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Coefficient of tangential restitution for the linear dashpot model
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The linear dashpot model for the inelastic normal force between colliding spheres leads to a constant
coefficient of normal restitution, &, =const, which makes this model very popular for the investigation of dilute
and moderately dense granular systems. For two frequently used models for the tangential interaction force we
determine the coefficient of tangential restitution, &,, both analytically and by numerical integration of New-
ton’s equation. Although e,=const for the linear-dashpot model, we obtain pronounced and characteristic
dependences of the tangential coefficient on the impact velocity, &,=¢,(g). The results may be used for
event-driven simulations of granular systems of frictional particles.
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I. INTRODUCTION

In particle simulations of granular materials the dissipa-
tive interactions of the grains are either described by inter-
action forces which allows for the integration of Newton’s
equation of motion for the particles’ motion [molecular dy-
namics (MD)] or alternatively (under certain conditions; see
below) by coefficients of normal and tangential restitution,
being the basis of event-driven molecular dynamics; see,
e.g., [1]. Since both approaches describe the same physical
system, obviously, the coefficients of restitution must be re-
lated to the specific interaction forces. In the most simple
approach, granular particles may be considered as rough
spheres of radius R;, mass m;, and moment of inertia, J;,
whose motion is described by the positions 7;, the velocities

U;, and the angular velocities ﬁ,-. The more fundamental ap-
proach is the integration of the forces (MD) as the forces
follow directly from the microscopic deformation of the
particles—e.g., from the mechanics of materials. The coeffi-
cients of restitution in turn may be obtained from the forces
by integrating Newton’s equation of motion for an isolated
pair of particles. For the coefficient of normal restitution of
viscoelastic spheres, this integration was performed analyti-
cally [2,3], leading to an explicit expression for the coeffi-
cient of normal restitution as a function of material param-
eters and impact velocity.

Similarly, the coefficient of tangential restitution can also
be derived, provided the interaction force between the par-
ticles is known. The situation here is, however, more com-
plicated since unlike in the case of normal motion, there is
friction between the surfaces of the particles and the transi-
tion between static and dynamic friction is determined by
Coulomb’s friction law which complicates the motion con-
siderably. To our knowledge, the relation between the inter-
action forces and the coefficient of tangential restitution has
not been considered so far. In this paper we compute the
coefficient of tangential restitution as it follows from inter-
action force models that are commonly used in MD simula-
tions of granular systems—namely, the models by Haff and
Werner [4] and by Cundall and Strack [5] in combination

1539-3755/2008/77(1)/011304(12)

011304-1

PACS number(s): 45.70.—n, 45.50.Tn

with the linear dashpot model being the simplest model for
the normal motion. We will show that particularly the latter
model leads to nontrivial microscopic motion of the particles
in contact.

The interaction of dissipatively colliding spheres is de-
scribed by the interaction force law. In the case of smooth
spheres—that is, nonfrictional spheres—the force is directed
along the unit vector €= (r;,—r;)/|r;=F;|. Thus, only the nor-
mal component of the impact velocity, g, = (v;,~v;)-€ (with
Ji/j being the center-of-mass velocities of particles i and j),
changes during the contact. The normal component of the
velocity after a collision is then obtained by integrating New-
ton’s equation of motion for the mutual deformation £ of the
particles:

megé+ Fo(£,6) =0, &0)=g, &0)=0, (1)

with &(1)=max(0,R;+R;~|r;—7;|), the effective mass meg
=mm;/ (m;+m;), and F, the model-specific interaction law.

Alternatively, the collision may be described using the
coefficient of restitution, relating the precollisional and post-
collisional normal relative velocities,

A 0} o
& &0)

with 7. being the duration of the collision. Throughout this
paper, primed variables denote postcollisional quantities.
Consequently, the choice of the particular force F, deter-
mines the coefficient of restitution ¢,,.

From its definition, Eq. (2), obviously 0=¢,=1 where
g,=1 describes an elastic collision. The assumption g,
=const is widely used throughout the literature on granular
gases and other dilute granular systems. This assumption is
not in perfect agreement with physical reality, neither in two
dimensions (2D) [6] nor in 3D [2,3], but it simplifies the
analysis of kinetic and hydrodynamic equations considerably
and its use is, therefore, justified.
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Vice versa, one may ask which force laws lead to g,
=const. For the rather general ansatz F,,:Fie]) +F£ldls) with

