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We derive an analytic evolution equation for overlap parameters, including the effect of degree distribution
on the transient dynamics of sequence processing neural networks. In the special case of globally coupled
networks, the precisely retrieved critical loading ratio �c=N−1/2 is obtained, where N is the network size. In the
presence of random networks, our theoretical predictions agree quantitatively with the numerical experiments
for delta, binomial, and power-law degree distributions.
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I. INTRODUCTION

Recently, structure and dynamics in complex networks
have attracted considerable attention and have been investi-
gated in a large variety of research fields �1�. In particular, an
important topic is whether the structure of neural wiring is
related to brain functions.

Starting from pioneering milestone works that modeled
Ising spin for neural networks, a large body of research has
made a significant contribution to our understanding of par-
allel information processing in nervous tissue �2–4�. The
equilibrium properties of the Hopfield model in a fully con-
nected topology with the typical Hebbian prescription for the
interaction strengths have been successfully described by a
replica method �3,4�. The dynamics of the fully connected
Hopfield model with static patterns and sequence patterns
have been widely studied using generating functional analy-
sis �5,6� and signal-to-noise analysis �7–9�.

In recent years, there has been a large number of numeri-
cal studies of the Hopfield model on the complex structure,
focusing on how the topology of a network, the degree dis-
tribution in particular, affects the computational performance
of the formation of associative memories �10–14�. Various
random diluted models have been studied, including the ex-
treme diluted model �15,16�, the finite diluted model �17,18�,
and the finite connection model �19�. However, here we de-
rive the equation of retrieval dynamics for sequence process-
ing neural networks with complex network topology.

In this paper, we study a modification of the Hopfield
network, known as the sequence processing model, which
acts as a temporary associative memory model �20–23�. This
model is very important to understand how the nervous sys-
tem allows the learning of behavioral sequences because it
requires hundreds of transitions that need to be precisely
stored in neuronal connections �24�. The asymmetry of the
interaction matrix rules out equilibrium statistical mechani-
cal methods of analysis, including conventional replica
theory. The goal of this work is to study the effect of the
degree distribution on the transient dynamics of the sequence
processing neural network. Using a probability approach, we

derive an analytic time evolution equation for the overlap
parameter with an arbitrary degree distribution that is consis-
tent with our extensive numerical simulation results.

This paper is organized as follows. In Sec. II we introduce
the definition of the sequence processing neural networks.
The time evolution equations of the order parameters for the
effects of degree distribution are derived and discussed in
Sec. III. Section IV contains the comparison of theoretical
results with numerical simulations. Finally, Sec. V presents a
summary and the concluding remarks.

II. MODEL DEFINITION

In this paper, we consider a general version of sequence
processing neural networks with parallel dynamics. The
model consists of N Ising spin neurons si� �−1,1�. If the
neuron i is at exciting status we put si=1; otherwise �neuron
i is inhibiting�, we put si=−1. The embedded patterns are p
states of the systems �i

�� �1,−1� ��=1,2 , . . . , p; i
=1,2 , . . . ,N�. The patterns are random so that each �i

� takes
the values �1 with equal probability. The couplings between
neurons are represented by the following form:

Jij =
1

N
�
�=1

p

�i
�+�pwij� j

� ��:mod p� , �1�

where wij � �0,1� is a matrix element to tune the connection
topology of coupling matrix J and �p=0,1 ,2 , . . . ,N−1 de-
scribes the patterns learned as dynamic objects. This defini-
tion is clearly a typical asymmetric neural network. In the
special case of wij =1 and �p=0, the synapses are symmetric
as in the Hopfield-Hebb networks.

The evolution dynamics of the systems are restricted to
deterministic parallel dynamics where the spins are updated
simultaneously according to

si�t + 1� = sgn��
j

Jijsj�t�	 , �2�

where sgn�x� is the sign function. The time step is set to 1 in
all our work.
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In order to analyze the retrieval dynamics, the macro-
scopic overlap order parameter at time t is defined by

m��t� =
1

N
�
i=1

N

�i
�si�t� =

2���t�
N

− 1, � = 1,2, . . . ,p . �3�

Here, ���t� is the number of spins which have the same sign
between the network state at time t and the given pattern ��.
In Fig. 1, we present the evolutionary processes of the order
parameter m� for the typical sequence processing model with
a global connection. It is found that the stored memories are
reconstructed as a period-�p /�p� cycle: 2→3→4→5→1
→2→¯ in Fig. 1�a�, and 4→6→8→10→2→4→¯ in
Fig. 1�b�. To simplify the recent study, �p=1 in the follow-
ing context. Note that the evolution equation for overlap pa-
rameters obtained with �p=1 is also suitable for any other
�p values.

