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Community structure is an important property of complex networks. The automatic discovery of such
structure is a fundamental task in many disciplines, including sociology, biology, engineering, and computer
science. Recently, several community discovery algorithms have been proposed based on the optimization of a
modularity function �Q�. However, the problem of modularity optimization is NP-hard and the existing ap-
proaches often suffer from a prohibitively long running time or poor quality. Furthermore, it has been recently
pointed out that algorithms based on optimizing Q will have a resolution limit; i.e., communities below a
certain scale may not be detected. In this research, we first propose an efficient heuristic algorithm QCUT, which
combines spectral graph partitioning and local search to optimize Q. Using both synthetic and real networks,
we show that QCUT can find higher modularities and is more scalable than the existing algorithms. Furthermore,
using QCUT as an essential component, we propose a recursive algorithm HQCUT to solve the resolution limit
problem. We show that HQCUT can successfully detect communities at a much finer scale or with a higher
accuracy than the existing algorithms. We also discuss two possible reasons that can cause the resolution limit
problem and provide a method to distinguish them. Finally, we apply QCUT and HQCUT to study a protein-
protein interaction network and show that the combination of the two algorithms can reveal interesting bio-
logical results that may be otherwise undetected.
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I. INTRODUCTION

Many complex systems can be represented as networks,
where vertices are the elements in a system and edges rep-
resent relationships between pairs of elements. Examples in-
clude social networks �1�, genetic networks �2�, and the In-
ternet �3�. Much effort has been devoted to the study of
topological properties that are common to many networks,
such as the small-world property, power-law degree distribu-
tions, and high clustering coefficients �4,5�.

Another important property of complex networks that has
drawn a great deal of attention recently is the so-called com-
munity structure—i.e., the existence of some natural division
of a network such that the vertices in each subnetwork are
highly associated among themselves, while having relatively
fewer and weaker connections with the rest of the network
�6,7�. Because communities are relatively independent of one
another structurally, it is believed that each of them may
correspond to some fundamental functional unit. For ex-
ample, a community in genetic networks often contains
genes with similar functions and a community on the World
Wide Web may correspond to web pages related to similar
topics. Identifying and analyzing such communities from a
large network, therefore, provides a means for functional dis-
section of the network and sheds light on its organizational
principles. Furthermore, community structures may provide
key insights into some uncharacterized properties of a sys-
tem. For example, attempts have been made to identify and

characterize communities �called functional modules some-
times� in biological networks, leading to in-silicon predic-
tions of the functions of some genes �8–10�.

Community discovery is similar but not equivalent to the
conventional graph partitioning problem �11�, both of which
require clustering vertices into groups. In the conventional
graph partitioning problem, the graph is assumed to be al-
ways partitionable and the number of partitions is usually
predefined. The challenges in community discovery, how-
ever, are twofold: �i� what constitutes a community and �ii�
how to effectively find such communities. Although several
definitions of communities have been proposed �12,13�, none
has been universally accepted. The general agreement is that
a community discovery algorithm needs to decide by itself
the most appropriate community structure without prior
knowledge about a network and should be able to distinguish
between networks having good community structures and
networks with essentially random structures. For an excellent
review, see Ref. �14�.

Instead of explicitly defining communities, Newman and
Girvan recently proposed a quantitative measure, called
modularity �Q�, to assess the quality of a community struc-
ture and formulated community discovery as an optimization
problem �15�. The idea has since been widely adopted, and
several algorithms have been developed to optimize Q, with
good performance in practice �6,16–19�. However, it has
been shown that optimizing Q is NP-hard �20�, which means
an efficient optimal algorithm for the problem is unlikely to
exist. The fastest algorithm available uses a greedy strategy
and suffers from poor quality �19�. A more accurate method
is based on simulated annealing, which has a prohibitively
long running time for large networks �18�. The best existing
algorithm in terms of both efficiency and effectiveness is due
to Newman �6�. A comparison of the performance of some
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existing methods has been provided in Ref. �21�.
On the other hand, although empirical studies have shown

that modularity optimization is often an effective way to de-
tect communities in relatively smaller networks, several re-
searchers have observed that this strategy may lead to a reso-
lution limit problem for larger networks �22,23�. Briefly, by
optimizing modularity, communities that are smaller than a
certain scale or have relatively high intercommunity connec-
tivities may be merged into a single community. This limit,
therefore, has cast some doubts on the effectiveness of
modularity optimization for community discovery �22�.

In this paper, we first present an efficient heuristic algo-
rithm, called QCUT, to optimize Q by combining spectral
graph partitioning and local search. We show that the algo-
rithm is able to find higher Q values and is more scalable to
large networks than the best existing algorithms. For syn-
thetic networks without the resolution limit problem, we also
show that QCUT can achieve a much higher accuracy than the
existing algorithms in recovering the known communities.

More importantly, we show that, although modularity op-
timization has a resolution limit, it is effective in detecting
communities at a coarse-grained level; i.e., vertices belong-
ing to the same community tend to be grouped together. This
observation is the key for our second algorithm, called
HQCUT, to solve the resolution limit problem. The HQCUT

algorithm recursively applies QCUT to divide a community
into subcommunities. In order to avoid overpartitioning, we
use a statistical test to determine whether a community in-
deed contains intrinsic subcommunities. We demonstrate the
effectiveness of HQCUT on a number of synthetic and real
networks and show that HQCUT can successfully detect com-
munities at a much finer scale and with a higher accuracy
than the algorithms based on modularity optimization alone.

Furthermore, we discuss two primary causes of the reso-
lution limit problem in practice. First, real-world networks
often have diverse community sizes. Some small communi-
ties may accidentally connect to one another by a few edges
due to noises. Second, real-world networks may have hierar-
chical community structures; i.e., a community may contain
several relatively highly interconnected subcommunities. It
is crucial to be able to discern such subtle community struc-
tures. Therefore, we propose a statistical test to differentiate
the two cases and show some interesting statistics in real-
world networks.

Finally, we apply QCUT and HQCUT to study a protein-
protein interaction network in the budding yeast and analyze
the biological significance of the resulting communities. We
show that combining the results of these two algorithms can
reveal some interesting biological results that may be other-
wise undetected.

The rest of the paper is organized as follows. In Sec. II,
we introduce an algorithm QCUT for optimizing Q. In Sec.
III, we discuss two scenarios that may cause the resolution
limit problem for QCUT and other modularity-optimizing al-
gorithms, and propose another algorithm HQCUT to address
this issue. We also introduce a method to distinguish the two
causes for the problem. We discuss several closely related
methods in Sec. IV and present our experimental results
in Sec. V. Finally, we conclude with some discussions in
Sec. VI.