Fiel)ocg", qudis)ocg’gc for the elastic and dissipative compo-
nents of the interaction force, a dimension analysis [2,7,8]
shows that only combinations with 2(c—a)+b(1+a)=0 lead
to g,=const. Assuming b=1—i.e., a linear dependence of the
dissipative force on the velocity (which should be justified at
least for small impact rate)—we see that the choice a=1, ¢
=0 fulfills the above condition. This corresponds to the linear

dashpot model

Fn == kng_ 711§’ (3)

with k,, and 7, being the elastic and dissipative parameters of
the force, respectively. Indeed, the linear dashpot model is
frequently used in molecular dynamics simulations of granu-
lar systems—e.g., [7,9-13]. The coefficient of restitution can
be found by integrating Eq. (1) with the definition (2), where

the end of the collision 7.>0 is given by the condition &
=0 which takes into account that there is only repulsive in-
teraction between granular particles; see [14] for details. The
coefficients of the force law, k, and v,, translate into the
impact-velocity-independent coefficient of restitution [14]:

r .
2Bw (0]
exp —f(ﬂ'—arctan wzﬁ_gzﬂ, B< \N_EO,
£ =< exp_—ﬁarctan 2B, Be 0
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There are several other force laws in the literature; for
reviews, see [15-17]. Some of them are certainly better
suited to describe the mechanics of colliding spheres; how-
ever, this model leads to a constant coefficient of normal
restitution. The condition &,=const in turn is essential for an
entire class of scientific literature in the field of dilute granu-
lar gases. Therefore, here we restrict ourselves to this impor-
tant case. We shall mention that the model by Walton and
Braun [18] leads also to &,=const.

For the case of frictional particles, in general, a particle-
particle interaction causes not only a change in the normal
component of the relative velocity but also a change of its
tangential component as well as the particles’ rotational ve-
locity. Let us denote the relative velocity of the particles in
the point of contact by

gEJ,—JJ—(R,Ql+RJQJ)XE, (6)
with ﬁ,-/ ; and R;;; being the angular velocities and radii of the

two particles. Its projection to the tangential plane in the
point of contact reads
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g&i=-eX(eXyg). (7)

Similar to the normal direction, the change of the velocity in
tangential direction is described by the coefficient of tangen-
tial restitution:

g =". (8)

In contrast to the coefficient of normal restitution, here —1
=¢g,=1; that is, there are two elastic limits. The case g,=1
corresponds to smooth particles; that is, the tangential veloc-
ity and, thus, the angular velocities of colliding particles do
not change. The other elastic case ¢,=—1 corresponds to
rough particles. One may think (in 2D) of gear wheels made
of a very elastic material. When such particles collide, the
tangential component of their relative velocity is reverted.
The case £,=0 describes the total loss of relative tangential
velocity after a collision.

While the normal force is given by Eq. (3), commonly in
molecular dynamics simulations the change of the tangential
velocity during an impact is described by tangential force
laws which will be introduced in the next section. In a simi-
lar way as described above for the coefficient of normal res-
titution, one can analyze the tangential relative velocity of
colliding particles to obtain the coefficient of tangential res-
titution, €,. As the coefficients of restitution are a direct con-
sequence of the actual trajectory of the particles during con-
tact, its functional dependence on the material properties and
the impact velocities depends on the chosen force law.

It is the aim of this paper to characterize the coefficient of
tangential restitution for different expressions for the tangen-
tial interaction force between colliding particles as com-
monly used in molecular dynamics simulations. In particular,
we are interested in the important case that the coefficient of
normal restitution is independent of the impact velocity, &,
=const, as follows from the linear dashpot model, Eq. (3).

II. TANGENTIAL FORCES
A. Coulomb law for static friction

The normal force between contacting spheres is deter-
mined by their mutual compression & and the compression

rate & This is true not only for the linear dashpot model, Eq.
(3), but more generally for all nonadhesive collision rnodels,1
(see [15-17]), and is due to the fact that the interaction force
is a bulk material property. In contrast, the tangential force is
not only a bulk property but also significantly determined by
surface properties—e.g., roughness.

The usual textbook formulation of friction distinguishes
between static and dynamic friction. If the particles in con-

'Sometimes it is claimed that the linear dashpot force becomes
attractive towards the end of the collision. Note, however, that Eq.
(3) refers to particles in contact. That is, the collision ends at time
1,>0 when &(1.)=0. Therefore, the linear dashpot model is always
repulsive. See [14] for further discussion. When adhesion is consid-
ered in the coefficients of restitution, the discussion is more difficult
[22].
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tact slide on each other, the friction force F, (absolute value)
is

F,=pF,, )

where F, is the absolute value of the normal force at contact
and u is the Coulomb friction parameter. Thus, the tangential
force is limited by the Coulomb friction law, Eq. (9). If the
particles do not slide on each other—i.e., if the tangential
relative velocity at contact is zero (g,=0)—the friction force
is only indirectly defined. Namely, it assumes the value nec-
essary to keep the particles from sliding as long as the re-
sulting force does not exceed the Coulomb limit, Eq. (9).
Hence, in this formulation there is no force law for static
friction—the friction force is not determined from geometric
properties like deformation. This makes the application of
the Coulomb friction law in molecular dynamics simulations
difficult: For the numerical integration of Newton’s equation
we need in each time step the forces acting on the particles.
These forces must be expressed in terms of positions and
velocities of the particles. Therefore, Coulomb’s law which
can a priori not be expressed in terms of positions and ve-
locities must be modeled by a function in these variables,

2
F,=-miny = . . (10)
f,v,,0,0; ...),
where the model specific function f(---) depends on the his-
tory of its arguments, v/(7); 0=7=t, and the other argu-
ments likewise. The choice of this function is not unique but
ambiguous to a certain degree.