III. TRANSIENT DYNAMICS AND MACROSCOPIC
OBSERVABLE

Considering Eqs. �1� and �2�, one can get the following
one-step update process:

si�t + 1� = sgn
�
j=1

N � 1

N
�
�=1

p

�i
�+1wij� j

�	sj�t��
= sgn� 1

N
�
�=1

p

�i
�+1�

j=1

N

wij� j
�sj�t�	

= sgn� 1

N
�i

�+1�
j

wij� j
�sj�t�

+
1

N
�
���

p

�i
�+1�

j

wij� j
�sj�t�	 , �4�

where �� is the �th stored pattern that is closest to state s�t�
or m��t�=max�m1 ,m2 ,… ,mp�. The contributions for a single
step evolutionary process in Eq. �4� consists of two parts
denoted by

hi
1�t� =

1

N
�i

�+1�
j

wij� j
�sj�t� , �5�

hi
2�t� = �

�=1,���

p

�i
�+1� 1

N
�

j

wij� j
�sj�t�	 . �6�

The first part in the update function of Eq. �4�, hi
1�t�, drives

the status of the ith spin to �i
�+1 at time t+1. The other part,

hi
2�t�, is the noise term. In the case of absolutely stable and

precise retrieving storage, si�t+1�=�i
�+1. si�t+1�=sgn�hi

1�t�
+hi

2�t�� and hi
2 cannot change the sign of hi

1. If �i
�+1= +1, we

have hi
1	0. To ensure that si�t+1�=�i

�+1, hi
2 should satisfy

hi
2	−hi

1, so hi
2 /hi

1	−1. If �i
�+1=−1, hi

1
0, we also have
hi

2 /hi
1	−1. So the probability of si�t+1�=�i

�+1 is represented
by the following equation:

P„si�t + 1� = �i
�+1

… = �
zi�t�=−1

�p−1�/m�

P„zi�t�…, zi�t� =
hi

2�t�
hi

1�t�
, �7�

in which P(zi�t�) is the probability of zi�t�=hi
2�t� /hi

1�t�. Note
that the degree of node i is ki=� j=1

N wij, which means that
there are only ki spins that are affected. For �i

�+1=1,

hi
1�t� =

ki

N
m�. �8�

Applying the above equation to Eq. �7�, we have

P„si�t + 1� = �i
�+1

… = �
hi

2=−m�ki/N

�p−1�ki/N

P„hi
2�t�… ��i

�+1 = 1� �9�

= �
hi

2=−�p−1�ki/N

m�ki/N

P„hi
2�t�… ��i

�+1 = − 1� .

�10�

With the following definition:

FIG. 1. �Color online� Temporal evolution of the macroscopic
overlap parameters m� with respect to time t in the case of wij =1.
�a� N=100, p=5, and �p=1 and �b� N=200, p=10, and �p=2.
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hi��t� = �
�=1,���

p � 1

N
�

j

wij� j
�sj�t�	 , �11�

we find that

�
hi�=−m�ki/N

�p−1�ki/N

P„hi��t�… =
1

2� �
hi

2=−m�ki/N

�p−1�ki/N

P�hi
2� + �

hi
2=−�p−1�ki/N

m�ki/N

P�hi
2�	 .

�12�

Combined with Eqs. �9� and �10�, we have

P„si�t + 1� = �i
�+1

… = �
hi�=−m�ki/N

�p−1�ki/N

P„hi��t�… . �13�

Given the fact that the stored patterns are random and
independent, the probability of the total number �N

� spins that
have the same sign between s�t� and ��, P��N

��, is given by

P��N
�� = CN

�N
�

2−N, �14�

where CN
�N

�

is used to denote a binomial coefficient, i.e.,

CN
�N

�

= N!
�N

�!�N−�N
��! . For the precisely retrieved case �when system

can retrieve patterns without error�, s�t����, Eq. �14� is ob-
viously correct. Without the precisely retrieved condition,
Eq. �14� in fact neglects the correlations between network
states and pattern �. If network topology has a local tree
structure, the above deduction is correct. If there exist many
short loops in the networks, the above deriving process is
just an approximation. So, in this work, our derivations be-
low are only suitable for a sparsely connected random net-

work, where the typical loop length is about logk̄−1 N and k̄ is
the average connection. In this paper, we use the condition

N→�, k̄→�, and k̄ /N→0.
Then from Eq. �3�, we find

P� 1

N
�

j

� j
�sj�t� =

2�N
�

N
− 1	 = P�m� =

2�N
�

N
− 1	 = P��N

�� .