II. COMMUNITY IDENTIFICATION BY MODULARITY
OPTIMIZATION AND THE QCUT ALGORITHM

Let G= �V ,E� be an undirected network, where V is a set
of n vertices and E a set of m edges. The adjacency matrix A
of the network is given by

Auv = �1 if �u,v� � E ,

0 otherwise.
� �1�

We restrict our attention to undirected networks; therefore, A
is symmetric. We also assume the network is unweighted, but
the definitions below and our algorithms can be easily ex-
tended to weighted networks as well. The number of edges,
du, connected to a vertex u—i.e., the degree of u—can be
given by

du = 	
v=1

n

Auv. �2�

Consider that an algorithm has partitioned the vertices in V
into k mutually exclusive groups, c1 ,c2 , . . . ,ck. Define

eij = 	
u�ci,v�cj

Auv �3�

and

ai = 	
j=1

k

eij = 	
u�ci

du, �4�

where eij represents the number of edges connecting the ver-
tices in community i and those in community j, and ai is the
total degree for the vertices in community i. When i= j, eii
represents twice the total number of edges with both ends in
community i. Let M =2m be twice the total number of edges
in G. It is easy to see that

M = 2m = 	
u,v

Auv = 	
u

du = 	
i=1

k

ai = 	
i=1

k

	
j=1

k

eij . �5�

According to Newman and Girvan �15�, the modularity of G
given a particular partition is defined as

Q = 	
i=1

k 
 eii

M
− � ai

M
�2
 . �6�

The first term in Eq. �6�, eii /M, measures the fraction of
edges falling inside community i, while the second term
�ai /M�2 is the expected fraction of such edges if the edges in
the network were randomly rewired with du fixed for every u
�15�. Therefore, a larger Q value indicates more intracommu-
nity edges that would be expected by chance and hence
stronger community structure. For a trivial partition with a
single community, Q=0. The expected Q value for randomly
partitioning a network is also 0. On the other hand, a random
network can have a positive or even substantial modularity,
especially for sparse networks �24�.

Given the definition of Q, the community discovery prob-
lem is to find a partition of the network that optimizes Q. As
we mentioned in Introduction, however, it has been shown
that optimizing Q is NP-hard �20�, which means an efficient
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optimal algorithm for the problem is unlikely to exist. Here,
we propose a heuristic algorithm, named QCUT, to approxi-
mately optimize Q. The QCUT algorithm consists of two al-
ternating stages: namely, partitioning and refinement. In the
partitioning stage, a spectral graph algorithm is applied to
recursively divide a network, until no improvement to Q can
be achieved. This step provides an efficient approximate so-
lution to find a reasonably good Q. In the refinement stage,
the algorithm attempts to move vertices across communities
or merge communities in order to improve Q. The algorithm
then returns to the first stage to check if any communities
affected by the refinement stage can be further partitioned.
These two stages are alternately carried out until neither of
them can improve Q.

A. Recursive spectral graph partitioning

The core of the first stage of QCUT is a recursive spectral
graph partitioning algorithm, called KCUT, which we have
developed earlier �25�. The KCUT algorithm is intermediate
between a recursive spectral bipartitioning algorithm �26�
that recursively divides each �sub�network into two and a
K-way partitioning algorithm that directly divides a network
into K subnetworks �17�. The KCUT algorithm is recursive in
essence. However, instead of searching for the best biparti-
tioning at each step, the algorithm attempts to divide a �sub-
�network into 2 ,3 , . . . , l subnetworks using a K-way spectral
graph partitioning algorithm, where l is a small integer.
These partitions are compared, and the one with the highest
Q is selected. The algorithm is then applied recursively to
each subnetwork, until the Q value of the network1 cannot be
improved.

Given a network G and a small integer l that is the maxi-
mal number of partitions to be considered for each step, the
algorithm KCUT consists of the following steps.

�1� Initialize C to be a single community with all vertices,
and set Q=0.

�2� For each community c in C,
�a� let g be the subnetwork of G induced by the vertices in

c, and
�b� for each integer k from 2 to l,
�i� find a k-way partition of g, denoted by ck

g, with a
K-way spectral partitioning algorithm, and

�ii� the new community structure, if ck
g is accepted, is

Ck�= �C \c��ck
g, and the new Q value would be Qk�

=Q�Ck� ,G�.
�c� Find the k that gives the highest Q value—i.e., k�

=arg maxk Qk�.
�d� If Qk�� �Q, let C=Ck�� and set Q=Qk�� ; otherwise, ad-

vance to the next cluster in C.
In step �b� above, we utilize an algorithm modified from

Ref. �17�, which in turn uses a standard K-way spectral clus-
tering algorithm by Ref. �27�. Basically, for a given graph
and l, the l largest eigenvectors of a normalized Laplacian
matrix of the graph is computed. The eigenvectors are then
stacked to form an n by l matrix, where n is the number

of vertices in the network and l is the maximum number
of partitions to consider at each iteration. Then the first k
�k=2 to l� columns were taken to partition the rows of the
matrix into k groups using a fast k-means algorithm �28�.

A more thorough discussion and results of the KCUT algo-
rithm can be found in Ref. �25�. It has been shown that the
algorithm has a better accuracy than spectral bipartitioning
algorithms and is much faster than the direct K-way parti-
tioning in Ref. �17�.

B. Refinement

In the refinement stage, a local search strategy is applied
to improve Q as much as possible. We repeatedly consider
two types of operations: �i� migration: move a vertex from
its current community to another one; �ii� merge: combine
two communities to form a single one. In this process, we
use the steepest ascent hill climbing heuristic; i.e., the algo-
rithm always executes the operation that gives rise to the
highest Q. Ideally, we can add a split operation which di-
vides a community into smaller ones. However, it is much
more expensive to search for a good split than for a migra-
tion or merge. Therefore, we consider split only if no migra-
tion and merge can improve Q. This is achieved by returning
to the partitioning stage.