B. Model by Haff and Werner

The most simple representation of the force scheme Eq.
(10) is the model by Haff and Werner [4],

F,=-min[uF,, v,g/(1)], (11)

with the dissipative parameter 7, and with the tangential
component of the relative velocity at the point of contact,
g,(1), given in Eq. (6). (Throughout this paper we call the
components of the relative velocity before the collision g,
and g,. Time-dependent velocities that vary during the colli-
sion are called g,(7) and g,(r). The final velocity components
are named g, and g;.) Without loss of generality, here and in
the following, the tangential velocity at the contact point
shall be positive. The case of negative tangential velocity can
be deduced by reflection and leads to identical results.

Thus, the model by Haff and Werner assumes shear damp-
ing ~g, for small velocity, limited by Coulomb’s law. The
model was successfully applied in many molecular dynamics
simulations of granular matter although there appear prob-
lems when rather static systems are simulated; see [1] for a
detailed discussion.

However, if we consider the coefficient of normal restitu-
tion which corresponds to the model, Eq. (11), we notice
more serious difficulties: both alternatively acting tangential
forces due to Eq. (11) cannot lead to negative relative veloci-
ties, g;, after a collision. This is obvious for F,«—g, and will
be shown in Sec. III A for F'«—F,. Consequently, the model
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by Haff and Werner cannot yield coefficients of tangential
restitution of negative value. This is a serious inadequacy of
this model. We will come back to this problem in Sec. III B.

C. Model by Cundall and Strack

The model by Cundall and Strack [5] mimics static fric-
tion by means of a spring acting in tangential direction with
respect to the contact plane. The spring is initialized at the
time of first contact, r=0, and exists until the surfaces of the
particles separate from one another after the collision. The
elongation

HOE f glt")dt' (12)
0

characterizes the restoring tangential force, limited by Cou-
lomb’s law. Thus

Ft=_min(MFn’kt§)- (13)

Consequently, when wF, <k, {—that is, the Coulomb law
applies—the spring assumes the elongation {=uF,/k, The
energy stored in the spring may be released in a later stage of
the collision. From molecular dynamics simulations we
know that this model is much better suited to describe static
behavior of granular matter [1]. As shown below, it yields
also negative values of the coefficient of tangential restitu-
tion for appropriate choice of the initial relative velocity at
the point of contact—e.g., g, and g,. This is due to the fact
that the internal spring acts like a reservoir of energy for the
relative motion of the particles in tangential direction. In the
first part of the collision the spring is loaded and may release
the stored energy towards the end of the collision. This way,
the tangential component of the relative velocity may change
its sign. The coefficient of tangential restitution which corre-
sponds to the model by Cundall and Strack, Eq. (13), is
discussed in detail in Sec. III C.

III. COEFFICIENT OF TANGENTIAL RESTITUTION
A. Pure Coulomb force

Before discussing the most common tangential forces
used in molecular dynamics simulations let us derive some
general expressions which apply to the limiting case of pure
sliding. This case occurs when during the entire collision the
friction force is not sufficient enough to stop the tangential
relative motion. Consequently, F,=uF,, from the beginning
to the end of the collision. The results derived here are valid
independently of the functional form of the normal force.
Therefore, the function F, remains unspecified, except for
the fact that it is a function of time, defined in the interval
0,1.).

During the contact the change of the velocities in normal
and tangential direction obey Newton’s law,

dg,(r) _ 1 dgdr) 1. (14)
dt Megp " dt o r

with
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1 R R
aE{—+—’+—L} , (15)
mee  Ji T

where J;;; are the moments of inertia of the colliding par-
ticles. The expressions (14) and (15) may be obtained from
Eq. (7) with the general paradigm of nearly instantaneous
collisions; that is, the unit vector ¢ does not change during
the collision. The validity of this approximation will be dis-
cussed briefly in Sec. IV.

Using the definition of the coefficient of normal restitu-
tion, Eq. (2), we write for the change of the normal compo-
nent

ZL‘
f Fn(t)dtz (1 + 8n)’neff 8n- (16)
0

Again we assume the tangential velocity at contact to be
positive. During the collision the friction force assumes the
value F,=—uF,(t); therefore, the tangential component of the
relative velocity in the point of contact after the collision
reads

, L[ w[ (1 + &,)meg
gt_gt=_f Ftdt=__f Fdi=———g,.
(17)

Hence, with the definition of the coefficient of tangential
restitution we find the relation

€ = 1= ’u(l+—8”)’/neff& , (1 8)
o 8t
independent of the functional form of the normal and tangen-
tial force laws (see [18,19]).

As an important consequence we find that the coefficient
of tangential restitution does significantly depend on both the
normal and the tangential relative velocities. Formally, Eq.
(18) leads to values of g, outside its range of definition.
However, the basic assumption of pure Coulomb friction im-
plies that the particles do not stop sliding on each other; that
is, during the entire contact the particles remain in the Cou-
lomb regime where F,=—uF,. Hence g/ =0 and, thus, &
=0.

Consequently, for pure Coulomb friction we obtain

1+
o Sn)meff&>; (19)

slzmax<0,l -
a 8¢

see Fig. 1.

