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The diversity in wealth and social status is present not only among humans, but throughout the animal
world. We account for this observation by generating random variables that determine the social diversity of
players engaging in the prisoner’s dilemma game. Here the term social diversity is used to address extrinsic
factors that determine the mapping of game payoffs to individual fitness. These factors may increase or
decrease the fitness of a player depending on its location on the spatial grid. We consider different distributions
of extrinsic factors that determine the social diversity of players, and find that the power-law distribution
enables the best promotion of cooperation. The facilitation of the cooperative strategy relies mostly on the
inhomogeneous social state of players, resulting in the formation of cooperative clusters which are ruled by
socially high-ranking players that are able to prevail against the defectors even when there is a large temptation
to defect. To confirm this, we also study the impact of spatially correlated social diversity and find that
cooperation deteriorates as the spatial correlation length increases. Our results suggest that the distribution of
wealth and social status might have played a crucial role by the evolution of cooperation amongst egoistic

individuals.
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I. INTRODUCTION

The prisoner’s dilemma game, consisting of cooperation
and defection as the two competing strategies, is considered
a paradigm for studying the emergence of cooperation be-
tween selfish individuals [1]. Since the game promises a de-
fecting individual the highest income if facing a cooperator
the prevalence of cooperation within this theoretical frame-
work presents a formidable challenge. Indeed, the classical
well-mixed prisoner’s dilemma game completely fails to sus-
tain cooperation [2], which is often at odds with reality
where mutual cooperation may also be the final outcome of
the game [3]. A seminal theoretical mechanism for coopera-
tion within the prisoner’s dilemma game was introduced by
Nowak and May [4], who showed that the spatial structure
and nearest neighbor interactions enable cooperators to form
clusters on the spatial grid and so protect themselves against
exploitation by defectors. A decade later, this theoretical pre-
diction has been confirmed by biological experiments [5].
Nonetheless, the somewhat fragile ability of the spatial struc-
ture to support cooperation [6], along with the difficulties
associated with payoff rankings in experimental and field
work [7], has made it a common starting point for further
refinements of cooperation facilitating mechanisms. In par-
ticular, the specific topology of networks defining the inter-
actions among players has recently received substantial at-
tention [8], and specifically scale-free graphs [9] have been
recognized as extremely potent promoters of cooperative be-
havior in the prisoner’s dilemma as well as the snowdrift
game [10]. Although the promotion of cooperation by the
scale-free topology has been found robust on several factors
[11], the mechanism has recently been contested via the in-
troduction of normalized payoffs or so-called participation
costs [12]. Moreover, the interplay between the evolution of
cooperation as well as that of the interaction network has
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also been studied [13], and it has been discovered that inten-
tional rewiring in accordance with the preference and fitness
of each individual as well as simple random rewiring of the
interaction network might both have a beneficial effect on
the evolution of cooperation in the prisoner’s dilemma and
the snowdrift game. For a comprehensive review of this field
of research see [14].

Besides studies addressing network complexity as a
somewhat direct extension of [4], several approaches have
also been proposed that warrant the promotion of coopera-
tion within nearest neighbor interactions. Examples include
strategic complexity [15], direct and indirect reciprocity [16],
asymmetry of learning and teaching activities [17], random
diffusion of agents on the grid [18], as well as fine-tuning of
noise and uncertainties by strategy adoption [19]. The impact
of asymmetric influence, introduced via a special player with
a finite density of directed random links to others, on the
dynamics of the prisoner’s dilemma game on small-world
networks has also been studied [20]. It is worth noting that
stochasticity in general, either being introduced directly or
emerging spontaneously due to finite population sizes [21],
has been found crucial by several aspects of various evolu-
tionary processes.