To efficiently identify a good migration or merge opera-
tion, we precompute the change to Q for each potential mi-
gration or merge. Let �c1 ,c2 , . . . ,ck� be the current best com-
munity structure of G and vertex v be a member of
community ci. It can be shown that �see Ref. �29�� the
change to Q incurred by moving v to a new community cj
can be computed by

�Qmigr�v,i, j� = � 2

M
�dj

v − di
v� +

2dv

M2 �ai − aj − dv� if i � j ,

0 if i = j ,
�

�7�

where di
v is the number of connections that v has in commu-

nity i and is given by

di
v = 	

u�ci

Auv. �8�

An intuitive interpretation of Eq. �7� is straightforward: in
order to improve Q, we would prefer to move v to a com-
munity in which v has more friends �i.e., dj

v�di
v� and which

is relatively smaller �i.e., aj �ai−dv�. Given an initial parti-
tion, we compute all values of �Qmigr�v , i , j� for all pairs of
v and j �i is not a free parameter, as it is determined by the
current community structure� and store them in a table T
= �tvj�n�k, where n is the number of vertices, k the number of
communities, and tvj the change to Q if v is moved to cj. T
can be efficiently computed with matrix algebra. It may first
seem that the table is a dense matrix, taking O�nk� space to
store and O�nk� time to search. However, we do not need to
store any negative values. Furthermore, it can be shown that
we also do not need to compute tvj when dj

v=0, since the
corresponding migration will not give the highest �Q, even
if it is positive �see Ref. �29��. Therefore, for a sparse net-

1The Q value here refers to the modularity of the entire network
instead of the subnetwork being partitioned in each recurrence.
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work, most entries in T can be set to zero, resulting in a
sparse matrix.

Similarly, the potential change to Q if ci and cj are merged
can be computed by

�Qmerge�i, j� = � 2

M
�eij −

aiaj

M
� if i � j ,

0 if i = j ,
� �9�

where eij is the number of edges connecting the two commu-
nities. Based on this equation, we can compute a table S
= �sij�k�k, where sij =�Qmerge�i , j�.

Given S and T, the algorithm then chooses an operation
that can result in the highest improvement to Q. This contin-
ues as long as there is some positive entry in S or T. Impor-
tantly, after an operation is taken, we do not need to recom-
pute the two tables entirely, since most of the entries in S and
T remain unchanged. It is easy to see that only the vertices in
the refined communities and those connected to the migrated
vertices need to be updated. Furthermore, as can be seen
from Eqs. �7� and �9�, each operation will improve Q by at
least 2

M2 , assuming edge weights are integers. Therefore, the
algorithm will terminate in at most M2 /2 iterations, while in
practice it usually terminates much sooner.

III. LIMITATION OF MODULARITY OPTIMIZATION
AND A SOLUTION

Equation �9� implies that any two communities ci and cj
in a community structure with optimal Q must satisfy

eij �
aiaj

M
, �10�

where the left-hand side is the number of edges between ci
and cj and the right-hand side is the expected number of such
edges in an equivalent random network. If this condition
does not hold, ci and cj can be simply merged to improve Q.
This condition is intuitively reasonable: when two subnet-
works are connected by a higher-than-expected number of
edges, they are probably related and therefore should not be
separated.

However, consider the network in Fig. 1�a�, where two
cliques are connected by a single edge. If there are no other
vertices, the two cliques clearly form two communities. It
becomes interesting, however, when one of the cliques is
connected to a large network via a single edge. When the
number of edges in the network is above a certain threshold,
such that M �aiaj, the expected number of edges between
the two cliques becomes less than 1. Consequently, the two
cliques will be considered as a single community, according
to Eq. �9�. In other words, by optimizing modularity, com-
munities smaller than a certain scale tend to be merged with
other communities. This phenomenon has received attention
recently and been referred to as the resolution limit problem
in Ref. �22�.

This resolution limit has some significant impact in prac-
tice. First, real-world networks often contain both large and
small communities. In addition, many real-world networks
such as social or biological networks are constructed from

survey or experimental data and therefore often contain er-
rors. If two small communities are accidentally connected by
a false edge, they will be nonseparable by modularity opti-
mization. The limitation, therefore, is partially due to the
assumption that all edges in a network are reliable. Further-
more, the modularity function is also limited by the implicit
assumptions that the entire community structure of a network
has no hierarchy and that a vertex can freely connect to any
other vertex in the network. Consider the network in Fig.
1�b�. The two cliques are connected by a relatively large
number of edges, which are unlikely due to chance. There-
fore, the two cliques can be considered as a single commu-
nity. On the other hand, it is evident that the edge density
between the two cliques is much smaller than that within the
cliques, indicating substructures within the community. In
reality, the concept of communities may vary, depending on
at what granularity the network is analyzed. For example,
from the viewpoint of the General Secretary of the United
Nations, each country may be a community, while from the
viewpoint of an elementary school student, her definition of
community may correspond to the classes in her school.

It is important to note the intrinsic difference between the
scenarios in Figs. 1�a� and 1�b�. In Fig. 1�a�, the two subnet-
works cannot be separated due to their small sizes relative to
the entire network. Although the number of edges connecting
the two components is higher than expected, the difference
between the observed and expected number of intercommu-
nity edges is not statistically significant; i.e., the intercom-
munity edges may have appeared just by chance. Therefore,
we call the two subnetworks affiliated. On the other hand, in
Fig. 1�b�, the two subnetworks are statistically closely asso-
ciated, which may indicate some functional relationships.
Therefore, we call them associated. Note that, however,
there is no clear distinction between the two types of inter-
community relationships.

(b)

(a)

FIG. 1. �Color online� Networks with possible resolution limit
problems. �a� Two loosely linked cliques connected to a much
larger subnetwork via a single edge. �b� Two relatively densely
linked cliques connected to a much larger subnetwork via a single
edge. In either case, when the subnetwork on the right-hand side is
sufficiently large, the two cliques will be identified as a single com-
munity due to the resolution limit. However, these two cases may
have different meanings. In �a�, the two cliques may represent two
independent communities linked together by chance or errors. In
�b�, the two cliques may represent two subcommunities of a larger
community.
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A. HQCUT algorithm

In order to address the resolution limit problem of the
modularity function, Fortunato and Barthelemy suggested a
method that applies modularity optimization to each subnet-
work to identify subcommunity structures �22�. Here we gen-
eralize the idea. We first apply QCUT to obtain a community
structure with the highest Q. We then apply QCUT to each
subnetwork recursively, while ignoring all the intercommu-
nity edges. A critical issue is, then, how to decide whether a
community should be further partitioned or not.

Here we propose two criteria. First, if the modularity2 of
partitioning a subnetwork is below a threshold min q, it is an
indication that the subnetwork has no strong subcommunity
structure and therefore should not be partitioned. Second, it
has been shown that a network may have a high modularity
by chance, especially if the network is sparse �24�. To ad-
dress this problem, we estimate the statistical significance of
the modularity using a Monte Carlo method. For each sub-
network, we apply QCUT to obtain a maximal modularity q.
The subnetwork is then randomly rewired with a procedure
described in Ref. �30� to obtain N random subnetworks,
where each vertex has the same degree as in the original
subnetwork. The QCUT algorithm is applied to each random
subnetwork to search for a maximal modularity. We compute
the statistical significance of q using a Z score:

Z =
q − �q�

�q
, �11�

where �q� and �q are the mean and standard deviations of the
modularity values of the random subnetworks. A high Z
score indicates a statistically significant modularity of the
subnetwork and therefore may correspond to real subcom-
munity structures.