B. Model by Haff and Werner

First we want to present an analytic theory for the elastic
collision in normal direction—that is, y,=0 in Eq. (3). The
time-dependent solution of the corresponding Newton’s
equation, Eq. (1), reads

&) = 22 sin w1, (20)

n

where w,=k,/mq;. Note that the compression &(#) is inde-
pendent of the tangential relative motion of the particles.
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FIG. 1. The coefficient of tangential restitution as a function of
the tangential impact velocity g, and the normal impact velocity g,
in the case of pure Coulomb friction. The parameters are u=0.4 and
k,=10% N/m.

With Egs. (9) and (3), the limiting Coulomb force is, there-
fore,

Sin w,t. (21)

When the collision starts at time #=0 at finite tangential ve-
locity g,, the magnitude of the Coulomb force, uF,, is al-
ways smaller than the magnitude of the shear damping force,
v, that is, the tangential force in the beginning of the col-
lision is equal to the Coulomb force. We integrate Eq. (11)
and find that during this first stage of the collision, the rela-
tive tangential velocity decays as

BBt (o5 = 1). (22)

() =g+
If the magnitude of the shear damping force drops below the
Coulomb force, the tangential force is governed by the other
branch of the force law, F,=vy,g,. The transition takes place at
time 7, ; when

kg .
e Sln(wnts,l) = 7Igt(ts,l)‘ (23)
wﬂ
Inserting Eq. (22) we obtain the first switching time 7, ; be-
tween the regimes:

aw,(5-1) + \/azwi— (8- 25))/[2

s wnts,l =Y

Pl +
a
5= 281 (24)
MMeg(8
If the initial tangential velocity fulfills the inequality
2 2 2
m Mgy Mgk,
8 - e eff \/M zeft + i 3 (25)
8n a a v

Eq. (24) does not have a real solution and the Coulomb re-
gime is active during the entire collision, (cf. Fig. 2, dashed
line).

011304-4



COEFFICIENT OF TANGENTIAL RESTITUTION FOR THE...

~ =~ Coulomb force
S~ — — - Haff & Werner, vy, g, large
~ ~ .
..... ~o - - -+ . Haff & Werner, v, g, medium
=~ e SO e Haff & Werner, v, g, small
~ ~
&~ o~
~
! S~
~
S ~s
= ~o
= ~~-s
= -
=]
o
= - N e
S TS ~. o
| Tt~
I RN
e R
I T
| ]
] : 1
ts,] time ¢ ls,2

FIG. 2. Sketch of the tangential force F,(r). When the collision
starts, the Coulomb force is always active since for finite g, always
v,8;> wF,=0. For large initial tangential velocity, the condition
v.8:(t) < uwF, (1) is never fulfilled during the entire condition. For
smaller g, the tangential velocity drops up to r=t; ; where v,g(t.)
=uF,(1.) and the Haff-Werner force vy,g, becomes active. The tan-
gential velocity decays further and eventually at time Z;, the Cou-
lomb force becomes active again (¢, and #,, shown in the figure
refer to small ¥, g,).

In this case the coefficient of tangential restitution reads

_ 2Mmeff&

b
a8

g=1 (26)
which coincides with Eq. (18) for the case g,=1.

For smaller initial tangential velocities Eq. (24) has a so-
lution; that is, after time 7, the Haff-Werner branch of the
tangential force becomes active and the tangential velocity
decays exponentially:

&) = g,(rs,oexp{— 2 m] . @)

Since the tangential velocity in the Haff-Werner model
cannot drop to zero, at some later time 7, , >t | the switching
condition must be fulfilled again:

M8k, .
Sln(wntsl) = Ytgt(ts,Z); (28)
see Fig. 2 (dotted and dash-dotted lines). This time is deter-
mined by

) Yi@n

. (29)
Iu‘kngn

Y .
exp|: ;t(ts,Z - ts,l):| SIH(wnts,Z) = gt(ts,l
For t>1t,, the Coulomb branch of the tangential force be-
comes active again for the rest of the collision. The final
velocity reads

M8 nIMeff

8 =8it;2) - [cos(w, ;) + 1], (30)

and the coefficient of tangential restitution is
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g,="". (31)
81
In the case of small tangential velocities, the time at the
beginning and the end of the collision where the Coulomb
regime is active is negligible and the decay of the tangential
velocity is mostly determined by the shear damping force. In
this case the coefficient of restitution reads

g, = exp(— W%). (32)
aw,
Figure 3 shows the coefficient of tangential restitution as
function of the normal and tangential components of the im-
pact velocity. We determined the coefficient of tangential res-
titution also by solving the equation of motion, Eq. (14),
numerically and analytically as described in this section,
leading to perfect agreement.

In the case of large tangential velocity g,, the coefficient
of restitution behaves like in the pure Coulomb case; that is,
for small values of g, the coefficient reaches the value pre-
dicted by Eq. (32) (see Fig. 3, coarse lattices).

