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The amount of mutual information contained in the time series of two elements gives a measure of how well
their activities are coordinated. In a large, complex network of interacting elements, such as a genetic regula-
tory network within a cell, the average of the mutual information over all pairs, �I�, is a global measure of how
well the system can coordinate its internal dynamics. We study this average pairwise mutual information in
random Boolean networks �RBNs� as a function of the distribution of Boolean rules implemented at each
element, assuming that the links in the network are randomly placed. Efficient numerical methods for calcu-
lating �I� show that as the number of network nodes, N, approaches infinity, the quantity N�I� exhibits a
discontinuity at parameter values corresponding to critical RBNs. For finite systems it peaks near the critical
value, but slightly in the disordered regime for typical parameter variations. The source of high values of N�I�
is the indirect correlations between pairs of elements from different long chains with a common starting point.
The contribution from pairs that are directly linked approaches zero for critical networks and peaks deep in the
disordered regime.
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I. INTRODUCTION

The dynamical behavior of a large, complex network of
interacting elements is generally quite difficult to understand
in detail. One often has only partial information about the
interactions involved, and the presence of multiple influences
on each element can give rise to exceedingly complicated
dynamics even in fully deterministic systems. A paradig-
matic case is the network of genes within a cell, where the
interactions correspond to transcriptional �and post-tran-
scriptional� regulatory mechanisms. The expression of a
single gene may be subject to regulation by itself and up to
15–20 proteins derived from other genes, and the network of
such interactions has a complicated structure, including posi-
tive and negative feedback loops and nontrivial combinato-
rial logic. In this paper we study mutual information �defined
below� a measure of the overall level of coordination
achieved in models of complex regulatory networks. We find
a surprising discontinuity in this measure for infinite systems
as parameters are varied. We also provide heuristic explana-
tions of the infinite-system results, the influence of noise, and
finite-size effects.

The theory of the dynamics of such complicated networks
begins with the study of the simplest model systems rich
enough to exhibit complex behaviors: random Boolean net-
works �RBNs�. In a RBN model, each gene �or “node”� g is
represented as a Boolean logic gate that receives inputs from
some number kg other genes. The RBN model takes the net-
work to be drawn randomly from an ensemble of networks in
which �i� the inputs to each gene are chosen at random from
among all of the genes in the system and �ii� the Boolean
rule at g is selected at random from a specified distribution

over all possible Boolean rules with kg inputs. These two
assumptions of randomness permit analytical insights into
the typical behavior of a large network.

One important feature of RBNs is that their dynamics can
be classified as ordered, disordered, or critical. In “ordered”
RBNs, the fraction of genes that remain dynamical after a
transient period vanishes like 1 /N as the system size N goes
to infinity; almost all of the nodes become “frozen” on an
output value �0 or 1� that does not depend on the initial state
of the network �1�. In this regime the system is strongly
stable against transient perturbations of individual nodes. In
“disordered” �or “chaotic”� RBNs, the number of dynamical,
or “unfrozen,” nodes scales like N and the system is unstable
to many transient perturbations �1�.

For present purposes, we consider ensembles of RBNs
parametrized by the average in-degree K �i.e., average num-
ber of inputs to the nodes in the network� and the bias p in
the choice of Boolean rules. The in-degree distribution is
Poissonian with mean K, and at each node the rule is con-
structed by assigning the output for each possible set of input
values to be 1 with probability p, with each set treated inde-
pendently. If p=0.5, the rule distribution is said to be unbi-
ased. For a given bias, the critical connectivity Kc is equal to
�2�

Kc = �2p�1 − p��−1. �1�

For K�Kc the ensemble of RBNs is in the ordered regime,
for K�Kc in the disordered regime. For K=Kc the ensemble
exhibits a critical scaling of the number of unfrozen nodes;
e.g., the number of unfrozen nodes scales like N2/3. The
order-disorder transition in RBNs has been characterized by
several quantities, including fractions of unfrozen nodes,
convergence or divergence in state space, and attractor
lengths �3�.

It is an attractive hypothesis that cell genetic regulatory
networks are critical or perhaps slightly in the ordered re-
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gime �4,5�. Critical networks display an intriguing balance
between robust behavior in the presence of random perturba-
tions and flexible switching induced by carefully targeted
perturbations. That is, a typical attractor of a critical RBN is
stable under the vast majority of small, transient perturba-
tions �flipping one gene to the “wrong” state and then allow-
ing the dynamics to proceed as usual�, but there are a few
special perturbations that can lead to a transition to a differ-
ent attractor. This observation forms the conceptual basis for
thinking of cell types as attractors of critical networks, since
cell types are both homeostatic in general and capable of
differentiating when specific signals �perturbations� are de-
livered.

Recently, some experimental evidence has been shown to
support the idea that genetic regulatory networks in eukary-
otic cells are dynamically critical. In Ref. �6�, the microarray
patterns of gene activities of HeLa cells were analyzed and
the trajectories in a HeLa microarray time-series data char-
acterized using a Lempel-Ziv complexity measure on bina-
rized data. The conclusion was that cells are either ordered or
critical, not disordered. In Ref. �7�, it was deduced that de-
letion of genes in critical networks should yield a power-law
distribution of the number of genes that alter their activities
with an exponent of −1.5 and observed data on 240 deletion
mutants in yeast showed this same exponent. And in Ref. �8�,
microarray gene expression data following silencing of a
single gene in yeast were analyzed. Again, the data suggest
critical dynamics for the gene regulatory network. These re-
sults suggest that operation at or near criticality confers some
evolutionary advantage.

