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We found that in transition arrays of complex atomic spectra, the strengths of electric-dipolar lines obey
Benford’s law, which means that their significant digits follow a logarithmic distribution favoring the smallest
values. This indicates that atomic processes result from the superposition of uncorrelated probability laws and
that the occurrence of digits reflects the constraints induced by the selection rules. Furthermore, Benford’ law
can be a useful test of theoretical spectroscopic models. Its applicability to the statistics of electric-dipolar lines
can be understood in the framework of random matrix theory and is consistent with the Porter-Thomas law.
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I. INTRODUCTION

Newcomb �1� noticed that the beginning pages of loga-
rithm books were more used than the last pages. This obser-
vation led to the conjecture that the significant digits of many
sets of naturally occurring data describing the physical world
are not equiprobably distributed, but in a way that favors
smaller significant digits. For instance, the first significant
digit �i.e., the first digit which is nonzero� will be 5 more
frequently than 6 and the first three significant digits will be
458 more often than 462. Moreover, this result is scale
invariant. Benford provided a probability distribution
function for significant digits. The probability that the N
first significant digits di �i=1,N� are equal, respectively, to
ki �ki=1,9� is given by �2�

P�di = ki� = log10�1 + ��
i=1

N

di � 10N−i�−1	 . �1�

For instance, since some accounting data satisfy this rule, it
is used to detect fraud �3�. River lengths, mountain heights,
populations of cities �4�, radioactive decay half lives �5�,
physical constants, and some mathematical series satisfy
Benford’s law. However, if many data roughly satisfy the
law, perfect agreement is not the general case and the law is
not universal. In the present work, focus will be put on the
first significant digit, whose probability of being equal to k is
given by

P�d1 = k� = log10�1 + k−1� . �2�

II. DIGITS OF LINE STRENGTHS

To our knowledge, although much attention has been paid
to the modeling of electric-dipolar �E1� transition lines in a
complex atomic spectrum typical of a hot plasma, it has
never been checked whether the statistics of the lines obey
Benford’s law. Most of the studies focused on the distribu-
tion of the values of the line strengths �see, for instance, Ref.
�6� or �7��, but not on the significant digits. Figure 1 repre-
sents the transition array 3d6→3d54p of Ge IX calculated

with Cowan’s ab initio atomic-structure code �8�, which pro-
vides the Slater direct and exchange integrals, and the one-
particle dipole-moment integrals evaluated from Hartree-
Fock wave functions. Figure 2 displays the number of lines
of that transition array for each value of the first significant
digit calculated from our approach and predicted from Ben-
ford’s law. The total number of lines is 3245. It is clear that
the two distributions of lines are very similar. The same
property has been observed on other transition arrays for
different elements. Table I displays the fraction of lines per
significant digit for four transitions: 3d6→3d54p �3245
lines� for Ge IX �T1�, 3d4→3d34f �2825 lines� for Ta LII
�T2�, 3d24s4p→3d4s4p2 �2722 lines� for Br XIV �T3� and
3d24s4p3→3d4s4p4 �8231 lines� for Br XII �T4�. It is worth
mentioning that even for transition arrays with a much
smaller number of lines, the law still applies very well.

III. TESTING SPECTROSCOPIC MODELS

In a hot plasma, the total spectrum consists of a huge
number of transition arrays. Therefore, the total number of
lines can be immense. Usually, when the lines coalesce due
to the physical broadening processes �natural width, electron
impact, Stark effect, and Doppler effect�, the distribution of
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FIG. 1. �Color online� Array of lines for the transition 3d6

→3d54p of Ge IX.
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lines in intermediate coupling is modeled by a continuous
�Gaussian� distribution, called the unresolved transition array
whose average energy and variance are evaluated following
the work of Bauche et al. �9�. However, in that case some
information is lost, and random calculations can help to ap-
proximately reconstruct the resolved distribution of lines en-
suring known physical rules �10�.

The resolved transition array �RTA� approach developed
by Bauche et al. �11� and recently improved by Gilleron
et al. �12� enables one to simulate E1 lines of a transition
array avoiding direct diagonalization of the atomic Hamil-
tonian. The strength of a line and the energies of the lower
and upper levels are picked up at random satisfying some
specific constraints: preservation of the number of lines, of
the total strength and weighted variance of the transition ar-
ray, as well as of the unweighted variances of levels of lower
and upper configurations. In that approach, the distribution
function also includes a correlation between the energies and
amplitudes of the lines �propensity law�. Therefore, Ben-
ford’s significant-digit law can be a performing test of the
validity of the correlation rules included in such approaches.

IV. INTERPRETATION

The fact that E1 lines satisfy Benford’s law indicates that
the distribution of digits reflects the symmetry due to the
selection rules. If transitions were governed by uncorrelated
random processes, each digit would be equiprobable.

Benford’s law is still not fully understood mathematically.
However, some key elements have been known since the
middle of the 1990s. For instance, Benford’s law holds for
any rescaling of the data, since it does not depend on any
particular choice of units �13�. It is the only scale-invariant
law referring to digits since the logarithmic distribution is the
unique continuous base-invariant distribution �14�. More pre-
cisely, if probability distributions are selected at random and
random samples are taken from each of these distributions so
that the overall process is base invariant, then the significant-
digit frequencies of the sample will converge to the logarith-

mic distribution. In other words, the more diversified the
probability distributions are, the better the data sets fit Ben-
ford’s law. The understanding of why systems with many
interacting particles spontaneously organize into scale-
invariant states is a difficult task of statistical physics.

