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The multifractal spectrum f(a) characterizing the scaling properties of the growth probability on the bound-
ary of radial diffusion-limited aggregates is known to exhibit strong finite size effects. We demonstrate that
there exists a correlation between these finite size effects and those present in measurements of the angular
width of the fjords which lie between the principal cluster arms. We subsequently conclude that it is the
evolution in the global structure of the clusters which is responsible for the slow convergence in f(«) and
discuss how this global structure induces a phase transition in f(«).
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I. INTRODUCTION

Diffusion-limited aggregation (DLA) is a simple stochas-
tic growth model which spontaneously gives rise to complex
fractal structure [1]. In the standard off-lattice radial version
of the model, an immobile cluster is grown on a plane about
some fixed initial seed by the adherence of diffusing particles
which are sequentially released from random points lying on
a circle surrounding the cluster. The clusters produced are
fractal with a dimension D=~ 1.71 [2] and possess a global
structure or geometry which may be summarily described as
consisting of a finite number of principal arms which radiate
outward from the central seed point (see Fig. 3).

At finite cluster sizes, this structure is, however, not in-
variant with growth. Instead, the number of these principal
cluster arms is found to slowly increase, while the angular
width of the main fjords between these arms exhibits a cor-
responding decrease [3,4]. This behavior is, in turn, primarily
responsible for other reported phenomena such as the
anomalous scaling of the width of the growth zone, the re-
lated multiscaling description of DLA, and the increase in
the filling ratio with growth [5-8].

In this paper, we shall argue that the changes in the global
structure of radial DLA clusters is also responsible for an-
other anomalous phenomenon, namely, the “negative-
moment problem” relating to the scaling behavior of the
growth probability measure [9].

This measure has, in fact, attracted much research atten-
tion since the inception of the model, primarily because of its
complex scaling properties. Due to the scale invariance of
both the branch structure and the Laplacian field which de-
termines the probability of growth occurring along a cluster
boundary, its distribution is found to be nontrivially self-
similar. It is thus a multifractal measure, and one of the ear-
liest examples of its type to be discovered occurring natu-
rally in a physical system [10].

The characterization of the self-similar properties of such
a measure involves the evaluation of its multifractal spec-
trum f(@) which is typically a convex nonzero function over
some interval [a,,;,, Q] [11]. However, estimates of f(a)
obtained from the growth probability of radial DLA clusters
were found to exhibit significant finite size effects at large
values of « [12-15]. This phenomenon is, in turn, intimately
related to the apparent nonpower law scaling of the minimal
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growth probability with cluster growth [12,15-18], the
anomaly which lies at the heart of the “negative-moment
problem.”

Though much effort has been spent determining the
asymptotic form of f(a) and the precise dependence of the
minimal growth probability on the cluster mass M
[12,15-20], there has been little investigation into the actual
origins of the finite size effects in f(«@). The purpose of this
paper is to primarily address this issue.

In Sec. II, we begin by first evaluating finite size estimates
of f(a) obtained from off-lattice radial DLA clusters and
argue that it is the global structure of the clusters which
determines the form of these estimates at large a. We then
present numerical data which demonstrates that the finite
size effects present at such large « are simply a reflection of
the aforementioned changes which occur in the global struc-
ture with growth.

In Sec. III, we also discuss the dichotomy that exists in
the structure of radial DLA clusters. That is, their structure
may be decomposed into two essentially independent enti-
ties, namely, the n-fold global structure of the principal clus-
ter arms, and the fractal structure of the branches lying
within these arms. We discuss how this dichotomy subse-
quently generates two quite disparate subsets in the growth
probability measure and argue that the union of two such sets
presents a mechanism for the appearance of a phase transi-
tion in the multifractal spectra.