�15�

As noticed in the above statements �see Eqs. �4�–�6��, the
local field is filtered by the topological structure of the net-
works. In this case, the probability of the total number �ki

�

spins that have the same sign between s�t� and �� is

P
 1

N�
j

wij� j
�sj�t� =

ki

N
m� =

ki

N
�2�ki

�

ki
− 1	�

= P��ki

�� = C
ki

�ki

�

2−ki. �16�

Substituting into Eq. �10� the expressions of

xi
� =

2�ki

�

N
−

ki

N
, �17�

we get the following form:

P� 1

N
�

j

wij� j
�sj�t� = xi

�	 = P��ki

� =
ki

2
�1 + xi

��	
= Cki

ki/2�1+xi
��2−ki. �18�

The other form of hi��t� is readily deduced from Eq. �17�
which can be written as

hi��t� = �
���

p

xi
� =

2 �
���

p

�ki

�

N
− �p − 1�

ki

N
. �19�

Therefore, after coarse graining like in Eqs. �16� and �18�,
using the definition of �ki

=����
p �ki

� =
Nhi�

2 +
�p−1�ki

2 , we obtain
that

P1 = P„si�t + 1� = �i
�+1

…

= �
hi�=−m�ki/N

�p−1�ki/N

P„hi��t�…

= �
�ki

=�p−1�/2ki−m�/2ki

�p−1�ki

P��ki
= �

���

p

�ki

�	
= �

�ki
=�p−1�/2ki−m�/2ki

�p−1�ki

C�p−1�ki

�ki 2−�p−1�ki

= �
�ki

=0

�p−1�/2ki+m�/2ki

C�p−1�ki

�ki 2−�p−1�ki. �20�

By introducing the degree distribution of the network
structure P�k�, where k is the number of links connected to a
node, the total number ��+1 spins between the status s�t+1�
and the stored pattern ��+1 can be expressed as

��+1 = �
k

NP1P�k� . �21�

Then from Eq. �3�, we obtain the macroscopic observable

m�+1�t + 1� =
1

N
�

i

�i
�+1si�t + 1� = �

k

2P1P�k� − 1. �22�

Combining Eqs. �20� and �22� and replacing �ki
by n, we

arrive at the evolution equation of the overlap parameter

m�+1�t + 1� = 2�
k

P�k�
�
n=0

1/2�p−1�k+1/2m��t�k

C�p−1�k
n

2�p−1�k − 1. �23�

In the case of successful storage, the network finally tends
to converge into a stable periodic cycle, or m��t�=m�+1�t
+1�. Finally, replacing m��t�=m�+1�t+1� by mf, one has the
iterative solution for the final overlap parameter,
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mf = 2�
k

P�k�
�
n=0

1/2�p−1�k+1/2mfk

C�p−1�k
n

2�p−1�k − 1. �24�

Note that it is difficult to calculate the above iterative
equation of the overlap parameter at very large �p−1�k due
to the computational complexity of the factorial term. A rea-
sonable solution is to replace the binomial distribution in Eq.
�20� by a Gaussian distribution with the same expectation
value and the same standard deviation. As a result, replacing
n by x, we reformulate Eq. �23� as

m�+1�t + 1� � �
k

2P�k� �
x=0

k/2�p−1+m��t��� 2


�p − 1�k

�e−2�x − �p − 1�/2k�2/�p−1�k − 1

= �
k

2P�k��
0

k/2�p−1+m��t��� 2


�p − 1�k

�e−2�x − �p − 1�/2k�2/�p−1�kdx − 1. �25�

Substituting into the above equation the following expres-
sion:

z =
x − �p − 1�k/2
��p − 1�k/2

, �26�

we find Eq. �25� under the form

m�+1�t + 1� = �
k

2P�k�� 1

2

�

0

m��t�/��p−1�/k
e−z2/2dz

= �
k

P�k�erf� m��t�
��p − 1�/k

	 � �
k

P�k�erf�m��t�
�p/k

	 ,

�27�

where erf�·� is the error integral function,

erf�z� =� 2



�

0

z

exp�− x2/2�dx .

