model output

1

T
�

0

T

dt tanh„�2�t�… . �35�

This metric is bounded above by unity, and when the param-
eters in the model are varied this should be a minimum when
the model parameter � matches that chosen in producing the
data x1�t�. In Fig. 10 we plot the value of this phase space
estimation error as a function of � using scalar data only for
�2�t�.

In Fig. 11 we show the time series of K�t� when we use
time delay reconstructed phase space vectors for error2�t�.
Note that K�t� does not go to zero but remains bounded and
remains much smaller than its upper bound 1

a �33.3. In this
case we have a phase space error function shown in Fig. 12
which strongly indicates the correct value of the parameter �
at �=5.0.

We asked what constant value of K would produce iden-
tity synchronization between the two Colpitts oscillators
when only the signal x1�t� was passed from the driver to the
receiver. We found that K�0.75 is where the largest condi-
tional Lyapunov exponent becomes negative and identity
synchronization is well established. Looking again at Fig. 11

we see that the value of K�t� varies around 0.25 not quite
reaching unity at times indicating that there is, indeed, a
balance between K�t� decreasing towards zero, where syn-
chronization is lost, and K�t� rising due to the loss of syn-
chronization.

We again examined the possibility of generalized syn-
chronization in the case of the Colpitts oscillators coupled
with varying K�t�. In Fig. 13 we show the output K�t� and in
Fig. 14, y1�t� in response to the same x1�t� presented three
times to different initial states of Eq. �34�. The transients are
not shown.

Using the K�t� method, we examined our ability to deter-
mine multiple parameters by evaluating the cost function
over a set of values of  and � in Fig. 15 we show Cost� ,��
resulting from solving the four differential Eqs. �34� with
x1�t�. The minimum of this cost function determines both 
and � accurately.

0 1 2 3 4 5 6 7 8 9 10
α

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

FIG. 10. Phase space estimation error with only knowledge of
the data x1�t� and the equivalent component of the models state
y1�t�. Colpitts oscillator, a=0.03. No phase space reconstruction is
used here.
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FIG. 11. K�t� for reconstructed phase space for Colpitts oscilla-
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IV. NOISE ANALYSIS

We next asked how robust our method was to noise. Here
we consider only the effects of transmission noise, that is,
noise in the data signal x1�t�. Noise n�t� was represented as a
normally distributed, zero mean signal added to the data sig-
nal. We quantified the amount of noise using the traditional
signal-to-noise ratio

�SNR� = 10 log10
	 x1

2�t�/T

	 n2�t�/T
, �36�

and computed the cost function using the original non-noisy
signal. We tested a range of signal to noise ratios and then
estimated the SNR threshold at which the cost function no
longer had a global minimum at the correct value of the data
parameter. This analysis was performed on the Colpitts os-
cillator using both synchronization methods described above.
For the method of controlling the largest CLE, we found the
minimum SNR to be roughly 10 dB �see Fig. 16�. For the
method of balancing the magnitude of K, we found the mini-
mum SNR to be roughly 20 dB �see Fig. 17�. It should be
noted, however, that as the noise increases in a time series,
the CLEs become increasingly difficult to compute, since the
noise effectively increases the dimensionality of the system.
Thus, the method of controlling the largest CLE is likely to
be less efficient in noise than in the absence of noise.

V. DISCUSSION

Determining unknown model parameters from observed
data is one of the critical and traditional steps in developing
predictive models �7�. The idea of using synchronization of
the data source and the model to establish unknown param-
eters is not at all a new idea, and in one manner or another
has always been used in this context �6�. The “synchroniza-
tion” in an automated fashion as explored in this paper has
not always been the established procedure where “fits good
to the eye” or other qualitative methods have been used.

In trying to implement formal synchronization of the ex-
perimental system producing the data and a proposed model
for use in predicting the future behavior of the system, we
encounter a problem that if the coupling of the data into the
dynamical equations of the model is too large, the variation
of a traditional, least squares cost function suffers from very
weak variations in the desired parameters, thus reducing the
value of the method for determining those parameters. Also
if the coupling is too weak and the system is chaotic, the
very instabilities that lead to the chaos interfere with numeri-
cally stable parameter determination �6�.