I1. FINITE SIZE EFFECTS IN f(a)
A. Calculation of f(a)

We began our study by first growing 100 radial off-lattice
DLA clusters up to a maximum size of 60 000 particles.
Taking these clusters at different stages in their growth, the
growth probability along their boundary was calculated by
first forcing each off-lattice cluster onto a square lattice be-
fore subsequently solving Laplace’s equation V2¢=0 with
the appropriate boundary conditions (¢=0 on all cluster pe-
rimeter sites and ¢=1 on a circular boundary surrounding
the cluster) [21]. A standard relaxation method was used to
solve this boundary value problem and the growth probabil-
ity estimated by calculating the gradient of the Laplacian
field ¢ at the cluster perimeter sites.
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FIG. 1. (Color online) Estimates of f(«) obtained from 100
DLA clusters when the cluster mass M=1875 (X), 3750 (A), 7500
(*), 15000 (<), 30 000 (O), and 60 000 (J) particles.

Subsequently, the scaling properties of this measure, com-
monly referred to as the harmonic measure, were investi-
gated by implementing the method of moments on each in-
dividual cluster [22,23]. Briefly, this method involves the
coarse graining of a cluster with radius of gyration R,, by
laying down upon it a uniform grid of boxes of side /. The
total growth probability w;(I) contained inside the ith box is
then calculated before computing, for some real value ¢, the
quantity x,(1)==,u{(l) over all boxes having nonzero mea-
sure. This process is repeated for different values of [/ to
obtain a doubly logarithmic plot of x,(I) which, if the mea-
sure is indeed self-similar, should take on a linear form with
slope (g) [11].

Taking values of g from -9 to +9 in steps of 0.06, as done
in all subsequent multifractal work reported in this paper,
such plots were averaged over the ensemble of 100 clusters
to obtain the necessary quenched (q+1)(log X, Vs log € plots
(e=1/R,).

Identifying the linear regions in these plots, their slopes
yield an estimate of D(g)=7(g)/(g—1), the generalized spec-
trum of dimensions [22], from which the associated f(«)
function may be obtained via the Legendre transformation

[11]
a<q>=£7<q>, fal@) =qa@d) ). (1)

The resultant estimates of f(«) are shown in Fig. 1. As pre-
viously reported in the literature, these estimates fail to con-
verge to a single well-defined f(a) and we instead observe a
characteristic divergence in its tail at large a as the clusters
increase in size. The precise cause of these finite size effects
is the issue which we shall now address.

B. Global structure and the minimal measure

At large a, the f(a) function characterizes the scaling
properties of the minimal elements in the set {x;}. In fact, for
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FIG. 2. (Color online) Derivative of (q+1) log x, vs log € plots
for g=-9 obtained from the harmonic measure on the boundary of

our multiarmed fractal object (O) and on its envelope (OJ).

the smallest such element w,,;,, we expect that w,,;, ~ €“max if
the distribution of the measure is statistically self-similar.
However, it has long been known that for radial DLA, u,,;,
decreases faster than a power law with the cluster radius R,
and that the right-hand side of f(«) diverges as a conse-
quence [12,15-18]. If we are to find an explanation for the
finite size effects in f(«), we must therefore endeavor to
understand the reason for the anomalous scaling of w,,;,.

Let us thus begin by stating that in a DLA cluster, we
expect the coarse-grained minimal measure w,,;, to be gen-
erally found in the so-called frozen zone about the central
seed point, where the screening to any incoming particle is a
maximum. Critically for what is to follow, it transpires that
the scaling of w,,;, is, as a consequence, determined by the
coarse wedgelike structure of the principal cluster arms, i.e.,
by the global structure of the cluster.

As a graphic demonstration of this point, the multiarmed
fractal of Fig. 2(a) was constructed as a crude model of a
DLA cluster, the principal arms of which possess a simple
self-similar structure identical to that of the Vicsek snowflake
fractal (see Fig. 8) [24]. Calculating the harmonic measure
on its boundary, the method of moments was again imple-
mented and the necessary ﬁ log x, vs log € plots obtained.