Note that in the special case of fully connected networks, k̄
=N and P�k�=��k−N�. Herein, Eq. �27� is reduced to

m�+1�t + 1� = erf�m��t�
�p/N

	 . �28�

which is a well-known result �7,25�. It is interesting to com-
pare the above equation with our result for arbitrary degree
distributions. In Eq. �27�, there is only a little modification. It
should also be mentioned that Eq. �27� is also found for
sparsely connected Hopfield networks �26�.

IV. NUMERICAL STUDIES

To verify the theory, we performed extensive simulations
which are reported in this section. First of all, we give a
succinct description of how our calculations for the iterative

Eq. �24� were made. Note that a precondition of our work is
that the network is capable of memorizing patterns in the
form of its equilibria in each trial �see Eqs. �7� and �21��. The
initial overlap mf

0 in the right side of the iterative equation is
set to 1.0. Then the second mf

1 is obtained and is set as the
initial overlap to calculate the third one. This process is re-
peated until mf

n�mf
n+1 within allowed precision. Thus we

arrive at the final stable macroscopic overlap parameter mf
=mf

n after n iterative steps. In our simulations, it is found that
the iterative procedures always converge quite rapidly, stop-
ping after 4 to 5 steps at most.

In order to compare the different effects of various degree
distributions on the performance of neural networks, we con-
sider the following two cases. One case is the globally
coupled network. Although this case appears somewhat
trivial, it is helpful to compare our study with some common
conclusions. The other case is the random network with vari-
ous degree distributions, including the delta function, bino-
mial, and power-law distributions.

A. Globally coupled networks

In this case, all the neuronal spins are connected with
each other at any time, namely wij =1, and the degree distri-
bution P�k� is a � function. This actually introduces a huge
waste of energy but provides a neural network with the maxi-
mal retrieving performance. A large number of numerical
and theoretical studies on this network dynamics have been
made in the last 2 decades. These studies revealed that there
exists a critical loading ratio known as the Amit-Gutfreund-
Sompolinsky �AGS� value �1�0.139 for symmetric net-
works �3�, a saturated stored capacity �s�0.269 for se-
quence processing networks �6�, and the so-called exactly
memorized capacity in �7�.

It is found that the iterative form Eq. �24� for the final
overlap mf is effective in most successfully retrieved cases
with negligible error. This is evident in Fig. 2, showing that
mf for N=100,200 until the saturation of the loading ratio �.
The iterative results are almost the same as the simulation
results when mf is very close to 1. For example, ��0.15 for
�mf =0.001 and ��0.20 for �mf =0.002. When the final
overlap parameters mf deviate from 1, as the loading ratio �
increases, the iterative error increases sharply. However, the
final overlap parameter has only a small and acceptable error
�mf 
0.04 near the saturation �s=0.269 �see Fig. 2�b��. As
stated above in Eq. �7�, we study only the first step behavior
of the macroscopic overlap parameters. In order to get more
precise results, the signal-to-noise analysis for the first few
time steps should be considered �9,27�.

One may be interested in the case where systems can
retrieve stored patterns without error. We define this as the
precisely retrieved case. In other words, pattern � at time t
and pattern �+1 at time t+1 are retrieved without error,
which means m��t�=1 and m�+1�t+1�=1. In the stationary
state, mf =1. In our theory, the critical precisely retrieved
storage �c can be calculated from Eq. �24� by setting mf =1.
In Fig. 3, we present �c obtained by Eq. �24� to compare
with the simulation results. Obviously, �c�1 /�N in the it-
erative algorithm Eq. �24� is consistent with that in the simu-
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lation results. Here, it should be mentioned that there is an-
other capacity definition based on absolute stability, �A
=1 / �2 log N−log log N�, called the Amari capacity �7�. Ob-
viously, one has the following relationship between the criti-
cal loading ratios:

�c 
 �A 
 �s. �29�

Note that the Amari capacity �A means that there exists some
probability for precise retrieval of stored patterns at least one
time in a large number of trials. However, the so-called pre-
cisely retrieved capacity �c in this paper means that the sys-
tems must precisely retrieve stored patterns for each trial.

B. Random networks

We take more general situations into consideration and
explore the effect of degree distributions on the transient
dynamics of neural networks in the case of random connec-
tion. In the following context, we study three situations: the
delta function, binomial, and power-law degree distributions.