This dilemma has led us to suggest two forms of “bal-
anced synchronization” which we have discussed and ex-
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FIG. 13. K�t� for the four-dimensional driven Colpitts oscillator
�the “model”� as a response to input x1�t� from a Colpitts “data”
stream when the driven system is in three different states arising
from three different initial conditions. This, via the auxiliary system
method, indicates generalized synchronization between the data and
the model.
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FIG. 14. y1�t� for the four-dimensional driven Colpitts oscillator
�the “model”� as a response to input from a Colpitts “data” stream
when the driven system is in three different initial states. This, via
the auxiliary system method, indicates generalized synchronization
between the data and the model.
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FIG. 15. �Color online� C� ,�� using the K�t� method, Eq. �34�,
for the Colpitts oscillator driven by x1�t� data to determine the pa-
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plored here in three examples. The balance between too large
and too small a coupling of the data with the model has been
explored by adding to the least square or other comparison of
the data input and equivalent model output an additional cost
associated with the conditional Lyapunov exponent �CLE� of
the model, conditioned on being driven by the data. If one
requires this CLE to be slightly negative, this bounds the
value of the coupling while assuring the data and the model
remain synchronized. When they are synchronized, the infor-
mation about the interesting parameters contained in the data
is efficiently passed to the model. If they are not synchro-
nized, that does not occur.

The data has also been explored by altering the model
system by adding a temporal variation of the coupling be-
tween the data and the model. The proposed equation for the
coupling then balances the driving of the coupling to zero
against the mismatch of the data and model signals. This
method works in our examples because the enlarged model
system and the data source exhibit generalized synchroniza-
tion, and information transmission in that setting is also ef-
ficient and complete.

We have shown in two examples that the methods work
well and exhibit the needed generalized synchronization. We

have primarily assumed in this paper that the systems are
deterministic, namely, no noise interferes with the informa-
tion in the data about the parameters we wish to establish.
Further we have assumed that the model is correct since our
“data” was generated from that model and only numerical
parameters need be determined.

We have also explored two cases where the data stream
was contaminated by noise of various magnitudes. In these
examples, the use of the CLE was shown to present some
difficulty. When noise is present, the dimension of the active
variables of a dynamical system can become quite large in
practice. In such a case determining the largest CLE presents
significant challenges. We suspect that while the cost func-
tion with a largest CLE addition has theoretical appeal, it
may be difficult to implement in practice.

This last observation is underlined by another example we
worked out but do not present here. We studied the three
dimensional dynamical system associated with a reduced
Hodgkin-Huxley model as developed by Fan and Chay �21�.
This represents a spiking neuron with relatively long quiet
periods between the spikes. The K�t� method was very suc-
cessful in determining both the maximal conductances and
the kinetic parameters in this model given a chaotic data
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stream from the model itself. However, the use of the largest
CLE approach did not succeed because the determination of
the CLE when two very distinct time scales were present
proved numerically infeasible. There are likely methods to
deal with this difficulty, but we have not pursued them fur-
ther.

In the framework of balanced synchronization there is
much further work to be done supported by the success in
this first investigation of the idea. At least the following is-
sues need to be explored.

How well does the method work when the data is taken
from an experimental system and the model is our best idea
of the underlying dynamics? This is a case when the model
itself may be wrong and the data may be noisy either from

noise impinging on the dynamical evolution of the experi-
ment or entering the use of the instruments in measuring the
data values.

What is the general role of noise as it affects both the
dynamics of the data source and the instruments measuring
the data values?

If the model is “wrong” how do we account for the use of
synchronization as a tool? Since all models are wrong in
some aspect, this requires exploration both in a general sense
and within explicit examples.

When one uses this method to determine many, many pa-
rameters can we develop an efficient algorithm for the re-
quired search in multidimensional parameter space? If one
can do that, then extension of the use of balanced synchro-
nization to networks, biological and physical, is likely pos-
sible.
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APPENDIX: ELECTRONIC CIRCUIT REALIZATION OF
PARAMETER ESTIMATION IN THE LORENZ

SYSTEM

An electrical circuit implementation of the dynamical
coupling �K�t�� method of parameter estimation was built to
explore this method in a more realistic setting. The experi-
mental setup is as shown in Fig. 18. The data signal x1�t� is
generated from a Lorenz system with fixed parameters
�
1 ,b1 ,R1�. The model is a Lorenz system with two param-
eters �
2 and b2� identical to the data system and an adjust-
able third parameter R2. A data acquisition �NI-DAQ� card
connected to a PC running LABVIEW software acquires x1�t�,
x2�t�, and K�t� at a rate of 50 kHz. The PC is able to control
the value of R2 by turning a stepper motor that is connected
to a 10-turn potentiometer. A typical parameter scan consists
setting R2, taking 2 s of data, computing the value of the cost
function and repeating over the available range of R2 �in
particular, 23.5�R2�50.6�.