Note that at large negative ¢, it is u,,;,, which begins to domi-
nate the scaling behavior of y,(€)==;uf. The derivative of
the log-log plot for g=-9 is thus shown in Fig. 2. Also
shown, however, is the derivative of the log-log plot, again
for g=-9, obtained by coarse graining the harmonic measure
existing on the envelope of the multiarmed fractal [see Fig.
2(b)]. We observe that the derivatives of the two log-log
plots are essentially identical.

This thus demonstrates that the scaling of w,,;, is deter-
mined by the global structure and geometry of the object and
not by the fine detail of its internal self-similar structure. In
this paper, we claim that this is also the situation with the
harmonic measure existing on the boundary of DLA clusters.
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FIG. 3. (Color online) On the left is shown a DLA cluster. Also
shown is an approximation of its global structure. As €—0, the
harmonic measure contained within a circle of radius € is expected
to scale as pu(e) ~ € Pmax,

C. Correlation between a,,,, and ¢,,,,

In Fig. 3, we crudely model the global structure of a DLA
cluster about its seed point by a series of wedges of varying
angular widths. We shall show later in more detail that the
harmonic measure u,;, existing within a distance € from the
tip of a wedge of exterior angle ¢ scales as wu;,~ €™
[20,25]. Assuming the minimal measure to exist about the
seed point, as a first approximation, we may thus expect that
in a DLA cluster

lu’min(e) -~ €7T/¢max’ (2)

e—0

where ¢,,,, is the maximum angle existing between any two
adjacent principal cluster arms. As pu,,;, ~ €, it follows
that

Wpax = l/d)muX' (3)

We thus predict a correlation between ¢,,,,, a parameter re-
lating to the global structure, and «,,,,,, the scaling exponent
of the coarse-grained minimal measure g,

With growth, however, it is known that the angle ¢,,,,
decreases very slowly [3] as the DLA clusters become more
compact, and the distribution of the mass more homogeneous
[4.8].

As such, our simple analysis suggests that this decrease in
¢b,na may be responsible for the increase in «,,,, observed in
Fig. 1. [Incidentally, it also suggests that a,,,, is intimately
related to the apparent exponent characterizing the power-
law tail in P(r, M), the radial growth probability distribution
[26].]

To test this hypothesis, from Fig. 1 we thus obtained es-
timates of «,,,, at cluster masses of M=1875, 3750, 7500,
15 000, 30 000, and 60 000 particles. To obtain values of
Gy from individual clusters, we followed a scheme origi-
nally used when studying the distribution of gap sizes ob-
tained from circular crosscuts of DLA clusters [3]. There, a
circular crosscut is defined as being simply the intersection
of a cluster with a circle of radius 0.75R, cenetered on the
seed point. The angular width of the largest gap in such a
crosscut should therefore yield an estimate of ¢,,,,. Values of
b Were thus measured from our set of 100 DLA clusters
and the ensemble averages (¢,,,) obtained at each of the

cluster masses quoted above.
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FIG. 4. Data obtained from 100 clusters at six different cluster
sizes. A linear fit of the form y=mx+c yields the values m
=1.01£0.25 and ¢=-1.92£0.55. Error bars and errors quoted de-
note 95% confidence limits.

In Fig. 4, we show the resultant plot of log 1/{¢,.
against log «,,,, which clearly illustrates a linear correlation
between these two quantities. We conclude therefore that the
finite size effects observed in f(a) are linked to the slow
large-scale structural changes which occur in DLA with
growth.

Furthermore, as it has previously been shown that {¢,,,.)
approaches a finite nonzero value with an order of magnitude
estimate of =0.45 rad as M — o0 [27], our results suggest that
the asymptotic value of «,,, is also finite, a conclusion
which is supported by other arguments and numerical results
in the literature [5,19,20,28]. In fact, we find that extrapolat-
ing the fit in Fig. 4 to {¢,,,»=0.45 yields the asymptotic
estimate «,,,,~ 15.

III. PHASE TRANSITION IN f(«)

The presence of a phase transition in the multifractal
spectra of the growth probability of DLA has long been a
subject of much debate. The existence of such a transition in
Fig. 1 is betrayed by a characteristic bunching of the data
points at large «, though, using alternative methods, it also
manifests itself as linearity in the tail of f(a) [12,19,20].

