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Computer simulation study of a liquid crystal confined to a spherical cavity
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The interplay of surface ordering and elasticity can be studied on the example of a liquid crystal confined to
a cavity. We present a computer simulation study of a liquid of hard spherocylinders in a hard spherical cavity.
With increasing density, first a uniaxial surface film forms and then a biaxial surface film, which eventually fills
the entire cavity. We studied how the surface order, the adsorption, and the shape of the director field depend
on the curvature of the wall. We find that orientational ordering at a curved wall is stronger than at a flat wall,
while adsorption is weaker. For densities above the isotropic-nematic transition, we always find bipolar

configurations.
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I. INTRODUCTION

Suspensions of anisotropic particles form a variety of
phases that have both liquidlike and crystal-like properties.
In particular, elongated particles undergo a phase transition
from the isotropic phase, in which particle orientations and
positions are disordered, to the nematic phase, in which ori-
entations are aligned and positions are disordered. Materials
made from elongated particles are of interest for technologi-
cal applications, because the direction of preferred particle
alignment (the director) can be easily manipulated and hence
the optical properties of these materials can be tuned. This
property has made liquid crystals the basis for a large range
of technological devices [1].

When a liquid crystal is confined to a cavity, its director
field becomes subject to competing forces: on the one hand,
the surface of the cavity orients the director field (“surface
anchoring”); on the other hand, deformations of the director
field cost elastic energy. Hence the equilibrium director field
is determined by a compromise between surface anchoring
and elasticity. One example of a confined liquid crystal that
has attracted particular interest from theoretical physicists is
the nematic droplet. A nematic droplet inside a liquid envi-
ronment (e.g., the coexisting isotropic phase or a polymer
matrix) can adapt not only its director field but also its shape.
Various authors have discussed the morphologies of nematic
droplets in the framework of Frank elastic theory and
Landau—de Gennes theory [2-5]. In particular, Prinsen and
van der Schoot have recently given a detailed analysis of this
problem [6-8].

Inspired by the development of polymer-dispersed liquid
crystal displays, the properties of nematic droplets have also
been studied in experiments and simulations [9-11]. In par-
ticular, Zannoni and co-workers performed several computer
simulation studies of the Lebwohl-Lasher model inside a
spherical cavity [12-19]. In this model the positional degrees
of freedom are discretized, while the orientations vary con-
tinuously. The results, which we show in Sec. III B, agree
well with their results.

The bulk phase behavior of hard spherocylinders is well
known [20-22]. Less is known, however, about the effect
confinement has on this model. Hard spherocylinders in con-
tact with a planar hard wall have been studied within the
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Onsager approximation, i.e., for infinite aspect ratio, by Po-
niewierski and Holyst [23,24]. They found that the wall in-
duces parallel alignment and that the nematic phase wets the
wall at isotropic-nematic (IN) coexistence. For spherocylin-
ders of finite length, Dijkstra, van Roij, and Evans performed
computer simulations [25] and calculations within the Zwan-
zig model [26]. They observed that an isotropic fluid brought
into contact with a wall forms a uniaxial surface phase at low
densities. At increasing density it undergoes a transition to a
biaxial surface phase and finally, when the system ap-
proaches the IN transition, the wall is completely wet by a
nematic film. We will refer to their work in more detail in
Sec. III A. Groh and Dietrich studied the isotropic fluid of
hard rods close to several curved wall geometries within the
Onsager second virial approximation [27]. In particular, they
found that the parallel alignment favored by the surface is
stronger if the wall curves toward the fluid than if it curves
away from it. In Sec. III A we compare these findings to our
simulation results.

In this paper we present a computer simulation study of
the phenomena that are caused by the interplay of surface
anchoring and elasticity. In contrast to previous simulational
work on this problem, we use a continuum model. In Sec. II
we introduce the model and order parameters; Sec. III A con-
tains results for concentrations in the bulk isotropic regime,
and Sec. III B for the bulk nematic regime; and in Sec. IV we
summarize.