Moreover, Benford’s law applies if the system is governed
by multiplicative processes �15�. Indeed, a random multipli-
cative process corresponds to an additive process �dynamical
description of a Brownian process� in a logarithmic space. In
Wigner’s random matrix theory �16,17�, the Hamiltonian is
defined in the Gaussian orthogonal ensemble �GOE� by an
ensemble of real symmetric matrices whose probability dis-
tribution is a product of the distributions for the individual
matrix elements Hkl, which are considered to be stochastic
variables. The variance of the distribution for the diagonal
elements is twice the one for the off-diagonal elements. The

line strength S is proportional to 
�i
D� 
j�
2, where D� is the
dipolar operator and 
i� and 
j� are eigenvectors of the Hamil-
tonian. Therefore, the line strengths involve quantities such
as products of Hkl and one has

S

S�
= � , �3�

where S and S� are the strengths of two lines belonging to the
transition array and � is a stochastic variable. Equation �3�
can be written as

ln S = ln � + ln S�. �4�

The central-limit theorem states that the probability distri-
bution that the value of the nth strength is S will be Gaussian
with a variance �n1/2. In the infinite limit, the distribution
will approach the uniform one, characterized by constant K.
Therefore, one has


 P�ln S�d�ln S� = K
 dS

S
. �5�

The probability P that the first significant digit d1 of S is k in
base 10 is given by

TABLE I. Fraction of lines whose first digit is k for transitions
T1, T2, T3, and T4 compared to the values predicted by Benford’s
law.

k T1 T2 T3 T4 Benford

1 0.289 0.307 0.307 0.300 0.301

2 0.186 0.182 0.179 0.186 0.176

3 0.117 0.121 0.126 0.117 0.125

4 0.096 0.096 0.093 0.097 0.097

5 0.084 0.079 0.079 0.076 0.079

6 0.075 0.064 0.071 0.071 0.067

7 0.060 0.060 0.055 0.055 0.058

8 0.049 0.051 0.049 0.050 0.051

9 0.043 0.039 0.043 0.048 0.046
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FIG. 2. �Color online� Fraction of lines versus first significant
digit for the transition 3d6→3d54p of Ge IX. The total number of
lines is 3245.
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P�d1 = k� = 

k

k+1 dS

S �

1

10 dS

S
= log10�1 +

1

k
	 , �6�

which is exactly Eq. �2�. This heuristic argument relies on
the idea that fluctuations are governed by multiplicative pro-
cesses involving a stochastic variable. The matrix elements
of the Hamiltonian are correlated stochastic variables and the
product of such variables leads to Benford’s logarithmic dis-
tribution of digits.

Another argument can be invoked to understand the math-
ematical foundation of Benford’s law. Porter and Thomas
have shown that the amplitudes of the lines between all the
levels of two random matrices obey a Gaussian distribution
�18,19�. The strength being the square of the amplitude, its
distribution is �6,20�

D�S� =
L

�2��S�S
exp�−

S

2�S�� , �7�

where L and �S� are, respectively, the number of lines and the
average value of the line strength in a �J ,J�� set. When num-
bers are taken from an exponential distribution, they auto-
matically obey Benford’s law. Therefore, when the exponen-
tial term dominates in D�S�, which is often the case except
close to the origin �i.e., for very weak lines�, Benford’s law
applies.

The random matrix theory contains approximate symme-
tries, which are not sufficient to describe the vicinity of
Russell-Saunders and j j couplings �21,22�. In the model of
Wilson et al. �23�, diagonal terms are calculated in a pure
coupling using Cowan’s code mentioned above and off-
diagonal elements are populated statistically beyond the
GOE according to a bi-Gaussian distribution function where
elements are correlated. They observed a disproportionably
large number of off-diagonal elements of small amplitude.
However, we found that even when the random matrix

theory is expected to be inappropriate, i.e., close to a pure
coupling, the line strengths still fit Benford’s law. This is due
to the fact that even if the number of weak emerging lines is
important �when the term 1

�S
dominates in the Porter-Thomas

law �7��, the number of decades is sufficiently large so that
the weight of those weak lines is negligible in the statistical
occurrence of digits.

V. CONCLUSIONS

The results of this study are following. First, the distribu-
tion of lines in a given transition array follows Benford’s
logarithmic law of significant digits very well, which was, to
our knowledge, never observed and rather unexpected. Sec-
ond, this indicates that the correlations due to the selection
rules manifest themselves in the distribution of digits, even
in intermediate coupling, and that such a symmetry results
from a superposition of different probability laws. Third,
computational methods avoiding diagonalization such as the
resolved transition arrays model, which ensures known
physical rules �propensity law, correlation laws�, can be im-
proved and/or tested by imposing the constraint that the sta-
tistics of the lines must verify Benford’s law with a high
accuracy. Finally, since Benford’s law can be explained in
terms of a dynamics governed by multiplicative stochastic
processes, the random matrix theory is probably an interest-
ing pathway for the calculation of large atomic-dipole tran-
sition arrays and Benford’s law can help clarifying the exis-
tence of different classes of stochastic Gaussian variables.
Moreover, Benford’s law is a signature of the Porter-Thomas
distribution of lines.
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