In this paper, we wish to extend the scope of stochastic
effects on the evolution of cooperation in the spatial prison-
er’s dilemma game by introducing the social diversity of
players as their extrinsically determined property. This is re-
alized by introducing scaling factors that determine the map-
ping from game payoffs to the fitness of each individual. The
scaling factors represent extrinsic differences amongst play-
ers, and as such determine their social status and the overall
social diversity on the spatial grid. Importantly, the scaling
factors are drawn randomly from different distributions and
are determined only once at the beginning of the game. Posi-
tive scaling factors increase the magnitude of payoffs a par-
ticular player is able to exchange, while negative factors

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.77.011904

MATJAZ PERC AND ATTILA SZOLNOKI

have the opposite effect. It is important to note that the av-
erage of all scaling factors is exactly zero, so that there is no
net contribution of social diversity to the total payoff of the
population. Presently, we consider scaling factors drawn
from the uniform, exponential, and scale-free distribution,
and thus distinguish three different cases of social diversity.
We investigate how the introduction of social diversity, and
in particular its distribution and amplitude, affect the evolu-
tion of cooperation amongst players on the spatial grid. We
report below that the cooperation is enhanced markedly as
the amplitude of social diversity increases, and moreover,
that the biggest enhancement is obtained if the social diver-
sity follows a power-law distribution. We attribute the en-
hancement of cooperation to the emergence of cooperative
clusters, which are controlled by high-ranking players that
are able to prevail against the defectors even if the tempta-
tion to defect is large. Indeed, the role of these clusters is
similar to the role of pure cooperator neighborhoods around
hubs on scale-free networks [22], or to the part of imitating
followers surrounding master players in the enhanced teach-
ing activity model [17], as will be clarified later. To highlight
the importance of the strongly diverse social rank, we also
study the impact of spatially correlated social diversity, and
find that the facilitation of the cooperative strategy deterio-
rates as the correlation length increases. Thus a finite spatial
correlation of social diversity hinders the formation of strong
cooperative clusters, in turn lending support to the validity of
the reported cooperation-facilitating mechanism in the spa-
tial prisoner’s dilemma game.

The remainder of this paper is structured as follows. Sec-
tion II is devoted to the description of the spatial prisoner’s
dilemma game and the properties of scaling factors deter-
mining social diversity of players on the spatial grid. In Sec.
IIT we present the results of numerical simulations, and in
Sec. IV we summarize the results and outline some biologi-
cal implications of our findings.

II. MODEL DEFINITION

We consider an evolutionary two-strategy prisoner’s di-
lemma game with players located on vertices of a two-
dimensional square lattice of size L X L with periodic bound-
ary conditions. Each individual is allowed to interact only
with its four nearest neighbors, and self-interactions are ex-
cluded. A player located on the lattice site i can change its
strategy s; after each full iteration cycle of the game. The
performance of player i is compared with that of a randomly
chosen neighbor j and the probability that its strategy
changes to s; is given by [23]

1
1 +eXp[(Pi— PJ)/K]’

W(s; s j) = (1)
where K=0.1 characterizes the uncertainty related to the
strategy adoption process, serving to avoid trapped condi-
tions and enabling smooth transitions towards stationary
states. The payoffs P; and P; of both players acquired during
each iteration cycle are calculated in accordance with the
standard prisoner’s dilemma scheme [4], according to which
the temptation to defect 7=b>1, reward for mutual coop-
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FIG. 1. Distributions of scaling factors (&) originating from the
uniformly distributed random variable (). The three functions cor-
respond to uniform (u), exponential (e), and power-law (p) distri-
bution when a=1. For easier comparison only the [-1,1] interval of
¢ is plotted.

eration R=1, punishment for mutual defection P=0, and the
sucker’s payoff S=0. Importantly, throughout this work the
original prisoner’s dilemma payoff ranking (7>R> P >S) is
applicable since the introduction of social diversity via scal-
ing factors only acts as a mapping of the original payoffs to
individual fitness, as will be described next.