II. MODEL AND OBSERVABLES

In the 1940s Onsager showed that the transition between
the isotropic phase and the nematic phase is of entropic na-
ture and that it can be explained by a simple geometrical
argument [28]. Similarly to Onsager’s approach, we consider
hard spherocylinders each consisting of a cylinder of length
L and diameter D capped by two hemispheres of diameter D.
The location of the ith spherocylinder is given by its center
of mass vector 7; and the orientational unit vector #; pointing
along the long axis of the particle (Fig. 1). We denote the
distance from the particle to the center of the box as r=|r|.
The particles are confined to a spherical cavity of radius R.
The interaction between a particle and the wall of the cavity
is hard.

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.77.011701

YU. TRUKHINA AND T. SCHILLING

FIG. 1. Sketch to introduce definitions. The particles are con-
fined in a spherical cavity of radius R. Each particle is a spherocyl-
inder of length L and diameter D. The location of the ith sphero-
cylinder is given by its center of mass vector 7; and the orientational
unit vector ;. We denote the distance from the particle to the center
of the box as r=|r|. m; is the local meridian that lies on the plane
defined by the z axis and the radial vector r; of the particle. « is the
angle between the orientational vector of the particle i;, and the
normal to the surface 7; drawn from the center of the particle.

There are two main types of observables in this system:
the density and the orientational order parameters.

We denote the density as the dimensionless quantity p
=(L+D)>DN/V, where N is the number of particles and V is
the volume of the system. The density in the middle of the
box is denoted as p,. As a reference we often use p;, the
density of the isotropic phase in coexistence with the nematic
phase in the bulk.

The average alignment is defined in terms of the orienta-
tional traceless tensor Q with the elements

1 N

Qap= ZVE (3uiauiﬁ_ 5a;3),

where u;, is the @ component (a=x,y,z) of the unit vector
along the axis of particle i and &,4 is the Kronecker delta.
Diagonalization of the tensor yields three eigenvalues A, A,
and A_, where N\, >N\y>\_. The case N\, >0, Ny=\_ corre-
sponds to a structure with one preferred direction. The case
N,=N\¢>>0 corresponds to a structure in which one direction
is avoided and the two other directions are equally favored.
All the intermediate cases A, >0, N\, >\y>\_ correspond to
a biaxial structure, and in an isotropic phase one finds A,
=Np=A_=0.

Various authors use different definitions of the nematic
and biaxial order parameters [25,29]. To avoid confusion
about the nematic order parameter, we plot the relevant ei-
genvalues instead. To detect biaxial order, we use A=\,
—No.

Depending on the structure there can be different types of
symmetry in the system. For example, if we consider a
simple case of a system in which there is no preferable ori-
entation along any axis, there can be a tendency for the
spherocylinders to orient parallel to the surface of the sphere.
In this case there is radial symmetry. Therefore, one can
calculate the orientational tensor directly by averaging over
all configurations obtained in the simulations.
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However, one has to proceed differently if there is an axis
in the system along which the particles tend to align. As
rotations of the overall director do not cost energy, the ori-
entation of this axis fluctuates strongly. In order to average
some local properties of interest the configurations need to
be rotated in such a way that the director always points in the
same direction (this, however, adds up noise). In the follow-
ing, we call this direction the z axis.

If there is a cylindrical symmetry around the z axis and a
top-down symmetry with respect to the x-y plane, then the
particles can be interpreted as lying with their centers on a
quarter of a circle with the coordinates rx}.:\r’r§+r§ and ¢
=arcsin(|r,|/\ry+r}).

In order to obtain spatially resolved information about the
system, the simulation sphere is divided into bins of equal
volume. We denote the number of particles in such a bin as
N(r,y,¢). The orientational tensor Q is then accumulated in
these bins over all the equilibrated conformations and only
then are the eigenvalues calculated (and the biaxial order
parameter accordingly). For the density the order of averag-
ing does not change the result.

In order to describe the orientational order in the nematic
phase we calculate the bipolar order parameter Sy, which is
defined as

N(ryy. @)
Sbip(rxya (P) = I/N(rxys (P) 2 PZ(”_[i : n_:['l) s
i=1

where P, is the second-rank Legendre polynomial, i; is the
orientation vector of particle i, and m; is the local meridian
that lies on the plane defined by the z axis and the radial
vector r; of the particle (Fig. 1).