In this paper we consider a feature that quantifies the
sense in which critical networks are optimal choices within
the class of synchronously updated RBNs. We study a global
measure of the propagation of information in the network,
the average pairwise mutual information, and show that it
takes its optimal value on the ensemble of critical networks.
Thus, within the limits of the RBN assumptions of random
structure and logic, the critical networks enable information
to be transmitted most efficiently to the greatest number of
network elements.

The average pairwise mutual information is defined as
follows. Let sa be a process that generates a 0 with probabil-
ity p0 and a 1 with probability p1. We define the entropy of sa
as

H�sa� � − p0 log2 p0 − p1 log2 p1. �2�

Similarly, for a process sab that generates pairs xy with prob-
abilities pxy, where x ,y� �0,1	, we define the joint entropy
as

H�sab� � − p00 log2 p00 − p01 log2 p01

− p10 log2 p10 − p11 log2 p11. �3�

For a particular RBN, we imagine running the dynamics for
infinitely long times and starting from all possible initial con-
figurations. The fraction of time steps for which the value of
node i is x gives px for the process si. The value of pxy for the
process sij is given by the fraction of time steps for which
node i has the value x and on the next time step node j has

the value y. The mutual information of the pair ij is

Mij = H�si� + H�sj� − H�sij� . �4�

With this definition, Mij measures the extent to which infor-
mation about node i at time t influences node j one time step
later. Note that the propagation may be indirect; a nonzero
Mij can result when i is not an input to j, but both are influ-
enced by a common node through previous time steps.

To quantify the efficiency of information propagation
through the entire network, we define the average pairwise
mutual information for an ensemble of networks to be

�I� = 
N−2�
i,j

Mij� , �5�

where �¯� indicates an average over members of the en-
semble. It has previously been observed that �I� is maxi-
mized near the critical regime in numerical simulations of
random Boolean networks with a small number of nodes
�fewer than 500� �9�.

In general, one does not expect a given element to be
strongly correlated with more than a few other elements in
the network, so the number of pairs ij that contribute signifi-
cantly to the sum in Eq. �5� is expected to be at most of order
N. It is therefore convenient to work with the quantity IN
�N�I�, which may approach a nonzero constant in the large-
N limit. We use the symbol I� to denote the N→� limit of
IN.

As an aside, we note that other authors have considered
different information measures and found optimal behavior
for critical Boolean networks. Krawitz and Shmulevich have
found that “basin entropy,” which characterizes the number
and sizes of basins of attraction and hence the ability of the
system to respond differently to different inputs, is maxi-
mized for critical networks �10�. Luque and Ferrera have
studied the self-overlap �11�, which differs from �I� in that it
involves the comparison of each node to its own state one
time step later �not to the state of another node that might be
causally connected to it� and that the average over the net-
work is done before calculating the mutual information.
Bertschinger and Natschläger have introduced the “network-
mediated separation” �NM separation� in systems where all
nodes are driven by a common input signal, finding that criti-
cal networks provide maximal NM separation for different
input signals �12�. Our definition of �I� places the focus on
the autonomous, internal dynamics of the network and the
transmission of information along links, which allows for
additional insights into the information flow.

Two simple arguments immediately show that I� is zero
both in the ordered regime and deep in the disordered re-
gime. First, note that Mij =0 whenever si or sj generates only
0’s or only 1’s. In the ordered regime, where almost all nodes
remain frozen on the same value on all attractors, the number
of nonzero elements, Mij, remains bounded for large N. Thus
�I� must be of order N−2 and I�=0 everywhere in the ordered
regime.

Second, if sij is the product of two independent processes
si and sj, then Mij =0. This occurs for every pair of connected
nodes in the limit of strong disorder, where K is very large
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and the Boolean rules are drawn from uniformly weighted
distributions over all possible rules with kg inputs. The cor-
relation between the output of a node and any particular one
of its inputs becomes vanishingly small because there are
many combinations of the other inputs, each producing a
randomly determined output value, so the probability for the
output to be 1 is close to p for either value of the given input.
I� therefore vanishes in the limit of large K.

Given that I�=0 for all network parameters that yield
ordered ensembles, one might expect that it rises to a maxi-
mum somewhere in the disordered regime before decaying
back to zero in the strong-disorder limit. We show below that
this is not the case. Fixing the bias parameter p at 1/2 and
allowing the average in-degree K to vary, we find that I�

exhibits a jump discontinuity at the critical value K=2, then
decays monotonically to zero as K is increased. The conclu-
sion is that among ensembles of unbiased RBNs, average
pairwise mutual information is maximized for critical en-
sembles.