In this section, we discuss the possibility that this phase
transition is simply the result of the union of two disparate
subsets in our measure, each having entirely different scaling
properties. As a simple illustration of this mechanism, let us
first examine the scaling properties of the harmonic measure
lying on the boundary of a wedge of exterior angle .

A. Harmonic measure on a wedge

To obtain the harmonic measure along the boundary of a
wedge such as that shown in Fig. 5 requires solving the
Laplace equation subject to constant Dirichlet boundary con-
ditions. This may easily be done analytically via the method
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FIG. 5. (Color online) Wedge of exterior angle ¢. Harmonic
measure within the box of side / is given by Eq. (6).

of conformal maps if one can obtain the complex function
which maps the unit circle in the complex plane onto the
wedge boundary.

One can verify that the function

.w+1>”” @

I'(w)= (l

w—1

satisfies this criterion when we have =/ ¢ [20,25]. Using
Eq. (4) one can subsequently calculate the harmonic measure
density on the wedge boundary at a distance s from its tip
(see Fig. 5) to be

E(s) ~s7 . (5)

Restricting our attention to the wedge section 0<s<L, we
therefore have that the normalized measure u,(€) contained
within a box of side / located at a distance s from the tip is

given by
s+l s 7 s \7
MGE ,[ E(x)dx = (Z + E) - (z) , (6)

where again e=1[/L.

Laying down a grid of boxes, each of side /, along our
wedge boundary, we may use this expression to calculate
X,(€)=2;u, the moments of the coarse-grained measure dis-
tribution, which can be shown to behave as

X,(6) ~A(g)e”™" — ™. (7)

Critically, there are two terms in Eq. (7) above. Defining
q.=-1/(n-1), for g>gq,, the second term becomes negli-
gible as €—0 so that the first term dominates, while the
converse is true for g <g. We thus have a phase transition
occurring in the scaling properties of y,(€) at the critical
value q..

As x,(€)~ €9, from Eq. (7) it is easily shown that
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g, q4<qe
T(q)N{ ()
q_l’ q>qc5

and we see that this phase transition betrays its existence by
a characteristic kink in the 7(¢) function at ¢, (see Fig. 6).
Subsequently taking the Legendre transform

fla) =inflga - m(q)} )
q

of Eq. (8) yields the linear f(«) of Fig. 6.

The origins of this phase transition may in fact be gleaned
quite easily from a cursory inspection of Eq. (6). At the
wedge tip (s=0) we see that u,(€) ~ €”, whereas at any other
point along the boundary we obtain u,(€) ~ € asymptotically
as €— 0. Our measure thus exhibits usual power-law scaling
m~ €%, of which, critically, there are two distinct types, each
being characterized by the Holder exponent values a= 7 and
1. For ¢>gq,, it is the measure characterized by the latter
type of singularity which dominates x,(e) as e—0. As we
decrease ¢ past g., however, y,(€) suddenly becomes domi-
nated by the measure (a=7) at the wedge tip and a phase
transition results.

From this simple heuristic example, we thus see that the
coexistence of two quite distinct subsets of the harmonic
measure, each with their own unique scaling properties, can
give rise to a phase transition in the multifractal spectra. We
shall now argue that a similar phenomenon is responsible for
the phase transition in the f(a) of radial DLA.

B. Dichotomy in DLA

Though rarely stated explicitly, there is an essential di-
chotomy in the structure of radial DLA clusters. That is, they
possess both the self-similar fractal branch structure present
within the confines of the principal cluster arms, and a global
structure as prescribed by the radial n-fold symmetry of
these arms. It is important to note that these two entities are
effectively independent of each other, the former being a
product of the diffusion process inherent in the model, while
the latter is determined by the specific boundary conditions
used when growing the clusters (For example, choosing in-
stead to release particles from a line far above a linear sub-
strate, rather than from a circle surrounding a seed point,
produces clusters which lack the n-fold symmetry of radial
DLA [29].)