In a good approximation the coefficient of tangential res-
titution in the model by Haff and Werner can conveniently be
described as either a non-negative constant 8? or the depen-
dence given by Eq. (18), whichever is larger:
zlumeffg_n). (33)

a &

Thus, the heuristics used in [18-20] [Eq. (33) in a different
notation] is justified, provided 8?20.

g = max(s?,l -

C. Model by Cundall and Strack
1. Equations of motion

The collision model by Cundall and Strack is described
by Egs. (1) and (4) and the force laws, Egs. (3) and (13). The
equation of motion reads, thus,

meffé + kng + ’Yng = 0’

é:gz(t),

ag‘l_Ft(g’Fn) =0,

€0)=0, &0)=g, (0)=0, {0)=g. (4

The tangential force
|F| = min(k,d, pk,€) (35)
counteracts the elongation of the tangential spring—that is,
F,=—sgn { min(k,{, uk,£). (36)

The equation of motion for the tangential degree of freedom
thus reads

al +sgn ¢ min(k,{, puk,&) =0. (37)
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FIG. 3. The coefficient of tangential restitution resulting from
the model by Haff and Werner as a function of the normal and
tangential components of the impact velocity. The coarse lattices
display the solution for pure Coulomb force, Eq. (19). The param-
eters are k,=10° N/m, u=04, y,=10 Ns/m (top), y,=1 Ns/m
(middle), and y,=0.1 Ns/m (bottom).

2. Numerical results

Before discussing more general properties of the collision
model let us look to the typical structure of the coefficient of
tangential restitution as it follows from the model by Cundall
and Strack. The set of equations (34) and (37) can be inte-
grated numerically. Figure 4 shows the coefficient of tangen-
tial restitution as a function of the normal and tangential
components of the impact velocity.

As a reference the plot (a) on the top of Fig. 4 shows the
case of elastic normal force y,=0. In the left panel we intro-
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FIG. 4. (Color) The coefficient of tangential restitution as a
function of the normal and the tangential components of the impact
velocity. The top figure (a) shows the case of pure tangential
damping—that is, €,,=1. The spring constants acting in normal and
tangential direction are k,=k,=10°® N/m. The left panel shows the
effect of the coefficient of normal restitution on &,: (b) £,=0.8, (c)
£,=0.6, and (d) £,=0.4. The right panel shows the influence of the
tangential spring constant: (e) k,=0.5k,, (f) k,=2k,, and (g) k
=10 k,,. In all plots the Coulomb friction parameter is u=0.4. The
numerical solution agrees perfectly with the analytical solution.

duce damping of the normal force of different magnitude—
ie., ¥,>0 or g,>0, respectively. In the right panel the
spring constant k, is varied. For small tangential velocity g,,
the coefficient of tangential restitution approaches in all
cases a constant whose value depends on both k, and g,. On
the contrary, in the case of large tangential velocity or small
normal velocity, &,(g,,g,) behaves as for the case of pure
Coulomb friction. Consequently, for vanishing normal veloc-
ity, g,—0; see Eq. (18).

The functional form of ¢,(g,,g,) reveals a more compli-
cated behavior for increasing stiffness of the tangential
spring, k,; see Figs. 4(f) and 4(g). For larger stiffness the
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function €,(g,,,g,) develops an increasing number of valleys.
We will discuss this behavior below in Sec. III C 7.

In contrast, the choice of the damping in normal direction
does not lead to qualitative changes of €,(g,,g,). Only for
very small coefficients of normal restitution do we find a
significant change of the form of g, as compared to the case
of pure tangential damping, &,=1.

3. Elastic normal spring

The numerical results presented in the previous section
suggest that the choice of the damping parameter v, or g, in
the normal direction is of much less importance than the
choice of the tangential spring constant k,. It is worth dis-
cussing an approximate theory for the limit of elastic inter-
action in normal direction—that is, y,=0 in Eq. (3).

For given elastic and dissipative material constants, k,,, k;,
v,=0, and u, the time dependence of the compression, &(7),
and the normal velocity g,(f) depend only on the normal
component of the impact velocity at the point of contact,
£,=8,(0), but they are independent of the tangential compo-
nent g,. Integrating Eq. (34) we obtain

€0 =" sin(w,), te01), t=mo, (38
with w, defined in Eq. (5).

Assume at time # (¢, is not necessarily the time of impact)
the tangential component of the relative velocity is g,(¢,) and
the tangential motion occurs in the Cundall-Strack regime.
At this instant the tangential velocity is g,(¢,) and the elon-
gation of the Cundall-Strack spring {(¢,). The solution of the
equation of motion, Eq. (14), for the tangential velocity and
the elongation of the tangential spring is then

gilto) sinfw,(t—1)],  (39)

Wy

4(1) = L(tg)cos[ w1 — 1p) ] +

8,(t) = = {(tp) w, sinfw(t — 1)) ] + g (tp)cos[w,(t = 1) ],
(40)
with w,=\k,/ . On the other hand, if the tangential motion is

governed by Coulomb’s friction law, the solution of the
equation of motion, Eq. (37), is

g1) = g(t) - 5 sgn[{(to)] J dr'F,(t")

= 5t + senl (1) ] =2t
X[cos(w,t) — cos(w,ty)] (41)

and the absolute value of the spring length is

{0 = "7""5@. 42)

As in the case of the Haff-Werner law, discussed in Sec.
IIT B, the force may change during a collision between the
Cundall-Strack regime, |F,|=k,{, employing the elastic
spring of stiffness k,, and the Coulomb regime, F,=uk,¢.
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(For a detailed analysis of the switching properties see Sec.
I C5.) In order to determine the coefficient of tangential
restitution we have to determine the times when the regime
changes and combine the corresponding partial solutions,
Egs. (40) and (41), correspondingly. Whereas in case of the
Haff-Werner force there are only zero or two changes of the
regime, we will see that in case of the Cundall-Strack force
there may occur multiple changes of the regime; see Sec.
I Cs.