We begin by presenting analytic arguments and numerical
methods for investigating the large-system limit and estab-
lishing the existence of a discontinuity at K=2 and mono-
tonic decay for K�2. We then present results from numeri-
cal experiments obtained by averaging over 104 instances of
networks of sizes up to N=1000. These data show a strong
peak near the critical value K=2, as expected from the analy-
sis. Interestingly, the peak is substantially higher than the
size of the jump discontinuity, which may indicate that I�

for K=2 is an isolated point larger than limK→2+ I�. Finally,
we present numerical results on the variation of IN with p at
fixed K, which again shows a peak for critical parameter
values.

II. AVERAGE PAIRWISE MUTUAL INFORMATION
IN LARGE NETWORKS

A. Mean-field calculation of I�

Mean-field calculations are commonly used in the theory
of random Boolean networks. The most common forms of
mean-field calculations are within the realm of the so-called
annealed approximation. In the annealed approximation, one
assumes that the rules and the inputs are randomized at each
time step. This approach is sufficient, for example, for cal-
culating the average number of nodes that change value at
each time step.

For understanding the propagation of information, a
slightly more elaborate mean-field model is needed. This
mean-field model is based on the assumption that the state of
a node in a large disordered network is independent of its
state at the previous time step, but that its rule remains fixed.
In this model, each node takes the value 1 with a given
probability b, which we refer to as the local bias. In the
annealed approximation all local biases are equal because the
rules and the inputs are redrawn randomly at each time step,
so the system is characterized by a single global bias. In our
extended mean-field model, we consider a distribution of lo-
cal biases. To determine I�, we determine the distribution of
b, then use it to analyze the simple feed forward structures

that provide the nonvanishing contributions to I� in the dis-
ordered regime.

B. Distribution of local biases

An important feature characterizing the propagation of in-
formation in a network is the distribution of local biases. The
local bias at a given node is determined by the rule at that
node and the local biases of its inputs. Roughly speaking,
when the bias of the output value is stronger than the bias of
the inputs, information is lost in transmission through the
node. The local bias distribution is defined as the self-
consistent distribution obtained as the limit of a convergent
iterative process.

Let Bt be the stochastic function that at each evaluation
returns a sample b from the local bias distribution at time t.
Then, a sample b� from Bt+1 can be obtained as follows. Let
r be a Boolean rule drawn from the network’s rule distribu-
tion R and let k denote the number of inputs to r. Further-
more, let �b1 , . . . ,bk	 be a set of k independent samples from
Bt. The sample b� is then given by

b� = �
���0,1	k

r���
i=1

k

��ibi + �1 − �i��1 − bi�� . �6�

Repeated sampling of the rule r and the values bi produces
samples b� that define the distribution Bt+1. The sequence of
distributions, B0 ,B1 ,B2 , . . ., is initiated by B0, which always
returns the value 1/2.

For many rule distributions R, P�Bt�x� converges as t
→�. For such rule distributions, we define B� as the stochas-
tic function that satisfies

P�B� � x� = lim
t→�

P�Bt � x� �7�

for all x. Intuitively, B� is the large-t limit of Bt and we use
cumulative probabilities in the definition of B� for technical
reasons: the probability density function of Bt for any t is a
sum of � functions and the probability density of B� is likely
to have singularities.

We defer the evaluation of B� to Sec. II D because some
adjustments are required to obtain efficient numerical proce-
dures.

C. Mutual information in feed-forward structures

Given a rule distribution R that has a well-defined distri-
bution B� of local biases, we calculate the mutual informa-
tion between pairs of nodes in feed-forward structures that
are relevant in the large-network limit in the disordered re-
gime. This technique is based on the assumption that the
value of a given node at time t+n is statistically independent
of the value at time t for n�0, in which case the behavior of
the inputs to a feed-forward structure can be fully understood
in terms of B�.

The most direct contribution to �I� between t and t+1
comes from comparing an input to a node with the output of
the same node. Other contributions to �I� come from chains
of nodes that share a common starting point. �See Fig. 1.� In
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the general case, we consider configurations where a node i0
has outputs to a chain of n nodes, i1 , . . . , in, and another chain
of n+1 nodes, j1 , . . . , jn+1. This means that node im has one
input from node im−1 for m=1, . . . ,n, that node j1 has one
input from node i0, and that node jm has one input from node
jm−1 for m=2, . . . ,n+1. We allow the special case n=0 and
let it represent the case where an input to a node is compared
to the output of the same node.

To calculate the contribution Minjn+1
to �I�, we need to

determine the probability distribution pxy for x=�in
�t� and

y=� jn+1
�t+1�. Here we assume that all external inputs to the

feed-forward structure are statistically independent because
the probability to find a reconnection between two paths of
limited length approaches zero as N→�. In Fig. 1, this
means that there are no �undirected� paths linking any of the
pictured nodes other than those formed by the pictured links.

Based on each rule in the structure and the biases at the
external inputs, we calculate the conditional probabilities to
obtain given output values for each value of the internal
input within the structure. We represent this information by
matrices of the form

P����	� � �P��� = 0�	 = 0� P��� = 0�	 = 1�
P��� = 1�	 = 0� P��� = 1�	 = 1�

� , �8�

where 	 and � are Boolean variables. Let

Tm = P„��im
�t���im−1

�t − 1�… for m = 1, . . . ,n , �9�

T1� = P„�� j1
�t���i0

�t − 1�… and �10�

Tm� = P„�� jm
�t��� jm−1

�t − 1�… for m = 2, . . . ,n + 1.