As we shall now demonstrate, a Laplacian field interact-
ing with an object possessing such dichotomy in its structure
may give rise to two subsets of the harmonic measure with
wholly different scaling properties, and a phase transition
may occur in its multifractal spectra as a result.

As an illustration of this idea, let us again use the multi-
armed fractal of Fig. 2(a), an object which possesses n-fold
symmetry and internal fractal structure like radial DLA. In
Fig. 7 we show the f(a) spectra calculated for the harmonic
measure existing on the boundary of both the multiarmed
fractal and the simple homogeneous snowflake fractal of Fig.
8. Let us denote these spectra by f,,(«) and f,(«), respec-
tively.

We find that to the left of their maxima, the f(a) spectra
are virtually indistinguishable. This must obviously be a con-
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FIG. 6. (Color online) The m{g) and f(«) functions characterizing the scaling properties of the harmonic measure on the boundary of a

wedge of exterior angle ¢p=1/2.

sequence of the identical internal fractal structure which both
objects share. However, at larger « values, where u,,;, begins
to dominate the scaling properties of x,(e), the spectra di-
verge. This is not altogether surprising, as we have already
established that the scaling of w,,;, is determined by the
coarse global structure, which is different in both objects.

Of most immediate interest, however, is the apparent pres-
ence of a phase transition in f,,(«). This is evidenced by the
bunching of the data points at large «, a feature which is
absent in f,(«). This bunching indicates that when ¢ is de-
creased past some finite critical value ¢g,., the sum of the
moments x,(€)=2;u! suddenly becomes dominated by the
minimal measure ,,;,~ €, so that a(qg) essentially be-
comes independent of ¢ and equal to «,,,, as a consequence.

As with the f(a) characterizing the harmonic measure on
a simple wedge, this phase transition is triggered by the
union of two disparate subsets of the measure. In the case of
the wedge, we had a one-dimensional subset on which the
measure u contained inside a circle of radius € scaled simply
as u~ €, and a second subset consisting of a single point, the
wedge tip, where pu~ €”.

Analogously, for our multiarmed fractal, we have a mul-
tifractal subset whose complicated scaling properties are
characterized by f,(«), and a second subset, again consisting
of a single point at the center of the object, about which u
~ e¢%max, The scaling properties of these two subsets are dif-
ferent because they each have contrasting origins. Whereas
those of the multifractal subset are determined by the internal

fractal structure of the principal arms, it is instead the global
structure which governs the scaling about the central point,
i.e., it is the global structure which determines the value of
amax’

It is thus the dichotomy present in the structure of the
multiarmed fractal which is responsible for the creation of
these two disparate subsets and the phase transition which
subsequently arises. Note, for example, the absence of any
phase transition in f,(«), as no such dichotomy is found in
the simple snowflake fractal of Fig. 8 where the global and
internal fractal structure are one and the same.

In the light of this knowledge, we present the following
conjecture as the primary result of this section: It states that
it is the dichotomy in the structure of radial DLA which
triggers the phase transition in the multifractal spectra of its
growth probability.

It is, in fact, interesting to note that the estimates of f(a)
obtained from DLA clusters in Fig. 1 are very similar in form
to f,,(a), particularly the bunching of the data points about
f(@)=0 at a,,,. Note that, though not shown, we also ob-
tained estimates of f(«) by implementing the histogram
method [23] on both DLA clusters and the multiarmed fractal
of Fig. 2(a), and again found they shared similar features,
most notably the appearance of a linear tail at large «.

IV. SUMMARY AND CONCLUDING REMARKS

In this paper, we have addressed two separate but related
issues, namely, the origins of both the phase transition and
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FIG. 7. (Color online) The 7(q) and f(«) functions evaluated from the harmonic measure on the boundary of the snowflake fractal (X)

of Fig. 8 and the multiarmed object (<) of Fig. 2(a).

the finite size effects which are present in the f(a) of the
growth probability of radial DLA. We have found that it is
the coarse global structure (or geometry) of the clusters
which plays the key role in both phenomena. That this is so,
is, essentially, a consequence of the control which this global
structure exercises over the scaling of the coarse-grained
minimal measure w,,;,, which, it transpires, determines the
form of f(a) at large a.