If the motion is governed by the Cundall-Strack force, the
system changes to the Coulomb regime at time #; when the
Coulomb force equals the force according to the Cundall-
Strack force:

pky&(t5) = k| £(1,)]. (43)

On the contrary, if at the present time the motion is gov-
erned by the Coulomb force, determining the time when the
Cundall-Strack regime will take over is less straightforward:
If the system is in the Coulomb regime, the elongation of the
tangential spring is determined by Eq. (42). Thus, in this
regime the Coulomb force and the Cundall-Strack force are
equal. The regime changes if after an infinitesimal time ¢
+dt, the Cundall-Strack force according to Eq. (12) exceeds
w times the Coulomb force, Eq. (38); that is, the next switch-
ing time is determined by the time when the derivatives of
the forces in both regimes equal one another. Therefore, the
collision switches from the Coulomb regime to the Cundall-
Strack regime at time 7, with

k
% cos(w,t,) = g(z,), (44)

t

where g,(¢) is governed by Eq. (41).

Finally, we have to determine whether the collision starts
in the Coulomb regime or in the Cundall-Strack regime. We
consider the potential change of the Cundall-Strack force and
the Coulomb force in an infinitesimal time interval. The con-
dition to start in the Coulomb regime reads, thus,

kg < kg, (45)

This inequality, together with Egs. (39)—(41), (43), and (44),
describes the tangential motion of the colliding spheres. We
determined the coefficient of tangential restitution by com-
bining the piecewise solutions for the Cundall-Strack regime
and the Coulomb regime with regard to the corresponding
switching times f,. The result agrees perfectly with the nu-
merical solution shown in Fig. 4.

Let us now discuss the special case of pure Coulomb fric-
tion. If the condition (45) is fulfilled, the dynamics starts in
the Coulomb regime and switches to the Cundall Strack re-
gime if Eq. (44) is fulfilled. However, there may be no real
solution of Eq. (44) and hence the Coulomb regime may be
active during the entire collision. In that case the coefficient
of restitution is described by Eq. (18). Using Eq. (41) with
to=0 and inserting this in Eq. (44) one finds
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k
B cos(wty) = g+

1

BTt os(wyt) = 1], (46)

assuming (without loss of generality) a positive g, yielding
sgn {=1. Solving this equation for cos(w,;) one finds

k, m m
u(—"— eff)cos(wnm =S el (47)
ke «a &n a
This equation has no real solution if
m, k, m
8 Meft > pl - Tleff i (48)
8n a k;

as |cos w,t,| cannot be larger than 1. Hence if both inequali-
ties (45) and (48) are fulfilled, the dynamics stays in the
Coulomb regime. Furthermore, it is possible to calculate the
value of g, which is reached when g, tends to zero. It is
obvious from the inequality (45) that the dynamic starts for
small g, in the Cundall-Strack regime and that there is a
small time interval before the end of the collision where the
dynamics is governed by the Coulomb regime. This time
interval is proportional to g,/ g, which is small by construc-
tion [cf. Eq. (43) together with Egs. (38) and (39)]. Hence,
the expression cos(w,ty) in Eq. (41) is cos(w,f,.)
+0((g,/g,)?). The small correction O((g,/g,)*) can be ne-
glected and the final velocity g; can be approximated as g,
=g, cos(w,t,), yielding

lime,(g,,g,) = cos(w,t,.) = cos<ﬂ> (49)
0

8 w,
[cf. Eq. (40) with 7,=0 and r=1,].
4. Scaling properties for the case of elastic normal springs

For the case vy,=0—that is, when the dissipation of the
motion in normal direction can be neglected—e, =1, appar-
ently, the collision as described by the Cundall-Strack model
depends on seven parameters: m, J, u, k,, k;, g,, and g,. By
using appropriate time and length scales we can reduce the
number of free parameters to 3. The length scale is the maxi-
mum compression &, in normal direction:

b=\ 80 = (50)
@o

n

The obvious time scale T of the problem is the duration of
the collision, ¢.= 7/ wy. To simplify the resulting expressions
we drop the prefactor 7 and define

T i Megp

. 51
o L (51)

The scaled variables are, thus, the scaled deformation, the
scaled length of the tangential spring, and the scaled time:

X = g/gmax’ = Z/gma)v T= I/T' (52)

Taking into account that a/m; with « defined by Eq. (15),
for identical homogeneous spheres, reduces to a pure num-
ber, a/myy=2/7, the equation of motion, Eq. (34), is