�11�

Note that the elements in each of these matrices depend on
the rule chosen at the node index in the first argument of P
and that the choice of rule specifies the number k of inputs to
that node. Multiplication of these matrices corresponds to
following a signal that passes through the feed-forward struc-
ture, so we have

P„��in
�t + n���i0

�t�… = TnTn−1 ¯ T1 �12�

and

P„�� jn+1
�t + n + 1���i0

�t�… = Tn+1� Tn� ¯ T1�. �13�

The probabilities for the pairs �in
�t�� jn+1

�t+1� can be ex-
pressed as elements of a matrix P(�in

�t� ,� jn+1
�t+1�) where

P�x,y� � �P�x = 0,y = 0� P�x = 0,y = 1�
P�x = 1,y = 0� P�x = 1,y = 1�

� . �14�

Note that P�x ,y� is the matrix of values pxy defined previ-
ously, which has a different meaning from P����	�. In accor-
dance with the definition of Mij above, we define the mutual
information associated with a matrix Q with elements qxy to
be

I�Q� = �
x,y

qxy log2
qxy

��
z

qxz���
z

qzy� . �15�

Now let Pn denote P(sin
�t� ,sjn+1

�t+1�) and let

B0 � �1 − bi0 0

0 bi0

� . �16�

We can then write

Pn = TnTn−1 ¯ T1B0�T1��
T�T2��

T
¯ �Tn+1� �T. �17�

For a given set of in-degrees ki1
, . . . ,kin

and kj1
, . . . ,kjn+1

de-
noted by k, we let �I�Pn��k denote the average mutual infor-
mation associated with Pn. Note that �I�Pn��k is the contribu-
tion to I� arising from the average over injn+1 pair of nodes
in chains with a given k.

The average number of occurrences of a feed-forward
structure with the vector k is given by Nwk, where

wk = 
m=1

2n+1

kmP�k = km� �18�

and P�k=km� denotes the probability that a randomly se-
lected rule from the rule distribution R has km inputs.

Putting together Eqs. �8�–�18�, we obtain the expression

I� = �
n=0

�

�
k�Z+

2n+1

wk�I�Pn��k �19�

for rule distributions in the disordered regime.
Numerical evaluation of this expression is cumbersome,

but can be streamlined substantially by handling the frozen
nodes �local biases b=0 and b=1� analytically. Removing
these nodes from the core of the calculations provides addi-

� �
� �

� �

� �

� �

� �

� �

�

i 0

i1 j1

j2i 2

j3

FIG. 1. Schematic structure assumed for the mean-field calcula-
tion of I�. The average in-degree of a node in the network is K
=3. Black nodes are an example of a directly linked pair. Light gray
nodes are an example of a pair that contributes to I� because of a
shared influence �i0�. Information from i0 takes exactly one time
step longer �one additional link� to get to the light gray node on the
right than to the one on the left. The node labels mark two chains of
the type referred to in the text. Hatching indicates frozen nodes.
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tional insights and yields a version of Eq. �19� that can be
sampled more efficiently by Monte Carlo techniques.

The fraction of unfrozen nodes is given by u
= P�B��0,1� and the distribution of local bias in the set of
unfrozen nodes is given by Bu

�, where one sample b of Bu
� is

obtained by sampling b from B� repeatedly until a value of b
not equal to 0 or 1 is obtained. Similarly, we define an altered
rule distribution Ru. A sample ru from Ru is obtained by
sampling r from R and fixing each input to 0 with probability
P�B�=0� and 1 with probability P�B�=1�. New samples r
are drawn until one obtains a nonconstant function ru of the
ku inputs that are not frozen. �The probability of an unfrozen
node having a given value of ku is given below.�

We define Pn
u and wk

u by replacing B� and R with Bu
� and

Ru in the definitions of Pn and wk, respectively. With these
definitions, we rewrite Eq. �19� and get

I� = u�
n=0

�

�
k�Z+

2n+1

wk
u�I�Pn

u��k. �20�

Let R�K� denote the rule distribution for a Poissonian distri-
bution of in-degrees k such that �k�=K and uniform distribu-
tions among all Boolean rules with a given k. Note that the
definition does not require that a rule does depend on all of
its inputs. From this point, we restrict the discussion to dis-
tributions of the form R�K�. We expect the qualitative behav-
ior of this rule distribution to be representative for a broad
range of rule distributions. The critical point for R�K� occurs
at K=2, with ordered networks arising for K�2 and disor-
dered networks for K�2.

The symmetric treatment of 0’s and 1’s in the rule distri-
bution simplifies the calculation of u in the sense that it is
sufficient to keep track of the probability to obtain constant
nodes from Bt and there is no need to distinguish nodes that
are constantly 1 from those that are constantly 0. Let ut de-
note P�Bt� �0,1	�. Then, ut+1 can be calculated from ut ac-
cording to

ut+1 = e−Kut�
k=0

�Kut�k

k!
�1 − 22k−1� . �21�

The desired value u is given by the stable fixed point of the
map ut�ut+1. Note that this map is identical to the damage
control function presented in Ref. �1�, meaning that the
above determination of u is consistent with the process of
recursively identifying frozen nodes without the use of any
mean-field assumption.