The idea that the global structure of an object can have
some effect on the f(@) characterizing the scaling of the
harmonic measure existing along its boundary is not new

+$

0 % 0

FIG. 8. First four stages in the construction of the snowflake
fractal. The structure above is found within the arms of the object in
Fig. 2(a).

[30,31]. In the DLA work of Turkevich and Scher [30], for
example, an estimate of «,,;,, was obtained through consider-
ation of the global geometry of the clusters. Likewise, we
have shown here that the value of «,,,, is similarly deter-
mined by this geometry.

However, as a result of slow changes which occur in the
global structure of the clusters with growth, specifically the
decrease in (¢,,,.), the ensemble average of the maximum
angle existing between adjacent principal cluster arms, this
value of «,,,, increases and we thus observe, at large «, the
divergence in the f(a) that is characteristic of radial DLA.
This lies contrary to much of the early work on DLA which
typically attributed the divergence in the f(«) to non-power
law scaling of w,,;, originating, not from the slow evolution
in the global structure of clusters as we claim, but rather
from either some underlying stochastic multiplicative pro-
cess [13,32,33] or from the formation of some specific fjord
structure [16,34].

Our work suggests that this divergence does not continue
indefinitely, however, and that asymptotically, «,,,, attains a
finite limiting value and w,,;, scales as a simple power law.
The divergence present in f(«) estimates of radial DLA may
thus be viewed as benign finite size effects and not as evi-
dence of a phase transition, as was done in most early stud-
ies.

Nevertheless, other evidence exists which supports the
case that a phase transition occurs in the multifractal spectra.
There is, for example, the sudden domination of x,(€) by
Mmin t some critical value ¢,, the corresponding divergence
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in the second order derivative of the free energy 7(g) at this
same value, and the linearity exhibited in the tail of f(a)
[12,19,20].

As such linearity is characteristic of the harmonic mea-
sure lying on the boundary of a wedge, its presence in the
f(a) of radial DLA may be seen as simply a consequence of
the wedgelike global form of the principal cluster arms about
the seed point, this argument being, in effect, akin to the
geometric interpretation of the phase transition originally put
forward in [20].

In more general terms though, our work has led us to the
conclusion that the phase transition arises because there ex-
ists a dichotomy in the structure of radial DLA clusters. That
is, they possess both nonfractal global structure, as pre-
scribed by the radial configuration of the principal cluster
arms, and the internal self-similar fractal structure of the
branches within these arms. Consequently, the scaling behav-
ior of the measure about, for example, the seed point, being
determined by the global structure, is thus of a fundamen-
tally different nature to the scaling found within the arms.
We thus have two quite disparate subsets in our measure, a
situation which is known to lead to the manifestation of a
phase transition in its multifractal spectra [35].

PHYSICAL REVIEW E 77, 011405 (2008)

As a final point, it should be noted that in this paper we
have only examined clusters grown in a radial geometry.
Using different boundary conditions, however, one may pro-
duce clusters whose global structure differs markedly from
the n-fold symmetry of radial DLA. Nevertheless, one might
still expect the global structure, whatever its form, to be re-
sponsible for determining the scaling properties of i,
(which exists somewhere within the frozen zone of the clus-
ters), so that it introduces scaling in the harmonic measure
which is alien to that induced by the internal fractal branch
structure.

This has, in fact, already been shown to be the case with
cylindrical DLA [29,36], where the global structure intro-
duces an exponential decay in the growth probability which
is at variance with the multifractal properties of the growth
probability found within the growth zone [37]. As predicted
in this original work, a phase transition in f(«) must thus
inevitably result. In conclusion, it thus seems likely that
phase transitions in the f(a) of the growth probability may
be a robust characteristic of 2D DLA in general, though the
precise nature of such transitions may be dependent on the
boundary conditions.
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