The alignment with respect to the z axis is characterized
by

N(ryy. @)
Sz(rxy’()o)= l/N(rxy’(P) E PZ(’Zi'Ez) P
i=1

where ¢, is the unit vector pointing in the z direction.

II1. RESULTS
A. The isotropic phase

We performed Monte Carlo simulations in the NVT en-
semble. We considered spherocylinders of L/D=15 confined
to spherical cavities of radii R from 2.5L to 10L. The number
of particles was chosen such that we obtained an isotropic
fluid in the center of the cavity. As a reference density we
took the density of the isotropic phase at coexistence with
the nematic phase in the bulk [25], p;,,=3.675. The condition
pp,<3.675 corresponds to 400-50 000 particles depending on
the size of the simulated system.

First, we consider how the structure of our system
changes when the density is changed, while keeping the size
of the confining sphere invariant (R/L=3.03).

In Figs. 2 and 3 the equatorial profiles (sin ¢=0) of the
nematic and biaxial order parameters are shown for different
values of the density p,. One can see that in the system with
the smallest density (p,=2.13, stars) the nematic order pa-
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FIG. 2. Nematic order parameter versus distance from the wall
for densities below the isotropic nematic transition. The vertical
dashed line indicates the forbidden layer.

rameter A_ is negative close to the wall and is approximately
0 far from it. The biaxial order parameter A is close to 0
everywhere. This means that the spherocylinders form an
isotropic phase in the center of the sphere, while close to the
wall there is a layer in which one direction is avoided (a
“uniaxial surface phase”). With increasing density, A devel-
ops a maximum close to the wall, while it stays O in the
center of the sphere. The peak gets wider and higher with
increasing density. This indicates that the ordering of the
spherocylinders becomes biaxial at the wall at higher
densities.

We performed a set of additional runs to estimate the
density at which the transition from the uniaxial to the biax-
ial surface phase occurs. A(r,,=R) increases smoothly with
density p, (see Fig. 4). The transition happens at a density
lying in the same range as predicted by theory [26] and es-
timated in a computer simulation for the same fluid of
spherocylinders near a flat wall [25]. However, in the cavity
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FIG. 3. Biaxial order parameter A=\, —\ versus distance from
the wall for densities below the isotropic nematic transition. The
vertical dashed line indicates the forbidden layer.
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FIG. 4. Biaxiality at the wall versus density in the center of the
sphere. There is a smooth transition from a uniaxial to a biaxial
surface phase at 3=p,=3.5.

the transition becomes rounded because of finite system size.

In Figs. 2 and 3 one can see a dashed vertical line at R
—r,,=~0.1L. This line indicates a “forbidden” layer at the
curved wall. This layer appears when the wall curves toward
the elongated particles and they cannot approach it by their
centers. We define the width of the forbidden layer as the
distance between the wall and the center of a particle that
touches the wall with both ends (Fig. 5). This forbidden layer
can also be seen in Fig. 6, in which the profiles of the local
density p(r,,,sin ¢=0) are shown for different values of the
density py. All density profiles have a minimum close to the
wall at r,,=R— 6. Further from the wall the density increases,
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FIG. 5. Sketch of spherocylinders near a curved wall and a flat
one: the dashed spherocylinder is allowed near the flat wall and is
forbidden near the curved one. We define & as the width of the
forbidden layer near the curved wall.
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FIG. 6. Density versus distance from the wall for densities be-
low the isotropic nematic transition. The vertical dashed line indi-
cates the forbidden layer.

reaches its maximum, and then levels off into constant value
pp- For increasing density the cusp in the density profile
moves closer to the wall. This effect can be explained by the
profiles of the biaxial order parameter in Fig. 3, from which
we can see that the value of A near the wall is increasing
with increasing p,, corresponding to a stronger biaxial
ordering.

In Figs. 2 and 3 for small densities A_ decays rapidly near
the wall and slowly further from it. Two length scales seem
to be involved. One is given by correlations with the wall
orientation, the other by correlations between the particles.