The rule distribution Ru�K� within the set of unfrozen
nodes gives a rule with km inputs with probability

P�ku = km� = e−Ku �Ku�km

ukm!
�1 − 22km−1� . �22�

The distribution of rules with k inputs is uniform among all
nonconstant Boolean rules with the given number of inputs.
This expression can be used in Eq. �18�. Further analysis is
helpful in determining the limiting value of I� as K ap-
proaches its critical value of 2 from above. The Appendix
addresses this issue.

D. Numerical sampling

We are now in a position to evaluate Eq. �20� by an effi-
cient Monte Carlo technique. To obtain a distribution that is
a good approximation of Bu

�, we use an iterative process to
create vectors of samples. Each vector has a fixed number S
of samples. The process is initiated by a vector b0 where all
S nodes are set to 1/2. Then a sequence of vectors is created
by iteratively choosing a vector bt+1 based on the previous
vector bt. To obtain each node in bt+1, we use Eq. �6� with r
sampled from Ru��K� defined below and b1 , . . . ,bk being ran-
domly selected elements of bt.

If the rule distribution Ru��K� were set to Ru�K�, the se-
quence of vectors would fail to converge properly for K that
are just slightly larger than 2. For such K, Ru�K� gives a
one-input rule with a probability close to 1. This leads to
slow convergence and to a proliferation of copies of identical
bias values in the sequence of vectors �bt	. The remedy for
this problem is quite simple. Due to the symmetry between 0
and 1 in the rule distribution, application of a one-input rule
to an input bias distribution B� gives the same output bias
distribution B�. Thus, we can remove the one-input rules
from Ru�K� without altering the limiting distribution at large
t. We let Ru��K� denote the rule distribution obtained by dis-
regarding all one-input samples from Ru�K�.

Based on �bt	, we construct matrices that can be used for
estimating the sums in Eqs. �20� and �A14� by random sam-
pling. After an initial number of steps required for conver-
gence, we sample S matrices of the form P��r�����1� where r
is drawn from Ru��K� and the inputs �2 , . . . ,�k have biases
drawn from bt. These matrices and the in-degrees of the
corresponding rules are stored in the vectors pt and kt, re-
spectively. The elements of the vectors bt, pt, and kt are
indexed by i=1, . . . ,S and the ith element of each vector is
denoted by bt,i, pt,i, and kt,i, respectively. For notational con-
venience, we define

pt,0 = �1 0

0 1
� and kt,0 = 1 �23�

for all t=0,1 ,2 , . . .. With these definitions, the i=0 elements
correspond to a copy operator.

To estimate the sum in Eq. �20�, we truncate it at n
=nmax where nmax is chosen to be sufficiently large for the
remaining terms to be negligible. Then we obtain random
samples in the following way. We select i0 uniformly
from �1, . . . ,S	 and set each of the indices
i1 , . . . , inmax

, j1 , . . . , inmax+1 to 0 with probability P�ku=1� or to
a uniformly chosen sample of �1, . . . ,S	 with probability
P�ku�1�. Then we set

P0
u = �1 − bi0 0

0 bi0

��pt,j1
�T, 
0 = kt,j1

, �24�

and

MUTUAL INFORMATION IN RANDOM BOOLEAN MODELS… PHYSICAL REVIEW E 77, 011901 �2008�

011901-5



�Pn
u = pt,in

Pn−1
u �pt,jn+1

�T


n = kt,in

n−1kt,jn+1

� for n = 1, . . . ,nmax. �25�

With I�Pn
u� given by Eq. �15�, we construct samples of the

mutual information associated with sets of nodes in chain
structures:

Ichain = �
n=0

nmax


nI�Pn
u� . �26�

The average value of Ichain provides an approximation of the
sum in Eq. �20�, and we get

I� � u�Ichain� . �27�

This approximation is good if t, nmax, and S are sufficiently
large. For evaluating �Ichain�, we draw S samples of Ichain for
several subsequent t that are large enough to ensure conver-
gence in bt.

The technique just described is easily generalized to ac-
count for uncorrelated noise in the dynamics. To model a
system in which each node has a probability � of generating
the wrong output at each time step, we need only modify
r��� in Eq. �6� and P����	� of Eq. �8� as follows:

r���� = �1 − ��r��� + ��1 − r���� �28�

and

P�����	� = �1 − � �

� 1 − �
�P����	� , �29�

where P is determined as above by the Boolean rule at a
given node. For nonzero �, all nodes are unfrozen, but the
calculations proceed exactly as above with b� and P replaced
by b�� and P�, respectively.

We use a similar technique to estimate limK→2+
based on

Eq. �A14�. The main differences in this technique are that
one-input nodes do not enter the numerical sampling and the
sum to be evaluated is two dimensional rather than one di-
mensional.

III. RESULTS

A. Large-system limit

Using the the expressions derived in Sec. II C and the
stochastic evaluation techniques described in Sec. II D, we
have obtained estimates of I� for K�2. Using the expres-
sions in the Appendix, we obtain limK→2+

I�. The results are
shown in Fig. 2.