Most real-world networks have Q�0.3 �5�. Therefore, we
use this value as the default value of min q. This cutoff pre-
vents statistically significant but practically uninteresting
partitions to be considered �for example, a high Z score could
be achieved if �q is very small�. Second, we use a Z score
cutoff min Z�2, which corresponds to a p value of 0.05. As
shown in Ref. �29�, the results are generally insensitive with
respect to a wide range of parameter values.

B. Differentiate affiliated and associated communities

As we have discussed, both affiliated and associated sub-
communities are nonseparable by simply optimizing modu-
larity. HQCUT can identify both types of subcommunities, but
is unable to differentiate them. Therefore, after obtaining the
result of HQCUT, we need to determine whether two commu-
nities are associated or affiliated. For this purpose, we first
identify pairs of communities that are directed connected by
some edges. Then for each candidate community pair
�ci , cj� connected by eij edges, we use both analytical and
simulation methods to estimate the probability that we would

see at least eij edges between them if the network is ran-
domly rewired. With the community structure of the network
and the degree of each vertex fixed, we randomly rewire the
network with the procedure described in Ref. �30� and count
the number of edges, êij, between communities i and j. The
number of times that êij �eij divided by the total number of
randomizations is used as the empirical p value. Further-
more, the theoretical p value can also be estimated analyti-
cally with a hypergeometric distribution with parameters M,
ai, and aj. This relationship can be best explained by consid-
ering how the network randomization works. Conceptually,
to randomly rewire a network, we break each edge into two
halves, or stubs, and then randomly reconnect these stubs
into edges. Therefore, for a given network with m edges, we
have a box of M =2m edge stubs. The probability to observe
exactly k edges between community ci and cj is equivalent to
the probability of randomly drawing ai stubs from the box
and observing k of them connected to the vertices in cj. This
probability is given by

f�k;M,ai,aj� =
�aj

k
��M − aj

ai − k
�

�M

ai
� . �12�

The p value for observing at least eij edges between ci and cj,
therefore, can be computed by

P�eij,M,ai,aj� = 	
k=eij

min�ai,aj�

f�k;M,ai,aj� . �13�

To be precise, Eq. �13� will slightly overestimate the p value
due to the constraint that in the randomly rewired networks
self edges are prohibited. Our experiments have shown, how-
ever, that the p values obtained empirically and analytically
are nearly identical. Therefore, the results presented in this
work are based on the analytical method.

Given the p value of observing some number of edges
between a pair of communities, we compute an association
score between the two communities by

S�ci,cj� = − log10 P�eij,M,ai,aj� . �14�

Note that Eq. �14� is also defined for i= j, which can be used
to measure the statistical significance of a community. We
define two communities as associated if their association
score is greater than 2 �i.e., p�0.01� and affiliated if their
association score is less than 1 �i.e., p�0.1�. Community
pairs with intermediate association scores remain undefined,
since we do not have enough statistical evidence about their
relationships. Furthermore, we define a community as an as-
sociated community if it is associated with another commu-
nity and an affiliated community if it is affiliated with another
community.

IV. RELATED WORKS

Since the invention of the modularity function, a number
of community-finding methods have been developed, based
on optimizing Q. Here we briefly discuss several methods

2Here the modularity refers to the Q value by treating the subnet-
work as an independent network, rather than the Q value of the
whole network.
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that share some common characteristics with our QCUT algo-
rithm.

Newman recently proposed a method that is also based on
spectral graph partitioning and local search �6�. QCUT signifi-
cantly differs from Newman’s algorithm in two aspects.
First, for the spectral partitioning, our algorithm utilizes the
Laplacian matrix of a network, while his method deals with a
so-called modularity matrix. It has been shown that both
spectral partitioning methods can approximately optimize Q
�6,17�. Since the Laplacian matrix is typically sparse, while
the modularity matrix is almost a complete matrix, our algo-
rithm has a much lower memory requirement and is more
scalable to large networks. Second, Newman’s algorithm
uses a Kernighan-Lin heuristic after each partitioning to
switch members in two sibling communities. Therefore, the
refinement decision in his algorithm is only made locally. In
contrast, a vertex can be moved to any communities in the
refining stage of our algorithm; therefore, the decision is
made globally. Furthermore, QCUT carries out partitioning
and refinement alternately, while Newman’s algorithm termi-
nates when the partitioning is completed.

Another method proposed by Duch and Arenas is based
on a technique called the extremal optimization �31�. In their
method, a �sub�network is first randomly partitioned into two
and vertices are then moved across communities to improve
Q. Similar to our method, it uses a fitness function to guide
which vertex should be moved first. However, it only con-
siders moving vertices between two sibling communities and
no global structure adjustment is attempted. The simulated
annealing algorithm by Ref. �18�, on the other hand, allows
moving a vertex to any community as in our method and
significantly improves the optimization accuracy. However,
its stochastic nature makes it infeasible for large networks.

On the other end of the spectrum is a greedy method
called the CNM algorithm �19�, which takes a completely
different direction. Initially, each vertex is treated as a com-
munity. Larger communities are formed by merging smaller
ones, if such a merge would increase the Q value of the
network. Conceptually, the CNM algorithm is very similar to
the agglomerative hierarchical clustering in the statistics field
�32�. Despite its relatively low accuracy, CNM is very effi-
cient and can be applied to networks with millions of nodes.
For very large networks, a practical strategy may be to obtain
a fast approximate solution with CNM and use QCUT to fur-
ther optimize the partitions.

Finally, several studies have been performed to analyze
the effect of more realistic characteristics of communities on
community identification algorithms. Such characteristics in-
clude heterogeneous community sizes �33�, hierarchical
structures �34�, overlapping communities �35�, and fuzzy
communities �36�. These studies have generally indicated the
insufficiency of modularity optimization alone in identifying
more complex community structures. A thorough discussion
of these results is out of the scope of this paper. Interested
readers can follow the cited literature above.

V. RESULTS

In order to test the performance of our algorithms, we
applied them to a variety of synthetic or real-world networks

and compared them with Newman’s algorithm �NEWMAN� �6�
as well as the simulated annealing algorithm �SA� �18�.
Implementations of NEWMAN and SA were obtained from the
original authors.

A. Computer-generated networks

We first considered three sets of computer-generated net-
works with known community structures and compared the
accuracy of the algorithms in identifying the known commu-
nities. Each network in these tests has 1000 vertices.

