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Anomalous scaling in the statistics of an active scalar is studied in a shell model of homogeneous turbulent

convection. We extend refined similarity ideas for homogeneous and isotropic turbulence to homogeneous
turbulent convection and attribute the origin of the anomalous scaling to variations of the entropy transfer rate.
We verify the consequences and thus the validity of our hypothesis by showing that the conditional statistics of
the active scalar and the velocity at fixed values of entropy transfer rate are not anomalous but have simple
scaling with exponents given by dimensional considerations, and that the intermittency corrections are given
by the scaling exponents of the moments of the entropy transfer rate.
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Since the work of Kolmogorov in 1941 (K41) [1], much
effort has been devoted to the study of the possible universal
statistics of fluid turbulence in the inertial range, the range of
length scales that are smaller than those of energy input and
larger than those directly affected by molecular dissipation.
A major challenge is to understand, from first principles, the
origin of anomalous scaling, which is the deviation of the
velocity scaling behavior from those predicted by dimen-
sional considerations in K41. One important idea proposed
by Kolmogorov in his refined theory [2], which we refer to
as Kolmogorov’s refined similarity idea, attributes the origin
of anomalous scaling of the velocity to the variations of local
energy dissipation rate. Kraichnan [3] later pointed out that
the local energy dissipation rate is not an inertial-range quan-
tity and proposed to attribute the origin of anomalous scaling
of the velocity instead to the variations of the local energy
transfer rate, and we shall refer to this as Kraichnan’s refined
similarity idea.

Similar problems of anomalous scaling can be posed for a
scalar field advected by a turbulent velocity field. A passive
scalar leaves the velocity statistics intact while an active sca-
lar couples with the velocity and influences its statistics. The
nonlinear problem of anomalous scaling of active scalars,
like that of velocity, remains unsolved. A common example
of an active scalar is temperature in turbulent convection in
which temperature variations drive the flow. Turbulent con-
vection is often investigated experimentally in Rayleigh-
Bénard convection cells heated from below and cooled on
top (see, e.g., [4—6] for a review). Such confined convective
flows are highly inhomogeneous with thermal and viscous
boundary layers near the top and the bottom of the cell.
Moreover, coherent structures, known as plumes, could af-
fect the scaling properties [7]. For the purpose of studying
anomalous scaling of an active scalar, it would thus be more
desirable to study homogeneous turbulent convection and in
the absence of coherent structures.

Homogeneous turbulent convection has been proposed [8]
as a convective flow in a box, with periodic boundary con-
ditions, driven by a constant temperature gradient along the
vertical direction. In Boussinesq approximation [9], the
equations of motion read [10]
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with V-z=0. Here, u is the velocity, p is the pressure divided
by the density, 0=T-(T,— Bz) is the deviation of temperature
T from a linear gradient -3, T,, «, v, and « are, respectively,
the mean temperature, the volume expansion coefficient, ki-
nematic viscosity, and thermal diffusivity of the fluid, g is the
acceleration due to gravity, and Z is a unit vector in the ver-
tical direction. Numerical studies [8,12] revealed that the
Bolgiano length [11], given by Ly=e€'*x"¥*(ag)™>%, where €
and y are, respectively, the average energy and thermal dis-
sipation rates, is of the order of the size of the periodic box,
indicating that temperature is not active in the intermediate
scales. Indeed the small-scale isotropic fluctuations were
found [12] to have scaling close to that of K41.

A shell model for homogeneous turbulent convection
driven by a temperature gradient has also been proposed by
Brandenburg [13]. The basic idea of a shell model is to con-
sider variables in a discretized Fourier space and construct a
set of ordinary differential equations for the variables in each
shell. The wave number in the nth shell is k,=kyh",
n=0,1,...,N—1, and & and k; are customarily taken to be 2
and 1, respectively. Shell models for homogeneous and iso-
tropic turbulence have been proved to be very successful in
reproducing the scaling properties observed in experiments
[14]. In Brandenburg’s shell model, the velocity and tem-
perature variables u,, and 6, are real and satisfy the evolution
equations

Uy

dt

+ vk, = ak, (| — Rttty ) + bR, (i, _y — hitl, ;)
+agb,, 3)
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- hun+l 611+1) + Bun’ (4)

where a, b, @, and b are positive parameters. Earlier work
showed that the scaling behavior depends only on the ratio
b/a [13]: close to Bolgiano-Obukhov (BO) scaling [11,16]
(u,~ k", 6,~k; ') for b/a large and close to K41 scaling
[1] (un~k;1/3, 0,1~k;1/3) for b/a smaller than about 0.4.

In this Rapid Communication, we study anomalous scal-
ing of an active scalar using this shell model. We show that
buoyant forces are indeed significant and demonstrate explic-
itly the anomalous scaling behavior. Then we extend Kraich-
nan’s refined similarity idea and attribute the origin of the
anomalous scaling in homogeneous turbulent convection to
variations of the entropy transfer rate. Finally we verify the
consequences and thus the validity of our hypothesis against
results obtained from numerical simulations of the model.