The solid line in Fig. 2 shows the full result for I�. The
dashed line shows the contribution to I� that comes from
pairs of nodes that are directly linked in the network. It is
interesting to note that the direct links alone are not respon-
sible for the peak at criticality. Rather, it is the correlations
between indirectly linked nodes that produce the effect and
in fact dominate I� for K at and slightly above the critical
value.

The distribution of local biases plays an important role in
determining I�. Biases that are significantly different from

b=1 /2 are important for K that are not deep into the disor-
dered regime, and the distribution of local biases is highly
nonuniform. Dense histograms of biases drawn from the dis-
tribution Bu

� for various K are shown in Fig. 3. Singularities
at b=0 and b=1 occur for K in the range 2�K�3.4, and for
all K�2 there is a singularity at b=1 /2.

When uncorrelated noise is added to each node at each
time step, I� may decrease due to the random errors, but
may also increase due to the unfreezing of nodes. The net
effect as a function of K is shown in Fig. 4 for the case where
each output is inverted with probability � on each time step.
As � is increased from zero, the peak shifts to the disordered
regime and broadens. The mutual information due to random

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

FIG. 2. The large-system limit I� for N�I� �solid line� and the
contribution to I� from direct information transfer through single
nodes �dashed line�. The open circles at the discontinuity of I�

indicate that we do not know the value of I� for K=2. The size of
the sample vectors is S=104. The number of vectors used was
103–104, and these were drawn after 103 steps taken for conver-
gence in bt. The summation cutoff nmax varies from 6 for high K to
100 for K close to 2. For the limit of I� for K→2+ using Eq. �A14�,
increasing the summation cutoff from nmax=20 to nmax=40 gave no
significant difference in the result.

0.0 0.5 1.0
10−1

1

10

FIG. 3. Histograms h�Bu
�� of the distributions of unfrozen local

biases b drawn from Bu
� for K→2+ �bold line�, K=3 �medium line�,

and K=4 �thin line�. Bins of width 10−4 were used to estimate the
probability density from a sequence of 106 sample vectors bt that
were drawn after 103 steps for convergence. The size of the sample
vectors is S=104. The combination of a small bin-width and a large
sample size enables a clear picture of the strongest singularities.
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unfreezing is clearly visible on the ordered side. In the re-
gime where indirect contributions dominate I�, however,
there is a strong decrease as correlations can no longer be
maintained over long chains. Deep in the disordered regime,
we see the slight decrease expected due to the added random-
ness. For �0.1, the maximum of I� shifts back toward K
=2. In fact, it can be shown that as � approaches 1/2, which
corresponds to completely random updating, the I� curve
approaches

I� =
K

ln 2
�1

2
− ��2

exp�− K/2� . �30�

In this limit, the maximum occurs at K=2 and the peak
height scales like �1 /2−��2. The fact that the critical K is
recovered in the strong-noise limit is coincidental; it would
not occur for most other choices of Boolean rule distribu-
tions.

B. Finite-size effects

Numerical simulations on finite networks reveal an impor-
tant feature near the critical value of K that is not analytically
accessible using the above techniques because of the diffi-
culty of calculating I� right at the critical point. �We have
only computed the limit as K approaches Kc, not the actual
value at Kc.� We compute �I� by sampling the mutual infor-
mation from pairs of nodes from many networks.

In collecting numerical results to compare to the I� cal-
culation, there are some subtleties to consider. The calcula-
tions are based on correlations that persist at long times in
the mean-field model. To observe these, one must disregard
transient dynamics and also average over the dynamics of
different attractors of each network. The latter average
should be done by including data from all the attractors in
the calculation of the mutual information, not by calculating
separate mutual information calculated for individual attrac-

tors. For the results presented here, we have observed satis-
factory convergence both for increasing lengths of discarded
transients and for increasing numbers of initial conditions
per network. Finally, an accurate measurement of the mutual
information requires sufficiently long observation times;
short observation times lead to systematic overestimates of
the mutual information. �See, for example, Ref. �13�.� In the
figures below, the size of the spurious contribution due to
finite observation times is smaller than the symbols on the
graph.

Figure 5 shows that the peak in IN extends well above the
computed I� value. The figure shows IN as a function of K
for several system sizes N. As N increases, the curve con-
verges toward the infinite-N value in both the ordered and
disordered regimes. In the vicinity of the critical point, how-
ever, the situation is more complicated. The limiting value at
criticality will likely depend on the order in which the large-
size and K→Kc limits are taken.

We have also studied IN as a function of the bias param-
eter p, while holding K fixed at 4. Figure 6 shows that IN is
again peaked at the critical point p= �2−�2� /4; the qualita-
tive structure of the curves is the same as that for varying K.
The calculation of I� for p�1 /2 requires modifications of
the analysis described above that are beyond the scope of
this work.