The first set of networks was constructed as follows. The
vertices in each network were divided into 20 communities,
each with 50 vertices. Edges were randomly placed between
the vertices in the same community with a probability pin

and across communities with a probability pout. We chose
pin=0.3, which corresponded to approximately 15 intracom-
munity edges for each vertex on average ��nin��, and varied
pout such that the average intercommunity edges per vertex,
�nout�, were from 5 to 50. Note that we did not constrain
�nout� to be smaller than �nin� as in many other studies, since
we believe what makes a community is its relatively density,
not the absolute number of connections. Overall, the net-
works we used are considerably larger and may include
much weaker communities than some of the networks used
in other studies.

The second set of networks differed from the first set in
that the communities had different sizes. To be precise, each
network contained 53 communities, 1 with 100 vertices, 3
with 40 vertices, 9 with 20 vertices, and 40 with 15 vertices.
Separate pin and pout were chosen for each community such
that each vertex has on average �nin�=6+ln L intracommu-
nity edges, where L is the size of the community that the
vertex resides, and �nout�=2 to 24 intercommunity edges on
average. This choice of �nin� avoids the problem of having
either a fixed pin or a fixed �nin� for all nodes. For a fixed pin,
the smaller communities may be too fuzzy to be detected or
considered significant, while for a fixed �nin�, the smaller
communities may become much denser than the larger com-
munities and easier to identify.

We designed a third set of networks to contain hierarchi-
cal communities, following the model proposed in Ref. �34�.
The vertices in each network were first grouped into ten
equal-sized communities �level-1 communities�. Each com-
munity was then divided into two subcommunities �level-2
communities�. Edges were placed randomly with probability
pout=0.01 between vertices in different level-1 communities,
pin

1 =0.3 between vertices within the same level-2 commu-
nity, and pin

2 =0.05 between vertices within the same level-1
community but in different level-2 communities.

To measure the accuracy of a predicted community struc-
ture, we computed the Jaccard index, which is based on the
number of correctly identified intracommunity vertex pairs
�37�. Given a true community structure C1 and a predicted
community structure C2, let S1 be the set of vertex pairs in
the same community in C1 and S2 the set of vertex pairs in
the same community in C2. The Jaccard index is defined by
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J�S1,S2� =
�S1 � S2�
�S1 � S2�

. �15�

The value of Jaccard index is within �0, 1�, with 1 being the
most accurate. The results using two other accuracy mea-
surements, the Fowlkes-Mallows index �38� and variation of
information �39�, are provided in Ref. �29�. For larger net-
works, measuring accuracies based on the number of vertex

pairs are much more convenient and meaningful than mea-
suring the fraction of correctly identified vertices, as sug-
gested by Ref. �33�.

As evident from Figs. 2�a�–2�c�, for the first set of net-
works, QCUT and SA clearly outperformed NEWMAN in opti-
mizing Q. Furthermore, the slightly improved Q values re-
sulted in significantly better accuracies of community
structures. NEWMAN often returned fewer communities than
it should when the community structures became weaker,
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FIG. 2. �Color online� Results on computer-generated networks. �Q is the difference between the observed Q value and the expected Q
value. �a�–�c� Networks with equal community sizes. �d�–�f� Networks with heterogeneous community sizes. Error bars show the standard
deviations estimated from 100 networks.
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while the other three algorithms performed very well in al-
most all cases. In addition, when �nout��35, QCUT and
HQCUT had almost the same results, indicating that HQCUT

did not overpartition the communities. For large �nout� val-
ues, however, HQCUT had slightly lower modularity but
higher accuracy than QCUT. Indeed, for these networks, be-
cause of the abundance of intercommunity edges, some com-
munities were merged by QCUT due to the resolution limit.

Figures 2�d�–2�f� show the results for the second set of
networks. HQCUT was run with the default parameters, and
the results were robust with respect to a wide range of pa-
rameter values �see Ref. �29��. As shown, QCUT and SA again
found better modularities than NEWMAN �Fig. 2�d��. How-
ever, it is clear that for these networks, the higher modulari-
ties did not result in better community accuracies. In fact, the
modularities found by QCUT or SA were often higher than
those of the true community structures �Fig. 2�d��. HQCUT, on
the other hand, has achieved the highest accuracy for all the
networks, despite slightly lower modularities �Fig. 2�e��.
HQCUT also recovered almost all the communities, with very
few false-positive partitions, for all cases �Fig. 2�f��. In con-
trast, the other three algorithms often merged many small
communities and returned only half or even one-third of the
communities.

For small values of �nout�, NEWMAN reached slightly bet-
ter accuracies than QCUT and SA �Fig. 2�e��. However, the
low accuracy of QCUT was primarily caused by the merge of
small communities, which can be easily resolved by a recur-
sive algorithm such as HQCUT. In other words, by optimizing
Q, we have a better chance to group together pairs of vertices
that belong to the same community. In contrast, NEWMAN not
only merged some small communities, but also assigned
many vertices to wrong communities, which cannot be re-
solved easily �see Ref. �29��.

As shown in Figs. 2�c� and 2�f�, HQCUT may occasionally
overpartition some communities, but seldom underpartitions
any community. This is true even if we increase min Z to a
much larger value �e.g., 10�. There may be two reasons for
this to occur. First, although the test networks were randomly
generated, some communities may have “nonrandomness”
simply by chance. In other words, the generated networks
may in fact have more communities than what we expected.
In this case the results do not represent a failure of the algo-
rithm. The second reason is that, when QCUT was recursively
applied to find lower-level communities, the edges between
the higher-level communities were completely ignored.
Therefore, the algorithm has more freedom to find some
local-community-like structures. Those communities typi-
cally have many intercommunity edges and can often be de-
tected by measuring the intercommunity association scores
and self-association scores with Eq. �14�, as shown above. It
may be an interesting future direction to develop new algo-
rithms or objective functions that explicitly take into account
those intercommunity edges.

For the third set of networks, QCUT and NEWMAN success-
fully identified all level-1 communities with 100% accuracy,
but could not separate the level-2 communities. In compari-
son, HQCUT further partitioned the network and successfully
detected all level-2 communities with an accuracy of 99.9%.