The basic design of the Lorenz portion of the electrical
circuit is adapted from Cuomo �20�. In order to keep voltages
in the range of the available power supplies, all state vari-
ables are scaled by a factor of 20. Time is scaled by a factor
of 1000. With these scalings, the Lorenz system that needs to
be realized in the electrical circuit is the following:

ẋ = 1000�
�y − x�� ,

ẏ = 1000�Rx − y − 20xz� ,

ż = 1000�20xy − bz� .

Figure 19 shows the schematic of the Lorenz systems and
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FIG. 17. �Color online� Parameter scan over � in the Colpitts
oscillator using the K�t� method with �data=0.08. This method cor-
rectly identifies a minimum in the cost function as long as the SNR
is greater than about 20 dB.

FIG. 18. �Color online� Diagram of experimental setup.
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the coupling dynamics. The components are standard 5%
tolerance resistors and 20% tolerance tantalum capacitors.
No care was taken to match each component between the
two systems, so there inevitably are differences between the
two Lorenz systems at the component level. The Op Amps

are general purpose TL084’s and the multipliers are Analog
Devices AD633’s. Since the output of the AD633 is inter-
nally divided by 10, the multiplication symbol shown in the
schematic is actually an AD633 with a TL071 Op-Amp used
for a gain of 10.
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When taking data, the potentiometer in the data system is
set manually to a fixed desired value, the potentiometer in
the receiver system is set by the PC with the use of a stepper
motor. The values of the parameter R may be calculated from
the potentiometer values using the following equation:

R =
82Rpot

Rpot + 49.7 k�
.

The potentiometers are both 10-turn 100 k�. Parameter
scans use the range 20 k��Rpot�80 k� which translates to
the parameter range 23.5�R2�50.6 mentioned above. The
equations describing the dynamics of the above electrical
circuit are the following:

x1̇ = 1000�16�y1 − x1�� ,

y1̇ = 1000�R1x1 − y1 − 20x1z1� ,

z1̇ = 1000�20x1y1 − 4z1� ,

x2̇ = 1000�16�y2 − x2� + 10K�x1 − x2�� ,

y2̇ = 1000�R2x2 − y2 − 20x2z2� ,

z2̇ = 1000�20x2y2 − 4z2� ,

K̇ = 1000�− 0.10K + 110�x1 − x2�2� .

Note that in this appendix the receiver system has dynamical
variables with subscript 2, so the coupling in the “model” is
10K�x1−x2�.

Figure 20 shows a section of the time series of x1�t�, x2�t�,
and K�t� as measured by the PC. The Lorenz systems are
creating the expected time series wave forms for x1�t� and
x2�t� and these wave forms are for the most part synchro-
nized. The K�t� wave form is tending to decay toward zero
with growth dependent on the spiking in the error signal
(x1�t�−x2�t�)2. After acquiring 2 s of data sampled at 50 kHz,
N=100 000 samples, the computer calculates the associated
cost function based on the following formula:
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FIG. 20. �Color online� Sample time series. Rpot1=Rpot2

=50 k�.
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C =
1

N	
j=1

N

tanh�200 · „x1�j� − x2�j�…2�

The convergence of this cost function is verified in Fig. 21
at four positions in the parameter scan �Rpot,2

=30,40,50,60 k�� with Rpot,1=50 k�. In each case the cost
function converges to a steady value within the fist second of
the 2 s sample window. The steady value of this cost func-
tion is automatically recorded over the range of R2 producing
the parameter scan plots shown in Fig. 22.

In the case shown in Fig. 22, three different values of the
data system parameter R1 were used. In each case there is
clearly a minimum in the cost function in the neighborhood

of R2=R1. There are many sources of noise in this lab setup
and it is not surprising that the minimum in the cost function
is broader and shallower than the theoretical �noiseless�
result—see Fig. 23. Also, since the components used are of
low tolerance, it is very likely that the system parameters that
are assumed to be identical between the data system and the
model �
 ,b� are in fact not the same. Also, the value of R
depends on several other components in addition to the po-
tentiometer, so that equal settings on the potentiometers does
not necessarily imply R2=R1. Still, even with these imper-
fections, this experiment demonstrates that the dynamical
coupling method �K�t�� does a good job of identifying a
small neighborhood in which the presumably unknown pa-
rameter lies.
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