In Fig. 4, we plot the temporal evolution of overlaps for
the above three types of degree distributions obtained from
both the theory �Eq. �27�� and simulations. The parameters

are N=50 000, the average degree k̄=100, and the number of
stored patterns p=20. The first numerical experiment is the
degree distribution with the delta function

P�k� = ��k − k̄� . �30�

This connection topology is generated by randomizing a

regular lattice whose average degree is k̄. The temporal evo-
lutions of overlap parameters from the theory and numerical
simulations are plotted in Fig. 4�a�. The second one is a
binomial distribution which comes from an Erdös-Renyi ran-
dom graph �28� �see the inset of Fig. 4�b��,

P�k� = CN
k � k̄

N
	k�1 −

k̄

N
	N−k

. �31�

The third one is the power-law distribution �see the inset of
Fig. 4�c��,

P�k� � k−3. �32�

The power-law degree distribution can be generated using
preferential attachment �29�. It is easy to observe that the
theoretical results from our scheme are consistent with the
simulations for the three degree distributions above.

Note that the presented cases are all situations of success-
ful retrieval of the stored patterns. Figure 5 plots the time
evolution of overlaps in the case of failed trials with p=60.
Apparently, as stated above, encouraging results are also ob-
tained.

Furthermore, we study the effect of size in the network on
transient dynamics. Figure 6 shows the comparison between
our theory �Eq. �27�� and the numerical simulations for N
=10 000 and 50 000 in the case of binomial degree distribu-
tion. As N increases under all the other same parameters, the
theoretical prediction is closer to the simulation result. In
fact, this size effect comes from the loop structure in net-
works. In this paper, our Eq. �27� does not take into account
the loop structure. Loop structure refers to the existence of

FIG. 3. �Color online� The critical precise loading ratio �c

= pc /N for globally coupled networks. The solid line is �c=1 /�N.
���: Simulation results. Each point represents an average of 200
trials. ���: Iterative results from Eq. �24� with precision �m
�10−4. ���: Results from the Amari theory, Eq. �3.4� in �7�.

FIG. 2. �Color online� The final overlap mf in the globally
coupled network with N=100,200. �a� ��, ��: iterative results
from Eq. �23�, and ��, ��: simulation results. The solid line is
mf =0.99 which corresponds to ��0.15 from simulations and itera-
tive results. The inset is the same result for abscissa p. �b� The
iterative error �mf versus the loading ratio �. Each simulation point
represents an average of 200 trials.
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�perhaps many� short loops in the network, such as triangles
or quadrangles �see Ref. �30��. These short loops may cause
the coupling of the order parameters at different times and
complicate the dynamics. Reference �30� suggested a param-
eter, loopiness coefficient, to investigate the effect of loop in

the networks. Loopiness coefficients grow with k̄ /N in a ran-
dom network. Our formula can present better performance
for loopiness coefficients that are smaller with increasing
sparseness of network connectivity.

V. SUMMARY AND CONCLUDING REMARKS

In this paper, we have discussed the effect of degree dis-
tribution on transient dynamics for sequence processing neu-

ral networks. When the effect of loop structure is absent, we
derived the analytic evolution equation for the overlap pa-
rameter �Eq. �27�� including the effect of degree distribution
that is also obtained in the sparsely connected Hopfield
model �26�. In the case of globally coupled networks, the
so-called precisely retrieved capacity �c=N−1/2 is suggested
by both the theory and simulations; whereas in the case of
random networks, our theoretical predictions are consistent
with the numerical simulation results under three situations,
including the delta, binomial, and power-law degree distribu-
tions.

FIG. 4. �Color online� The temporal evolution of overlaps from
our theory ��� and simulation ��� for �a� delta, �b� binomial, and �c�
power-law degree distributions. The parameters of networks are N

=50 000, p=20, and the average degree k̄=100.

FIG. 5. �Color online� The temporal evolution of overlaps from
our theory ��� and simulation ��� for power-law degree distribution
P�k��k−3. The parameters of networks are N=50 000, p=60, and

the average degree k̄=100.

FIG. 6. �Color online� The temporal evolution of overlaps for

binomial degree distribution with the average degree k̄=100, p
=20, and �a� N=10 000, �b� N=50 000.
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It should be mentioned that, in our presented work, the
most efficient arrangement for storage and retrieval of pat-
terns in sequence by the artificial neural network is the ran-
dom topology; but in real brains, the topology of neural sys-
tems appears more complicated and the effect of loop
structure becomes inevitable �31,32�. In a special case, the
role of loop structure has been studied without the effect of
degree distribution �30�. In future work, we will focus on

how to combine the effects from the degree distribution and
the loop structure.
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