Finally, we applied the statistical test procedure described
in Sec. III B to evaluate whether it is possible to distinguish
the intercommunity relationships in the second set of net-
works and the third set of networks. Figure 3 shows the
association scores for the communities in two networks. The
first network is chosen from the third set of networks, while
the second network is chosen from the second set of net-
works, with �nin�=10. The communities in the first network
are organized into two levels; therefore, significant associa-
tion scores are expected between pairs of level-2 communi-
ties in the same level-1 community. Indeed, as shown in Fig.
3�a�, each identified community is strongly associated with a
neighboring community, indicating hierarchical community
structures in the network. In contrast, the communities in the
second network do not have hierarchies, and therefore we
would not expect any significant association among them.
The HQCUT algorithm identifies 56 communities for this net-
work while the true structure contains 53 communities. The
association scores between pairs of communities are shown
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FIG. 3. �Color online� Association scores between pairs of com-
munities identified by HQCUT from �a� a network with hierarchical
communities and �b� a network with heterogeneous sizes of com-
munities. Self-association scores, which are always high here, are
not shown in order to emphasize on the intercommunity
relationships.
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in Fig. 3�b�. As shown, most communities are not signifi-
cantly associated with any other communities. There are two
groups of communities—i.e., communities 9 and 10, as well
as communities 31, 32, and 33—that are significantly asso-
ciated. The reason is that HQCUT has slightly overpartitioned
some communities. If we had combined communities 9 and
10, as well as communities 31, 32, and 33, we would have
predicted the true community structure perfectly.

B. Real-world networks

As a further test of our algorithms, we applied them to
several real-world networks, which may have different topo-
logical properties than the computer-generated networks.

In the first real-world network, each vertex is a football
team in the United States NCAA division I-A and an edge
between two teams represents a regular-season game played
by them in year 2006. This network is interesting because of
its known community structure. The 115 teams have been
organized into 11 conferences �excluding the teams in the
independence conference�, and games were played more fre-
quently between teams in the same conference than teams in
different conferences. Therefore, each conference can be
considered as a community.

Applying QCUT to the network, we discovered eight com-
munities �Q=0.608�, five of which matched individual con-
ferences precisely �Pacific-10, Conference USA, Big 12, Sun
Belt, and Southeastern� �Fig. 4�. Each of the other three com-
munities contains two conferences: one community contains
Western Athletic and Mountain West, one contains Big Ten
and Mid-American, and the other contains Big East and At-
lantic Coast. The teams in these conferences have a relatively
high frequency of interconference games with the teams in a
conference that are geographically close. NEWMAN returned
the same results as QCUT. In contrast, with HQCUT, the net-
work was divided into 11 communities �Q=0.596�, each of
which corresponds to a conference precisely �Fig. 4�.

We also tested the algorithms on a number of real-world
networks with unknown community structures. For these
tests, we were unable to measure the accuracy of the algo-
rithms due to the lack of known community structures.
Therefore, we focused on the modularity values. As we have
shown on the synthetic networks, although a higher modu-
larity may not necessarily guarantee a better accuracy in
community discovery, it nevertheless generally means better
accuracy in recovering the true intracommunity vertex pairs,
which is necessary for a recursive algorithm such as HQCUT

to succeed.
The results on these networks are shown in Table I. The

detailed information of the networks is included in Ref. �29�.
As shown, QCUT always obtained higher modularities than
NEWMAN. While SA can achieve higher modularity for small
networks, its performance on large networks is often worse
than QCUT and NEWMAN, even with much longer running
time. The NEWMAN algorithm is faster than QCUT on net-
works up to �1500 vertices, but slower than QCUT for larger
networks.

Next, we applied HQCUT to these networks and compared
the results to those in Ref. �22� �SA-2�, which were obtained

by applying SA to each community while ignoring the inter-
community edges. Although SA-2 only allowed one level of
hierarchy while HQCUT supported multiple levels of hierar-
chy, the latter usually returned fewer subcommunities than
the former, indicating that SA-2 had probably overpartitioned
these networks.

In order to test what type of communities are more abun-
dant in the networks, we counted for each network the num-
ber of associated or affiliated communities as defined in Sec.
III B. Interestingly, as shown in Table I, some networks con-
sist of primarily affiliated communities while other networks
contain many associated communities, indicating hierarchi-
cal community structures in the latter group of networks.

(a)

(b)

FIG. 4. �Color online� Community structure in the football team
network. Each symbol along the axes represents a conference. �a�
Results of QCUT. �b� Results of HQCUT. The 11 conferences shown
in �b�, from top to bottom, are Western Athletic, Mountain West,
Pacific-10, Conference USA, Big 12, Sun Belt, Southeastern, Big
Ten, Mid-American, Big East, and Atlantic Coast.
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This preference seems to be unrelated to the edge density or
the modularity of the networks and may deserve further stud-
ies. A possible explanation is that the edges in the latter
group of networks �e.g., circuit, PPI, and Internet� represent
physical interactions. As a result, the interactions are limited
by some spatial or structural constraints, and therefore a hi-
erarchical community structure may be more feasible. In
contrast, the edges in the former group represent some logi-
cal relationships and therefore are not limited by such con-
straints.

C. Application to a biological network

Finally, as a real application, we applied NEWMAN, QCUT,
and HQCUT to a protein-protein interaction network and stud-
ied the discovered communities in more detail. The network
contains 2708 proteins and 7123 pairwise physical interac-
tions in the yeast Saccharomyces cerevisiae �40�. NEWMAN

and QCUT identified 56 �Q=0.694� and 93 communities �Q
=0.696�, respectively, while HQCUT detected 316 communi-
ties �Q=0.582�. In order to determine the biological signifi-
cance of the communities, we compared the communities to
the known protein complexes in the MIPS database �41�.
Among the 2708 proteins in the network, 817 appeared in at
least one protein complex in the database. The protein com-
plexes in the MIPS database are also organized into some
hierarchical structures; i.e., a large protein complex may con-
tain several smaller complexes. A protein may also belong to
multiple protein complexes. In order to measure how well a
discovered protein community represents real protein com-
plex, we computed a matching score for a community c as
follows:

M�c� = max
i

�c � pi�
��c � P� � �pi � C�

, �16�

where pi is the ith known protein complex and c� pi is the
set of proteins shared between c and pi. C and P represent
the set of all proteins in the network and in the MIPS protein

complex database, respectively. The overall performance of
the algorithm was measured by the weighted average of
matching scores for all communities. To eliminate trivial
matches between very small communities and small protein
complexes, we made the restriction that a match must in-
clude at least three proteins. This filter particularly affected
HQCUT, which predicted a large number of small communi-
ties. Those communities were removed from our analysis to
avoid biases, since small communities tend to have high
matching scores by chance.

Table II shows some statistics of the matching scores, and
Fig. 5 shows the total number of proteins as a function of
matching score cutoffs. Overall, 81 communities �553 pro-
teins� identified by HQCUT matched to some known com-
plexes, with a weighted average matching score of 0.81. In
comparison, 31 communities �778 proteins� by QCUT and 40
communities �779 proteins� by NEWMAN matched to some
known complexes, with average matching scores of 0.55 and
0.58, respectively. Furthermore, HQCUT discovered 28 com-
munities �126 proteins� that perfectly matched to some
known protein complexes. In contrast, QCUT and NEWMAN

identified much fewer perfect matches between communities
and protein complexes. Therefore, by allowing subcommuni-
ties, HQCUT has recovered a larger number of real protein
complexes, while the communities identified by NEWMAN or
QCUT may contain multiple protein complexes.