Figure 7 shows the width of the oriented layer (measured
as the width of the “inverted peaks” in A_ at 1/2 of their
depth) with respect to the reduced density (p;—py)/p;. The
width of the layer increases roughly logarithmically as py
approaches p;. However, at the highest examined densities,
the behavior changes, because, as one can see from Fig. 2,
for these systems the fluid in the center of the sphere is not
isotropic but has some preferred orientation of the rods. This
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FIG. 7. Width of the surface layer in the profiles of A_ versus
reduced density (p;—py,)/ p;.
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FIG. 8. Adsorption I' versus (p;—py)/p;. For 0.01 <(p;—py,)/ p;
<0.11 the adsorption depends logarithmically on (p;—p,)/p;. For
values closer to the bulk phase transition, the system becomes nem-
atic. Hence the adsorption deviates from the logarithmic behavior.
Fitting T'=ag+a; In[(p;—py,)/ pi] we find ay=-0.31 and a;=-0.16.

means that the biaxial layer expands to the whole cavity.
The ordering induced by the wall shows up not only in the
orientational order, but also in the adsorption

= f [p(rxy’Sin ¢ = 0) - pb]ryzcydrxy'

In Fig. 8 the adsorption I' is shown versus In(p;—py,)/ p;. For
0.01<(p;j—pp)/p;<0.11 the adsorption I" depends logarith-
mically on (p;—py)/p;. For values closer to the bulk phase
transition, the system becomes nematic. Hence the adsorp-
tion deviates from the logarithmic behavior. We fit I'=q,
+a; In((p;—py,)/ p;) and find ay=-0.31 and a,=-0.16. Com-
paring to the values which were obtained for the Zwanzig
model [26] (a;=-0.235) and in the computer simulation of
the same objects near a flat wall [25] (a;=-0.914), we con-
clude that in the case of a curved wall the adsorption, i.e.,
density, grows less.

In order to describe orientational ordering with respect to
the surface we introduce the parameter Sg,s (note that the
prefactor differs from the definitions of Sy;, and S in order to
facilitate comparison with the work by Groh and Dietrich
[27])

N(ny)
Suri(r) = (UN(ry) 25 \5/(4m)Py(ii; - 1))
i=1

N(r,,)
=(1/N(ry,) > V5/(16m)(3 cos® a; - 1)),

i=1

where «a is the angle between the orientational vector of the
particle #; and the normal to the surface 7;, drawn from the
center of the particle (Fig. 1).

We show the profiles of this parameter in Fig. 9 for sys-
tems of p,=0.95 and various radii. Close to the wall only the
alignment parallel to the wall is allowed (a=/2); from this
it follows that Sg(r,,—0)==5/(167)=-0.3154. We can
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FIG. 9. Order parameter S, at a fixed density p,=0.95 for
different wall curvatures. Parallel orientations to the wall, i.e., nega-
tive values of Sy, are more favored by strongly curved walls.

see this in the profiles for r,,— (R—4). In the case of a ran-
dom distribution one would get St°=0. Negative values of
S.uf indicate a preference of particles to lie parallel to the
wall. Sq¢ is negative for distances from the wall that are less
than (L+D)/2, and O further away. The alignment is stronger
in the case of more strongly curved walls. This is explained
by the fact that the curved wall restricts the possible orien-
tations of the particles more strongly (see Fig. 5).

Summarizing, the wall induces an ordered layer. At low
densities this layer is uniaxial; at higher densities it is biaxial
(as it is in the case of a flat wall). Compared to the flat wall,
however, orientational ordering is stronger, while adsorption
is weaker. Hence the two main properties of the system that
jump at the isotropic-nematic transition, density and orienta-
tional order, are influenced in opposite ways by a curved
wall.

B. The nematic phase

Now we consider densities beyond the isotropic nematic
transition. Sy, and S, are shown in Figs. 10 and 11 for a
system with R/L=3.03 and p,=4.55. The density of the
nematic phase at coexistence with the isotropic phase in the
bulk [25] is ppem=4.3. The Sy, parameter shows how close
the configurations are to a bipolar one. The lines in Fig. 10
point in the direction of a perfectly bipolar field and their
lengths correspond to the strength of alignment. Some small
deviations can be seen at the poles of the sphere, while most
of the field is bipolar. The S, parameter measures the align-
ment of the director field with a homogeneous field. There
are clear deviations. These findings are in agreement with the
observations of Zannoni and co-workers [12,13].