Multiplying Eq. (3) by u,, we get the energy budget:

n

dt

= Fu(kn) - Fu(kn+l) - Vkiui + agu, 0n’ (5)

where E,=u?/2 is the energy in the nth shell, F,(k,)
=k,(au,_,+bu,)u,_u, is the rate of energy transfer from
(n—1)th to nth shell, vk2u? is the rate of energy dissipation in
the nth shell due to viscosity, and agu,6, is the power in-
jected into the nth shell by the buoyant forces. It is thus

reasonable to take buoyancy to be significant in the nth shell
if

agl(u,6,)| > e= v ki(uﬁ) (6)

where (---) is an average over time. Note that for both K41
and BO scaling, ag(u,6,)=¢€ at k,=1/Lg.

We numerically integrate Eqgs. (3) and (4) using the
fourth-order Runge-Kutta method with an initial condition of
u,=6,=0 except for a small perturbation of 6, in an inter-
mediate value of n. We calculate the statistical averages
when the system is in the stationary state. We find that Eq.
(6) is satisfied for most of the shells when b/a is greater than
a critical value of about 2 (see Fig. 1 for the case of
b/a=100). As in Ref. [15], a linear damping term acting on
the largest scale is added to Eq. (3) to achieve stationarity
when b/a is large. When b/a is smaller than the critical
value, the solution is not chaotic and given approximately by
the fixed-point solution of un=Ak;1/ 3 and 0,1=Bk;1/ 3, which
holds exactly in the limit of large N and v=«k=ag=0. In this
case, we check that Eq. (6) is not satisfied for all shells
except the n=0 shell (see also Fig. 1). We associate this
change in the importance of buoyancy with the reported
change in the scaling behavior discussed above.

As we are interested in the case of an active scalar, we
focus on b/a large and study the velocity and temperature
structure functions, S,(k,) and R,,(k,):
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FIG. 1. The logarithm of ag|{u,6,)|/€ for different shells for
a=0.01, b=1, B=1, v=5X% 10717, k=5x 101, and N=32 (circles),
and a=10, b=1, B=100, v=k=10"%, and N=30 (squares) (the
datapoints for n=28 and 29 are not shown here as they are too

small. For both cases, a=b=1 and ag=1.

Sp(k,) = (") ~ k5 Ry (k) =6,y ~ k. (7)

The scaling exponents {, and &, do not depend on the values
of the various parameters as long as b/a is larger than 2. The
results reported below are obtained using a=0.01, b=1,
B=1,a=b=1, ag=1, v=5X10""7, k=5%107'5, and N=32.
As shown in Fig. 2, both {,, and §p deviate, respectively, from
the BO values of 3p/5 and p/5, thus demonstrating anoma-
lous scaling behavior. We study also the case where the tem-
perature is driven by a large-scale random forcing instead of
an imposed linear gradient [15]. In this case, the Bu,, term in
Eq. (4) is replaced by a random noise acting only in shell
n=0. We find exactly the same scaling exponents, supporting
the universality of scaling of an active scalar upon different
forcing mechanisms [15,17].

It was suggested [18] that when buoyancy is dominant,
the scaling behavior of velocity and temperature spectra is
governed by an entropy cascade of constant entropy flux. In

p

-3p/5 and & -p/5
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FIG. 2. Deviation of the scaling exponents from the BO values:
£,=3p/5 (circles) and §,—p/5 (squares). The solid lines are the
results of Egs. (15) and (16).
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Bousinessq approximation, the entropy is proportional to the
volume integral of temperature fluctuations. Entropy in the
nth shell is therefore defined as S, = 63,/2. By studying the
entropy budget obtained from Eq. (4) upon multiplication by
0

ns

ds, .
E = Fﬁ(kn) - Fﬁ(kn+1) - Kknezn + Bunan’ (8)

we get the rate of entropy transfer or entropy flux from (n
—1)th to nth shell as

F@(kn) = kll(aun—l + Eun) on—l 0n' (9)

In the stationary state and for intermediate scales where scal-
ing is observed, both Bu,6,) and kk*(#7) are negligible such
that there is indeed a constant entropy flux with (Fy(k,))
=X= K2,k 6).

We propose that when buoyancy is significant,

u, = ¢, (ag)?|F (k)| k">, (10)

0,= dolag) ™ *|F k) [k, (11)

where ¢, and ¢, are dimensionless random variables that are
independent of k,, and statistically independent of Fy(k,). The
absolute signs are taken because the entropy flux Fy(k,), un-
like x, can assume both positive and negative values. Equa-
tions (10) and (11) are an extension of Kraichnan’s refined
similarity idea to homogeneous turbulent convection. With
Egs. (10) and (11), we attribute the anomalous scaling be-
havior of the active temperature and the velocity to the shell-
to-shell variations of the entropy transfer rate. An immediate
consequence is that the conditional velocity and temperature
structure functions at a certain prescribed value x of the en-
tropy transfer rate are given by

(unl|Folky) = x) = () (ag) x5k ~ kb, (12)

16,7 |F olk,) = x) = (i) (ag) "X ~ k%, (13)

agd hence Woulg have simple scaling with BO exponents of
£,=3p/5 and §,=p/5, respectively. We evaluate the condi-
tional velocity and temperature structure, functions at differ-
ent values of x and confirm that ¢, and §, are independent of
x, and in good agreement with 3p/5 and p/5, respectively, as
shown in Fig. 3.