To introduce social diversity we use rescaled payoffs of
the form X'=X(1+§&), where X is either T, R, P, or S, &
=min(&;, §;), and & is a scaling factor drawn randomly from
a given distribution for each participating player i only once
before the start of the simulation. Note that the minimum of
the two random scaling factors involved at every instance of
the game is used for payoffs of both involved players i and j
to ensure that the prisoner’s dilemma payoff ranking is pre-
served. It is worth mentioning that the maximum of both
values would have had the same effect, but below presented
results are virtually independent of this technicality, and
moreover, it seems reasonable to assume that the higher-
ranking player (the one with the larger value of &) will adjust
to the weaker one since the latter simply cannot match the
stakes of the game otherwise. Within this study we consider
the uniform (also known as rectangular), exponential, and
power-law distributed social diversity defined by the follow-
ing functions:

§=a(-2x+1), (2)
E=a(-lnx-1), (3)
§=a(X_l/"_ %) where 2 =n € N. (4)

Here y are uniformly distributed random numbers from the
unit interval, and | (])f()()dx=0 in all cases, so that the aver-
age of & over all the players is zero. It is easy to see that the
largest difference between the exponential and power-law
functions can be obtained if n=2 in the latter, as shown in
Fig. 1. Henceforth we use n=2 when the power-law distri-
bution is applied. The parameter a determines the amplitude
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FIG. 2. Spatial distributions of social diversity obtained for
a=1 when uniform (u), exponential (e), and power-law (p) distrib-
uted values of scaling factors were used. Lines show an exemplary
cross section of the two-dimensional grid.

of undulation of the scaling factors, and hence the dispersion
of social diversity, and can occupy any value from the unit
interval. In particular, a=0 returns the original payoffs,
whereas a=1 is the maximally allowed value that still pre-
serves (1+&) =0 for all i, thus preventing possible violations
of the prisoner’s dilemma payoff ranking. Note that (1+¢;)
<0 could induce R>T, which would directly violate the
rules of the prisoner’s dilemma game. The spatial distribu-
tions of the three considered cases obtained by a=1 are dem-
onstrated in Fig. 2 where cross sections with linear system
size L=300 are plotted. Clearly, the uniform distribution pro-
vides the gentlest dispersion of social diversity, whereas the
largest segregation of players is warranted by the power-law
distributed scaling factors where some values are very high
at the expense of extended regions of very small £ resulting
in these players having much smaller payoffs as compared to
the nonscaled case. The exponential distribution of scaling
factors yields a dispersion of social diversity that is between
the uniform and the power-law case, as can be inferred from
Fig. 2, as well as indirectly also from Fig. 1.

In order to explain the main features of the reported re-
sults, we also use spatially correlated social diversity so that
the scaling factors ¢§; satisfy the correlation function
(&€ ocexp(li=j[/N), where N is the spatial correlation
length. In this case we constrain our study to the case where
& are drawn from a uniform distribution within the interval
[-1,1]. An efficient algorithm for the generation of spatially
correlated random numbers with a prescribed correlation
length is given in [24]. The effect of different values of X on
the scaling factors determining social diversity is demon-
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FIG. 3. Spatial distributions of social diversity constituted by
randomly drawn scaling factors from a uniform distribution by
a=1 and spatial correlation length N\=1 (bottom), N\=3 (middle),
and N\=7 (top). Lines show an exemplary cross section of the two-
dimensional grid.

strated in Fig. 3. Clearly, the random undulations become
more and more correlated across neighbors on the spatial
grid as \ increases.

Before the start of each game simulation, both strategies
populate the spatial grid uniformly and the scaling factors are
drawn randomly from a given distribution to determine the
social diversity of participating players. After these initial
conditions are set, the spatial prisoner’s dilemma game is
iterated forward in time using a synchronous update scheme,
thus letting all individuals interact pairwise with their four
nearest neighbors. After every iteration cycle of the game, all
players simultaneously update their strategy according to Eq.
(1). To avoid finite-size effects, the simulations were carried
out for a population of 300X 300 players, and the equilib-
rium frequencies of cooperators were obtained by averaging
over 10* iterations after a transient of 107 iteration cycles of
the game. The figures showing values of cooperator densities
on the spatial grid (F.) resulted from an average over 30
simulations with different realizations of social diversity as
specified by the appropriate parameters. These simulation pa-
rameters yield at least +3% accurate values of F in all fig-
ures.