TABLE I. Community results on real-world networks. n, the number of vertices; m, the number of edges; and k the number of
communities. The results by SA and SA-2 on the first five networks were directly obtained from Ref. �22�. The unit of time is seconds, unless
“m” �minute� is specified. Time comparison is for illustration only, since the programs were implemented and executed within different
computing environment. NEWMAN and SA were implemented in the C programming language and compiled into LINUX binary codes before
execution. QCUT was implemented in MATLAB script and compiled at run-time. The last column shows the numbers of affiliated �Af� versus
associated �As� communities.

Network NEWMAN SA QCUT SA-2 HQCUT

Name n m k Q Time k Q Time k Q Time k Q k Q Af/As

Social 67 142 8 0.573 0.01 10 0.608 5.4 8 0.587 2 21 0.532 9 0.578 9/0

Neuron 297 2359 4 0.396 0.4 4 0.408 139 4 0.398 1.9 20 0.319 10 0.363 2/6

Ecoli Reg 418 519 38 0.766 0.7 27 0.752 147 39 0.776 12.7 76 0.661 44 0.769 40/0

Circuit 512 819 15 0.804 1.8 11 0.670 143 13 0.815 6.1 70 0.64 43 0.723 9/15

Yeast Reg 688 1079 26 0.759 3 9 0.740 22.5 m 27 0.766 13.4 57 0.677 66 0.696 28/13

Ecoli Met 563 709 29 0.827 2.06 19 0.828 200.4 21 0.835 12 92 0.728 37 0.81 21/2

Ecoli PPI 1440 5871 18 0.367 33.2 14 0.387 97.8 m 21 0.387 41.5 88 0.305 112 0.346 10/31

Internet 3015 5156 46 0.611 253.7 20 0.624 184 m 21 0.634 43 219 0.556 186 0.566 32/59

TABLE II. Statistics of protein community–complex-matching
scores.

NEWMAN QCUT HQCUT

No. of communities 56 93 216

No. of matched communities 40 31 81

No. of matched proteins 779 778 553

Weighted average matching score 0.58 0.55 0.81

No. of perfectly matched communities 3 2 28

No. of perfectly matched proteins 16 6 126
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To further estimate the bias introduced by community size
differences, we created random community structures that
have the same community size distributions as the real ones
by randomly shuffling members among communities. The
same analysis above was repeated on those shuffled random
communities. Indeed, if we had not filtered out matches with
less than three overlapping proteins, the random counterpart
of the HQCUT communities can have a significant number of
high-scoring communities �approximately 50 proteins with
matching scores �0.5 and 30 proteins with matching scores
�0.6, data not shown�. As mentioned, this is expected since
HQCUT produces many small communities which may have
high matching scores with a small protein complex simply
by chance. After applying the filter, however, the random
communities for the three algorithms have similar matching
scores and none of them are likely to have matching scores
above 0.5, indicating that our comparison are not affected by
the sizes of communities �Fig. 5�.

We again computed the numbers of affiliated and associ-
ated communities in this network and found that it contains
more associated communities than affiliated ones �195 vs
83�, indicating that the majority of the additional communi-
ties found by HQCUT are due to hierarchical communities. To
analyze whether the hierarchical structures have any biologi-
cal significance, we manually inspected the associated com-
munities. Interestingly, almost all of the statistically signifi-
cantly associated communities are biologically related. For
example, the three ribonucleic acid �RNA� polymerases,
RNA pol I, RNA pol II, and RNA pol III were identified as a
single community by QCUT, but were further partitioned by
HQCUT into three subcommunities �Fig. 6�. The three com-
munities are highly associated due to a few common compo-
nents shared by the three complexes. In another example,
snRNA subunits U1, U2, and U6 were also identified as a
single community by QCUT but separated into three subcom-
munities by HQCUT. Other examples include SAGA and
TFIID complexes, INO80 and SWR1 complexes, as well as
eIF-2B and eIF-3 complexes �see Ref. �29��. Therefore, by
combining the results of QCUT and HQCUT, we are able to
reveal the true hierarchical community structures of the net-
work.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we described an efficient algorithm QCUT

for discovering communities from complex networks by op-
timizing the modularity function. We showed that the algo-
rithm can find higher modularities than the existing algo-
rithms on both computer-generated and real-world networks.
When the communities are not so small and the intercommu-
nity connectivities are sparse, a higher modularity indeed
represents a better community discovery accuracy. On the
other hand, we also showed that, when a network contains
small or hierarchical communities, optimizing modularity
may fail to reveal the fine structures at a satisfactory resolu-
tion. To circumvent this problem, we proposed a recursive
algorithm HQCUT, which provides a higher resolution without
introducing spurious communities. Using a variety of syn-
thetic as well as real-world networks with known community
structures, we demonstrated that HQCUT can achieve a much
higher accuracy than algorithms based on modularity optimi-
zation alone. We also studied a protein-protein interaction
network, and found that the protein communities identified
by HQCUT correspond to known protein complexes very well,
while each community found by modularity optimization
may contain several protein complexes.

Our results may first seem to suggest that modularity op-
timization is not a very good strategy for community discov-
ery in practice. Nevertheless, the success of HQCUT largely
depends on the effectiveness of QCUT to optimize Q. By
optimizing modularity, the QCUT algorithm may merge sev-
eral communities into a single one, which can be easily sepa-
rated by a recursive algorithm such as HQCUT in this paper.
In contrast, algorithms that did not succeed in optimizing
modularity may split the members of a community into sev-
eral communities, a mistake that cannot be easily recovered
in post-processing.
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FIG. 5. �Color online� Number of proteins as a function of
matching score cutoffs �MSCs�. FIG. 6. �Color online� Example hierarchical communities in PPI

network. The three colors represent three subcommunities discov-
ered by HQCUT in a community identified by QCUT. Circles, hexa-
gons, and parallelograms are known components of RNA poly-
merase I, II, and III, respectively. Squares are shared components of
two or three RNA polymerases. Triangles are proteins that are not
components of the three complexes by current knowledge.
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Finally, we proposed a statistical significance test to dif-
ferentiate the two scenarios that may cause the resolution
limit: small communities and hierarchical communities. By
combining HQCUT with the significance test, we were able to
not only detect communities with a high resolution, but also
identify pairs of highly associated communities. As shown in
the case of protein-protein interaction networks, these statis-
tically associated community pairs are indeed functionally
related and form a community at a higher hierarchy. Since
many real-world networks are hierarchical, identifying and
analyzing such structures will be an essential step toward
understanding their organizing principles in general.