We have varied the size of the system and its density for
rods of lengths L=7 and 15. In all cases we found only the
bipolar structure. Comparing to the arguments by Prinsen
and van der Schoot [6] this implies that the energetic contri-
bution from elastic deformations of the nematic director field
is smaller than the contribution of the surface anchoring en-
ergy for all the examined system sizes and densities.
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FIG. 10. Alignment with respect to an ideal bipolar structure:
the lines point in the direction of the meridians; their length is given
by the bipolar order parameter S,

However, the structure that we obtain differs from the
ideal bipolar one (see Fig. 10). This gives rise to the ques-
tion: What properties does the defect on the poles have?
Figure 12 shows the dependences of the eigenvalues of the
orientational tensor Q of the particles lying on the z axis of
the system (which is defined as the orientation of the overall
nematic director field) on the distance from the pole of the

R

0 R

FIG. 11. Alignment with respect to an ideal homogeneous struc-
ture: the lines point in the z direction; their length is given by the
parameter S,.
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FIG. 12. Eigenvalues of the orientational tensor Q for the par-
ticles lying on the z axis of the system versus the distance from the
pole of the sphere. The defect extends roughly L/2 into the sphere.

sphere. From the graph one can conclude that there is a
highly ordered nematic phase in the center of the sphere. At
a distance from the wall z~ L, the nematic order parameter
starts decaying until it reaches its minimum at z~ L/2. At the
same time one can see that at z~ L/2 the difference between
A_ and \ starts growing, indicating the presence of a biaxial
structure. Directly at the wall (z=0), \,=\,, while A\_=
—0.3; this means the system forms a uniaxial surface phase at
the wall. (This behavior is independent of the radius R of the
confining sphere.) At this point one has to take into account
that the averaging was done assuming radial symmetry.

To get a better understanding of the structure of the defect
we inspect snapshots of the system. A typical one is pre-
sented in Fig. 13, in which the droplet is seen from the top
i.e., looking at one of the poles. We never observe an ideal
bipolar configuration, which means that a boojum defect is
energetically too expensive. Using this fact and taking into
account the analysis of the values of the eigenvalues of the
orientational tensor, we conclude that the point defect splits
into a line of strength k=1/2 defects, which extends roughly
to r=L/2 into the droplet. We could not investigate this in
more detail because the averaging procedure needs to project
conformations onto each other with respect to the nematic
director of the entire droplet and the local director at the
pole. As both quantities are subject to strong fluctuations, the
quality of the averaged data is not high enough to allow for
further conclusions.

IV. DISCUSSION AND SUMMARY

We have studied a fluid of hard spherocylinders with
L/D=15 confined to a spherical cavity of R/L=2.5,...,10.
We have performed simulations for different values of the
system density. At low values of the density we have ob-
served an isotropic phase in the middle of the cavity and a
layer of particles lying parallel to the wall at the surface. The
curved wall favors parallel alignment. When the density of

PHYSICAL REVIEW E 77, 011701 (2008)

FIG. 13. (Color online) Typical snapshot of a pole of the sphere.
The particles are coded by gray scale (color) according to their
orientations.

the system is increased the oriented layer grows. As pre-
dicted by Groh and Dietrich [27], a curved wall produces
stronger parallel anchoring than a flat wall.

Also, at low densities we have observed a rounded surface
transition from a uniaxial to a biaxial phase. The thickness of
the biaxial (nematic) layer at the surface increases logarith-
mically with the density until the entire cavity is filled with a
nematic phase.

We also computed the adsorption at the wall. While ori-
entational ordering is favored by the curved wall, adsorption
is disfavored, compared to the case of a flat wall.

Simulations at higher densities (beyond the bulk nematic
coexistence density in the center of the sphere) always pro-
duced bipolar droplets. This is consistent with theoretical
predictions [6] if one assumes that for this model the ener-
getic contribution due to the anchoring strength  is always
larger than the energetic contribution due to the elasticity.

The obtained bipolar structure differs from an ideal one in
which the particles form boojums at the poles of the sphere.
Apparently this type of defect is energetically too expensive.
The point defect probably splits into a line of k=1/2 defects
which extends roughly to »=L/2 into the droplet.
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