X+x=0
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FIG. 5. (Color online) For elastic normal restitution, the
Cundall-Strack model reveals the simple scaling form, Eq. (53).
Despite its rather complicated functional form, the plot of &,(g,,g,)
is invariant when scaling the impact velocity. Top: velocity range 0—
0.02 m/sec. Bottom: 0-2 m/sec. The other parameters are k,=k,
=10% N/m and u=0.4. The pictures are identical since the coeffi-
cient of restitution depends only on g,/g,.

ceLsang (k ) 0
—sgn ¢ min| —z, =
4 2g kz,wx

n

x0)=0, z0)=0, #0)=1, 0)=2L, (53)

n

where overdots denote time derivatives with respect to the
scaled time 7. Consequently, the parameters of the system are
M, k,/k,, and g,/ g,. As an example, the dependence on g,/ g,
is demonstrated in Fig. 5. When scaling both velocities by
100, the resulting picture is identical.

5. Switching between friction regimes

During a collision, depending on the impact velocity and
the material parameters the relative motion of the particles at
the point of contact may change its character; namely, it may
change to and from the Coulomb regime where the friction
force is determined (i.e., capped) by the normal force and the
Cundall-Strack regime where the magnitude of the friction
force is determined by the length of the tangential spring
alone.
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FIG. 6. (Color online) Number of switching events between the
Cundall-Strack and the Coulomb regimes during a collision as a
function of g,/ g, and k,/k,. The numbers of changes are indicated
by gray shading (color online) and by the numbers in circles. The
Coulomb friction coefficient is pw=0.4. The letters a,...,o at the
right side (not all are shown) refer to qualitatively different func-
tions () or z(7), shown in Fig. 7.

This change of regime occurs also in the Haff-Werner
model; however, there are fundamental differences: As
shown in Sec. III B there may be only zero or two changes;
for the Cundall-Strack model, we may have multiple
changes. This property originates from the fact that in the
Cundall-Strack regime there is no loss of energy. Instead,
during the Cundall-Strack regime the energy of the relative
motion is used to load the tangential spring whose energy
can be released subsequently; that is, the tangential spring
acts as a reservoir of energy. The only way to dissipate the
energy stored in the tangential spring is by switching into the
Coulomb regime and rapidly decreasing the elongation of the
tangential spring due to decreasing normal force. In this case
the energy in the spring cannot be fully recovered. This tan-
gential spring is a great advantage of the Cundall-Strack
model as its action may lead to a negative coefficient of
tangential restitution which cannot be achieved by the Haff-
Werner model.

The number of switching events between the regimes as
described by the criteria, Egs. (43) and (44), and the initial
regime given by Eq. (45) is shown in Fig. 6.

For any value of k,/k, there is a critical g,/ g, above which
the particle stays in the Coulomb regime (region “0,” black
color in Fig. 6), corresponding to case of pure Coulomb fric-
tion discussed in Sec. IIT A. The boundary of this region is
given by Egs. (45) and (48).

Decreasing the tangential component of the impact veloc-
ity below the limit of pure Coulomb friction the collision
will switch to the Cundall-Strack regime, at least for a short
period of time. It may repeatedly switch back and forth be-
tween the two regimes, dependent on the impact velocity and
the spring constants k, and k,. To demonstrate this effect we
marked 15 points in Fig. 6 indicated by a,...,o0 at the right-
hand side of the figure (not all are shown) which correspond
to decreasing g,/ g, for fixed k,/k,. For these parameter com-
binations we show in Fig. 7 the elongation of the tangential
spring over time (solid lines).

The dashed lines show the Coulomb limit—i.e., uF,/k,.
Indeed, for large enough tangential velocity [Fig. 7(a)] the
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FIG. 7. Elongation of the cundall strack spring as a funtion of
time for k,/k,=18 and the values g,/ g, indicated by a, ... ,0 in Fig.
6. The Couloumb limit is shown by dashed lines.

tangential force remains on the Coulomb limit for the entire
duration of the collision.

For tangential velocities slightly smaller than the limit
given by Eq. (45) [region b in Figs. 6 and 7(b)] the collision
switches to the Cundall-Strack regime near its end; that is,
the friction force is sufficient to stop the particle once. For
the chosen value of the spring constants (k,>>k,) the period
of the tangential oscillation is much smaller than the period
of the normal oscillation. Therefore, the tangential relative
velocity of the particles at the point of contact is reverted.
Finally, the Coulomb limit takes effect again; the particle
stays in the Coulomb regime to the end of the collision. As
the tangential motion is reverted once the coefficient of tan-
gential restitution is negative.

For still a little smaller velocity [region ¢ in Figs. 6 and
7(c)] the collision switches earlier from the Coulomb regime
to the Cundall-Strack regime as its smaller tangential energy
is dissipated earlier. Hence, the remaining time of contact is
large enough to allow not only the reversal of motion and the
subsequent switch back to the Coulomb regime as in the case
b but allows an additional switch back to the Cundall-Strack
regime; that is, the tangential velocity changes its sign back
to the original direction. Finally the collision switches back
to the Coulomb regime. Since the tangential velocity has the
same sign as at the time of the impact, the coefficient of
tangential restitution is positive.