ACKNOWLEDGMENTS

This research was supported in part by NSF Grants No.
ITR/EIA-0113618 and No. IIS-0535257 and a grant from
Monsanto Co. to W.Z. J.R. was supported by a new faculty
startup fund from the University of Texas at San Antonio
while revising this manuscript. The authors wish to thank
Mark E. J. Newman, Roger Guimera, Luis A. N. Amaral, and
Uri Alon for sharing their programs and network data and
two anonymous reviewers for their very insightful com-
ments.

�1� M. E. J. Newman, Proc. Natl. Acad. Sci. U.S.A. 101, 5200
�2004�.

�2� G. D. Bader and C. W. Hogue, Nat. Biotechnol. 20, 991
�2002�.

�3� J. Kleinberg and S. Lawrence, Science 294, 1849 �2001�.
�4� R. Albert and A. L. Barabasi, Rev. Mod. Phys. 74, 47 �2002�.
�5� M. E. J. Newman, SIAM Rev. 45, 167 �2003�.
�6� M. E. J. Newman, Proc. Natl. Acad. Sci. U.S.A. 103, 8577

�2006�.
�7� M. E. J. Newman, Phys. Rev. E 74, 036104 �2006�.
�8� J. B. Pereira-Leal, A. J. Enright, and C. A. Ouzounis, Proteins

54, 49 �2004�.
�9� V. Spirin and L. A. Mirny, Proc. Natl. Acad. Sci. U.S.A. 100,

12123 �2003�.
�10� D. M. Wilkinson and B. A. Huberman, Proc. Natl. Acad. Sci.

U.S.A. 101, 5241 �2004�.
�11� P. O. Fjällström, Linköping Electronic Articles in Computer

and Information Science 3, 10 �1998�.
�12� G. W. Flake, S. Lawrence, C. L. Giles, and F. Coetzee, IEEE

Trans. Comput. 35, 66 �2002�.
�13� F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Pa-

risi, Proc. Natl. Acad. Sci. U.S.A. 101, 2658 �2004�.
�14� M. E. J. Newman, Eur. Phys. J. B 38, 321 �2004�.
�15� M. E. J. Newman and M. Girvan, Phys. Rev. E 69, 026113

�2004�.
�16� J. Ruan and W. Zhang, Proceedings of the 21st National Con-

ference on Artificial Intelligence, edited by Y. Gil and R.
Mooney �AAAI, Menio Park, CA, 2006�, pp. 470–475.

�17� S. White and P. Smyth, Proceedings of the 5th SIAM Interna-
tional Conference on Data Mining, edited by H. Kargupta, J.
Srivastava, C. Kamath, and A. Goodman �Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, 2005�, pp.
274–284.

�18� R. Guimera and L. A. Nunes Amaral, Nature �London� 433,
895 �2005�.

�19� A. Clauset, M. E. J. Newman, and C. Moore, Phys. Rev. E 70,
066111 �2004�.

�20� U. Brandes, D. Delling, M. Gaertler, R. Goerke, M. Hoefer, Z.
Nikoloski, and D. Wagner, e-print arXiv:physics/0608255.

�21� L. Danon, J. Duch, A. Diaz-Guilera, and A. Arenas, J. Stat.
Mech.: Theory Exp. �2005� P09008.

�22� S. Fortunato and M. Barthelemy, Proc. Natl. Acad. Sci. U.S.A.
104, 36 �2007�.

�23� S. Muff, F. Rao, and A. Caflisch, Phys. Rev. E 72, 056107
�2005�.

�24� R. Guimerà, M. Sales-Pardo, and L. A. Nunes Amaral, Phys.
Rev. E 70, 025101�R� �2004�.

�25� J. Ruan and W. Zhang, Proceedings of the IEEE International
Conference on Data Mining, edited by N. Ramakrishnan, O. R.
Zaïane, Y. Shi, C. W. Clifton, and X. Wu �IEEE Computer
Society, Washington, D.C., 2007�, pp. 643–648.

�26� J. Shi and J. Malik, IEEE Trans. Pattern Anal. Mach. Intell.
22, 888 �2000�.

�27� A. Y. Ng, M. I. Jordan, and Y. Weiss, Advances in Neural
Information Processing System, edited by T. G. Dietterich, S.
Becker, and Z. Ghahramani �MIT Press, Cambridge, MA,
2001�, pp. 849–856.

�28� C. Elkan, Proceedings of the 20th International Conference on
Machine Learning, edited by T. Fawcett, and N. Mishra
�AAAI, Menlo Park, CA, 2003�, pp. 147–153.

�29� http://cic.cs.wustl.edu/qcut/supplemental.pdf
�30� R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U.

Alon, e-print arXiv:cond-mat/0312028.
�31� J. Duch and A. Arenas, Phys. Rev. E 72, 027104 �2005�.
�32� D. Hand, H. Mannila, and P. Smyth, Principles of Data Mining

(Adaptive Computation and Machine Learning) �MIT, Cam-
bridge, MA, 2001�.

�33� L. Danon, A. Diaz-Guilera, and A. Arenas, J. Stat. Mech.:
Theory Exp. �2006� P11010.

�34� A. Arenas, A. Diaz-Guilera, and C. Perez-Vicente, Phys. Rev.
Lett. 96, 114102 �2006�.

�35� G. Palla, I. Derenyi, I. Farkas, and T. Vicsek, Nature �London�
435, 814 �2005�.

�36� J. Reichardt and S. Bornholdt, Phys. Rev. Lett. 93, 218701
�2004�.

�37� P. N. Tan, M. Steinbach, and V. Kumar, Introduction to Data
Mining �Addison-Wesley, Reading, MA, 2005�.

�38� E. B. Fowlkes and C. L. Mallows, J. Am. Stat. Assoc. 78, 553
�1983�.

�39� M. Meila, J. Multivariate Anal. 98, 873 �2007�.
�40� N. J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ig-

natchenko, J. Li, S. Pu, and A. P. Datta, Nature �London� 440,
637 �2006�.

�41� H. W. Mewes, D. Frishman, K. F. Mayer, M. Munsterkotter, O.
Noubibou, P. Pagel, T. Rattei, M. Oesterheld, A. Ruepp, and V.
Stumpflen, Nucleic Acids Res. 34, D169 �2006�.

JIANHUA RUAN AND WEIXIONG ZHANG PHYSICAL REVIEW E 77, 016104 �2008�

016104-12