III. NUMERICAL RESULTS

Next, we study how different distributions of social diver-
sity affect the evolution of cooperation via numerical simu-
lations of the above-described spatial prisoner’s dilemma
game. Figure 4 features color-coded F for all three types of

FIG. 4. Color-coded F for
the uniform (left), exponential
(middle), and power-law (right)
distributed social diversity on the
b-a parameter space. The color
scale is linear, white depicting 0.0
and black 1.0 values of F.
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FIG. 5. F as a function of b for different values of N. The a
=0 curve is depicted for reference.

social diversity in the relevant b-a parameter space. Evi-
dently, regardless of the distribution, increasing values of a
clearly promote cooperation as the threshold of cooperation
extinction increases from b=1.01 in the absence of social
diversity to b=1.20 (uniformly distributed social diversity),
b=1.28 (exponentially distributed social diversity), and
b=1.34 (power-law distributed social diversity). Moreover,
there always exists a broad range in the parameter space
within which cooperators rule completely; a nonexistent fea-
ture if a=0.

We argue that the above-reported facilitation of coopera-
tion is due to the induced inhomogeneous social state of
players that fosters cooperative clusters around players with
the largest values of &;. Indeed, as soon as cooperators over-
take these prime spots of the grid they start to spread due to
their cluster-forming nature. Note that the latter feature is not
associated with defectors who therefore fail to take the same
advantage out of social diversity, and are thus defeated. A
similar behavior underlies also the cooperation-facilitating
mechanism reported for the scale-free networks, where the
players with the largest connectivity dominate the game.
Since cooperators are much better equipped for permanently
sustaining the occupation of hubs, the scale-free networks
provide a unifying framework for the evolution of coopera-
tion [10]. An even better similarity can be established with
the model incorporating the inhomogeneous teaching activity
[17]. In the latter, some players are blocked and therefore
unable to donate their strategies, which results in homoge-
neous cooperative domains around players with full teaching
capabilities. In the presently studied model, the introduction
of social diversity partly results in a similar suppression of
selected players, especially so for the power-law distributed
case where the majority of players are low-ranking, as dem-
onstrated in Fig. 1. These players can form an obedient do-
main around a high-ranking player and so prevail against
defectors. On the other hand, a high-ranking defector will be
weakened by the low-ranking players who follow its destruc-
tive strategy.
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The above-described feedback works only if the high-
ranking defectors can be linked solely by their follower
neighborhoods; namely there must not be a strong connec-
tion with other high-ranking players. In the opposite case, the
heterogeneous strategy distribution supports the survival of
defectors. To support our explanation, we study the impact of
spatially correlated social diversity on the evolution of coop-
eration. According to our argument, the transition from un-
correlated to spatially correlated diversity should be marked
with the deterioration of cooperation. We thus introduce spa-
tially correlated social diversity as described in Sec. II, and
study the effect of different N on the evolution of coopera-
tion. Figure 5 features the results. In agreement with our
conjecture, the facilitation of cooperation deteriorates fast as
N\ increases. Indeed, a near linear decrease of the critical b
marking the extinction of cooperators can be established, and
moreover, by large N the cooperators can outperform defec-
tors only for slightly higher values of b than in the absence
of social diversity (¢=0). This result supports the validity of
the reported cooperation-facilitating mechanism, and hope-
fully paves the way for additional studies incorporating so-
cial diversity into the theoretical framework of evolutionary
game theory.

IV. SUMMARY

In this paper, we show that social diversity is an efficient
promoter of cooperation in the spatial prisoner’s dilemma
game. The facilitative effect increases with the dispersion of
social diversity and deteriorates with the increase of its spa-
tial correlation. Accordingly, spatially uncorrelated power-
law distributed social diversity provides the biggest boost to
the cooperative strategy. We argue that the facilitative effect
is conceptually similar to the one reported previously for
inhomogeneous teaching activities, and also has the same
root as the mechanism applicable by scale-free networks,
namely: akin to hubs or players with enhanced teaching ac-
tivity, in this model, high-ranking players can form robust
cooperative clusters with low-ranking obedient neighbors.
The presented results suggest that the distribution of wealth
plays a crucial role by the evolution of cooperation amongst
egoistic individuals, and it seems reasonable to investigate
further whether a co-evolution of both might yield new in-
sights and foster the understanding of the formation of com-
plex societies.
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