Let (|Fy(k,)|P) ~ k™, then Eqgs. (10) and (11) imply

&, =I5+ Tops (14)

showing that the intermittency corrections, which are the de-
viations of the scaling exponents from the BO values, are
given by the scaling exponents of the moments of the en-
tropy transfer rate. As the power of Fyin R, is twice that in
S, this explains why the anomaly is larger for §, than for £,
(see Fig. 2). We evaluate 7, numerically and check Eq. (14)
in Fig. 4. Good agreement is again found.

Next, we show that the intermittency corrections, as given
by 7,, can be obtained by suitably modifying the results of
the scaling exponents of the moments of the local thermal

£p=3p/5 + 1y5;
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FIG. 3. The scaling exponents {: (diamonds) and 5: (triangles)
of the conditional velocity and temperature structure functions.
They are in good agreement with the BO values of 3p/5 and p/5
(dashed lines).

dissipation rate found in experiments [19]. In Ref. [19], the
statistics of the local thermal dissipation rate, estimated by
X~ have been studied in the central region of turbulent
Rayleigh-Bénard convection. It was found that the moments
of x,=(uXn) ' [*"k(IT/ ot")dt’, where (u?) is the mean
square velocity fluctuations at the center, satisfy a hierarchi-
cal structure of the She-Leveque form [20], and that their
scaling exponents u,, defined by (x7)~ 7, can be well de-
scribed by w,=c(1-p)-Ap with c=1, B,=2/3, and
A=1/3. The parameter A\ is the scaling exponent of
lim,,_.( X2 /(x?), which was estimated [19] as the ratio of
the maximum thermal dissipation divided by a time ¢, at the
scale r= \/@T. Taking ¢, as r/u,, b=1/3 implies u,~ r'’3,
which is Kolmogorov scaling. Here, we find that the mo-
ments of the entropy transfer rate {|Fy(k,)|") also satisfy the
same hierarchical structure [21] and similarly 7, is well ap-
proximated by c¢;(1-9")—c,p. Similarly, ¢, is the scaling
exponent of Fsc)(kn)Elimpﬁx<|F(,(k,,)|"+1>/(|F9(kn) P). Fol-
lowing Ref. [19], we estimate F(;)(k,,) as S, k,, where
S,axc 18 the largest possible entropy. Since we observe BO-
like scaling in the present case, it iS more appropriate to
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FIG. 4. Comparison of {, (circles) and ¢, (squares) with the
theoretical predictions of 3p/5+ 7,5 (stars) and p/5+ 7,5 (crosses)
using the numerical results of 7,.
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estimate u,,~k;3/5. As a result, we get ¢,=2/5. Then as
(|Fy(k,) |y~ (Fy(k,))=x is independent of k,, we have 7,=0
implying ¢;(1—vy)=c,. If we keep ¢;=1 as ¢=1 for x,, then
we get y=3/5. Putting these results together and using Eq.
(14), we find

£, —3p/5=1-(3/5°=2p/25, (15)

&, —pl5=1-(3/5)%" - 4p/25. (16)

Interestingly, as shown in Fig. 2, Egs. (15) and (16) indeed
describe the measured intermittency corrections well.

We have focused on understanding the origin of anoma-
lous scaling of an active scalar in homogenous turbulent con-
vection using a shell model. We have extended Kraichnan’s
refined similarity idea and attributed the anomalous scaling
to the variations in the entropy transfer rate. We have verified
our hypothesis by showing explicitly that the conditional ve-
locity and temperature structure functions at fixed values of
the entropy transfer rate have simple scaling exponents of the
BO values, and the intermittency corrections are given by the
scaling exponents of the entropy transfer rate. Furthermore,
by modifying earlier results obtained for the statistics of the
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local thermal dissipation rate in turbulent Rayleigh-Bénard
convection [19], we have obtained the scaling exponents 7,
of the moments of the entropy transfer rate and thus Eqgs.
(15) and (16) for the intermittency corrections {,~3p/5 and
&,—p/5. These results are found to be in good agreement
with those obtained in the numerical simulations of the shell
model.

We should note that the scaling behavior of homogeneous
turbulent convection might not be the same as that in the
central region of confined turbulent convection as coherent
structures present in the latter case could affect the scaling
properties [7]. Indeed direct numerical simulations [22] and
analyses of experimental data [23] indicated that the scaling
behavior of the central region of confined turbulent convec-
tion is not well described by BO scaling plus intermittency
corrections. On the other hand, there is evidence [24] of the
validity of the extension of Kolmogorov’s refined similarity
idea in terms of the local thermal dissipation rate. It would
be interesting to further investigate this issue.

We thank T.C. Ko for his help in plotting Fig. 1. This
work was supported in part by the Hong Kong Research
Grants Council (Grant No. CUHK 400304).
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