IV. SPECIAL RULE DISTRIBUTIONS

Up to now, the discussion has focused on rule distribu-
tions parametrized only by an independent probability p of
finding a 1 in a given row of the truth table for any given
node. Consideration of other possibilities shows that I� can
actually be made as large as desired in networks that are as
deep as desired in the disordered regime. Let � be the aver-
age sensitivity of a node to its inputs—i.e., the average num-
ber of nodes that change values when the value of one ran-
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0.0

0.5

1.0

FIG. 4. The large-system limit I� as a function of K for various
noise levels � in the updating. The thin solid line shows I� for
networks without noise as displayed in Fig. 2. The other lines rep-
resent �=0.001 �thick solid line�, 0.01 �dashed line�, and 0.1 �dotted
line�. The size of the sample vectors is S=104. 103–106 were drawn
after 103 steps taken for convergence in bt. Extensive sampling was
required close to criticality for �=0.001.
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FIG. 5. IN as a function of K for several different system sizes.
For these calculations we use 104 networks with 40 runs from dif-
ferent initial states per network and a discarded transient of length
104 updates for each run. �For large K, good convergence was ob-
tained for discarded transients of length 103.� The sequences of
states were recorded for a sample of 10N pairs of nodes in each
network. The vertical dashed line indicates the critical value of K.
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domly selected node is flipped. �=1 is one criterion for
identifying critical networks �14�. For any value of � in the
disordered regime ���1� and any target value I of I�, one
can always define a rule distribution that gives a random
network characterized by � and I. The key to constructing
the distribution is the observation that long chains of single-
input nodes produce large I� and that a small fraction of
nodes with many inputs and maximally sensitive rules
�multi-input versions of XOR� is enough to make � large.

Consider the following class of random networks. Each
node has an in-degree k of either 1 or g, with the probability
of having g inputs being �. The logic function at each node is
the parity function or its negation. For k=1 nodes this means
they either copy or invert their input. �There are no nodes
with constant outputs.� For k=g nodes it means that a change
in any single input causes a change in the output. Note that
there are no frozen nodes in these networks.

For these networks, we have

� = �k� = 1 − � + g� . �31�

The network consists of �N nodes with multiple inputs,
which can be thought of as the roots of a tree of single-input
nodes. If g2��N, loops in the graph will be rare enough that
they will have little effect on the average pairwise mutual
information. If g and � are fixed and N is taken to infinity,
loops can be neglected in computing I�. For a node with g
�1, the mutual information between any given input node
and the output is zero for the rule distribution under consid-
eration. This is because the bias distribution in networks con-
sisting entirely of maximally sensitive nodes is a � function
at b=1 /2. Thus �I�Pn��k=0 for all k� �1,1 , . . . ,1	. For k
= �1,1 , . . . ,1	, Eq. �18� gives wk= �1−��2n+1 and we get from
Eq. �19�

I� =
1 − �

��2 − ��
. �32�

By choosing ��1 and g�1 /� we can make I� as large as
desired while simultaneously making � as large as desired.

Generalization of this construction to networks with a
broader distribution of in-degrees and/or rules is straightfor-
ward. Roughly speaking, high I� occurs deep in the disor-
dered regime when there is a small fraction of nodes of high
in-degree and high sensitivity and the remaining nodes are
sensitive to exactly one input.

V. CONCLUSIONS

In the Introduction above, we noted early evidence that
eukaryotic cells may be dynamically critical. Our calcula-
tions indicate that, within the class of RBNs with randomly
assigned inputs to each node and typically studied rule dis-
tributions, critical networks provide an optimal capacity for
coordinating dynamical behaviors. This type of coordination
requires the presence of substantial numbers of dynamical
�unfrozen� nodes, the linking of those nodes in a manner that
allows long-range propagation of information while limiting
interference from multiple propagating signals and a low er-
ror rate. To the extent that evolutionary fitness depends on
such coordination and RBN models capture essential features
of the organization of genetic regulatory networks, critical
networks are naturally favored. We conjecture that mutual
information is optimized in critical networks for broader
classes of networks that include power-law degree distribu-
tions and/or additional local structure such as clustering or
over-representation of certain small motifs.

A key insight from our study is that the maximization of
average pairwise mutual information is achieved in RBNs by
allowing long chains of effectively single-input nodes to
emerge from the background of frozen nodes and nodes with
multiple unfrozen inputs. The correlations induced by these
chains are reduced substantially when stochastic effects are
included in the update rules, thus destroying the jump dis-
continuity in I� at the critical point and shifting the curve
toward the dashed one in Fig. 2 obtained from direct linkages
only. Though the noise we have modeled here is rather
strong, corresponding to a large fluctuation in the expression
of a given gene from its nominally determined value, a shift
of the maximum into the disordered regime may be expected
to occur in other models.

The behavior of the average pairwise mutual information
in RBNs with flat rule distributions is nontrivial and some-
what surprising. This is due largely to the fact that the net-
work of unfrozen nodes in nearly critical systems does in-
deed have long single-input chains. By choosing a rule
distribution carefully, however, we can arrange to enhance
the effect and produce arbitrarily high values of I� even
deep in the disordered regime. Whether real biological sys-
tems have this option is less clear. The interactions between
transcription factors and placement of binding sites required
to produce logic with high sensitivity to many inputs appear
difficult �though not impossible� to realize with real mol-
ecules �15�.
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FIG. 6. IN as a function of p for several different system sizes.
For these calculations we use 104 networks with 40 runs from dif-
ferent initial states per network and a discarded transient of length
104. �For some data points far into the disordered regime, good
convergence was obtained for discarded transients of length 103.�
The sequences of states were recorded for a sample of 10N pairs of
nodes in each network. The vertical dashed line indicates the critical
value of p.
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Maximization of pairwise mutual information may be a
sensible proxy for maximization of fitness within an en-
semble of evolutionarily accessible networks: we suggest
that systems based on high-�I� networks can orchestrate
complex, timed behaviors, possibly allowing robust perfor-
mance of a wide spectrum of tasks. If so, the maximization
of pairwise mutual information within the space of networks
accessible via genome evolution may play an important role
in the natural selection of real genetic networks. We have
found that maximization of pairwise mutual information can
be achieved deep in the disordered regime by sufficiently
nonuniform Boolean rule distributions. However, in the ab-
sence of further knowledge, a roughly flat rule distribution
remains the simplest choice, and in this case pairwise mutual
information is maximized for critical networks. Given the
tentative evidence for criticality in real genetic regulatory
networks �6–8�, these results may be biologically important.
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APPENDIX: APPROACHING CRITICALITY

The mean-field calculations in Sec. II C are not applicable
to critical networks, but we can investigate the behavior for
disordered networks that are close to criticality. In this ap-
pendix, we investigate the limit

lim
K→2+

I� �A1�

for networks with the rule distribution R�K�.
Let K=2+� where � is a small positive number. The frac-

tion of unfrozen nodes goes to zero as �→0, meaning that it
is appropriate to expand Eq. �21� for small ut. A second-order
Taylor expansion yields

ut+1 �
1

2
Kut −

1

16
K2ut

2 �A2�

and the fixed point u satisfies

1 �
1

2
K −

1

16
K2u , �A3�

meaning that

u � 8
K − 2

K2 � 2� . �A4�

Approximation of Eq. �22� to the same order gives

P�ku = 1� � 1 −
7

2
� �A5�

and

P�ku = 2� �
7

2
� . �A6�

The probability to obtain ku�2 vanishes to the first order
in �. Equation �A6� yields that P�ku=2�� 7

4u for small �.
However, all rules with ku=2 are not proper two-input rules
in the sense that they do not depend on both inputs. Of the 14
nonconstant Boolean two-input rules, four are dependent on
only one input and are effectively one-input rules. Hence, the
probability p2 for an unfrozen node to have a proper two-
input rule is given by

p2 �
5

4
u . �A7�

For small �, nodes with single inputs dominate the expres-
sion for Pn in Eq. �17�. A matrix T corresponding to a one-
input rule is either the unity matrix or a permutation matrix
that converts 0’s to 1’s and vice versa in the probability
distribution. None of these matrices has any effect on �I�Pn��
or �I�Pn

u��, because of the symmetry between 0’s and 1’s in
the rule distribution. Hence, we can express �I�Pn

u��k in the
form

�I�Pn
u��k = �I�P�n0�,n1��

u ��k�, �A8�

where n0� and n1�, respectively, are the numbers of in-degrees
ki1

, . . . ,kin
and kj1

, . . . ,kjn+1
that are different from 1 and k� is

corresponding vector of in-degrees different from 1.
In the limit �→0+, we can neglect in-degrees larger than

2. Hence, we introduce �I�Pn0,n1

�2� �� to denote the average mu-
tual information of

P�n0,n1�
�2� = TnTn−1 ¯ T1B0�T1��

T�T2��
T
¯ �Tn1

� �T, �A9�

where T1 , . . . ,Tn and T1� , . . . ,Tn�
� correspond to randomly

selected two-input rules that do depend on both inputs. Both
B0 and the T matrices are drawn based on the distribution of
local biases obtained by proper two-input rules only, because
the symmetry between 0’s and 1’s ensures that rules with one
input do not alter the equilibrium distribution Bu

�.
Then, Eq. �20� can be approximated by

I� � u�
n=0

�

�
n0=0

n

�
n1=0

n+1 � n

n0
��n + 1

n1
��I�Pn0,n1

�2� ��

��2p2�n0+n1�1 − p2�2n+1−n0−n1 �A10�

for small �. This approximation is exact in the limit �→0+,
and reordering of the summation gives

lim
�→0+

I� = �
n0,n1�N2

W�n0,n1��I�Pn0,n1

�2� �� , �A11�

where

W�n0,n1� � lim
�→0+

u�
n=0

� � n

n0
��n + 1

n1
��2p2�n0+n1�1 − p2�2n+1−n0−n1

�A12�
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= lim
�→0+

u

2p2
�n0 + n1

n0
� . �A13�

Because lim�→0+
u / �2p2�=2 /5, we get

lim
K→2+

I� =
2

5 �
n0,n1�N2

�n0 + n1

n0
��I�Pn0,n1

�2� �� . �A14�

For approaching the critical point from the ordered re-
gime, we know from the discussion in Sec. I that

lim
K→2−

I� = 0, �A15�

meaning that I� has a discontinuity at K=2. From the scal-
ing of the number of unfrozen nodes and the number of
relevant nodes, we expect that I� is well defined and differ-
ent from 0 for K=2, but we have found no analytical hints
about whether this value is larger or smaller than limK→2+

I�.
Numerical evaluation of the sum in Eq. �A14� is carried

out in close analogy with the technique described in Sec.
II D.
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