Note that the amplitude of the first tangential oscillation
(after the first switch to the Cundall-Strack regime) increases
with decreasing tangential velocity—as the time of the first
switch shifts towards the time of maximal compression.
Therefore, the oscillation cannot complete even a half period
without transiting to the Coulomb regime. Therefore, the
number of switches is twice the number of zeros in the elon-
gation of the Cundall-Strack spring.

For further decreasing tangential velocity this mechanism
is repeated, the number of switches increases in steps of 2.
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time ¢

FIG. 8. Sketch of the elongation of the tangential spring for
commensurable frequencies, w,=2w, and w,=3w,, for the case that
the collision starts in the Cundall-Strack regime.

After the maximum number of switches (8) is achieved for
region e in Figs. 6 and 7(e) the number of switches de-
creases. This is due to the fact that the amplitude of the
tangential oscillation now decreases with decreasing tangen-
tial velocity since the first switch to the Cundall-Strack re-
gime takes place before the point of maximal compression.
The number of switches now decreases as the first oscillation
of the Cundall-Strack spring may now complete more than
half a period. Interestingly, there is a short interval of g,
where the number of switches is back to 8 due to an addi-
tional pair of switches close to the end of the collision.

For small values of the tangential velocity or small k,
there is only one switch. The particle starts in the Cundall-
Strack regime and performs several tangential oscillations
without violating the Coulomb condition. Only at the very
end of the collision does the particle switch to the Coulomb
regime. As mentioned before, this is the only time when
energy of the tangential motion is actually dissipated.

6. Commensurable spring constants

Let us discuss briefly the special case of commensurable
tangential and normal motion that occurs when the elastic
constants k, and k, are such that the frequency of the tangen-
tial Cundall-Strack spring is a multiple of frequency of the
normal motion, w,=m, w,, m=1,2,3..., as sketched in Fig.
8.

In this case we notice a plateau in the coefficient of tan-
gential restitution as a function of the components of the
impact velocity, Fig. 9.

This behavior becomes clear from the sketch in Fig. 8: If
the components of the impact velocity, g, and g,, are such
that the collision starts in the Cundall-Strack regime and w,
is a multiple of w,, the elongation of the tangential spring is
zero at the end of the collision. Hence, in contrast to non-
commensurable frequencies, the system does not transit into
the Coulomb regime close to the end of the collision; that is,
the entire collision takes place in the Cundall-Strack regime.
As explained above, energy is only dissipated in the Cou-
lomb regime; consequently, the coefficient of tangential res-
titution is ,= = 1. Whether the value is 1 or —1 depends only
on the ratio between the frequencies:

g=(-=1". (54)
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FIG. 9. (Color online) The coefficients of tangential restitution
as a function, g, and g,, for commensurable frequencies of the
springs in the normal and tangential directions. In this special case,
e/g,,g,) reveals pronounced plateaus. Top: w,=w,. Middle: o,
=2w,. Bottom: w,=3w,,.

The condition for the collision to start in the Cundall-
Strack regime is described by the inequality (45); therefore,
the boundary of the plateau is given by

Mk,
k;

&=""8&n (55)

7. Coefficient of tangential restitution in scaled units

As elaborated on in Sec. III C 4, the coefficient of tangen-
tial restitution does not explicitly depend on the parameters
g &n» k,, and k, but only on the ratios k,/k, and g,/ g,. This
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FIG. 10. (Color) The coefficient of tangential restitution as a
function of the ratios g,/ g, and k,/k,. The Coulomb coefficient is
n=0.4.

scaling property allows us to present the coefficient of tan-
gential restitution in a more general way was shown Fig. 4.
Figure 10 shows g,(k,/k,,g,/g,).

For sufficiently large tangential velocity we recover the
pure Coulomb regime (top region in Fig. 10). For very small
g:/ g, € oscillates between —1 and 1. As explained above, in
the limit of vanishing tangential velocity g,, the coefficient of
tangential restitution is described by Eq. (49). Expressed in
terms of the ratio k,/k, one obtains

k k
st<&—>0,—t) = Cos W\/—Zm;cff . (56)
8n k ky

n

The oscillating behavior of &,(g,/g,.k;/k,) in both direc-
tions for fixed g,/g, and varying k,/k, as well as for fixed
k,/k, and varying g,/ g, may be attributed to the switching
between the Coulomb regime and the Cundall-Strack regime
as discussed in Sec. III C 5 (see Figs. 6 and 7).

Note that the green line in the very left of Fig. 10 is not an
artifact of plotting. Here the coefficient of tangential restitu-
tion rises very steeply to €,— 1 since for very small g, during
the collision whose duration is determined by k,, the tangen-
tial spring cannot be elongated enough to transit into the
Coulomb regime.

IV. VARIATION OF THE UNIT VECTOR ¢ DURING THE
COLLISION

All results in the previous section were obtained under the
assumption that the unit vector ¢=(r;—7;)/|F;—7,| remains
constant during the entire collision. This assumption is exact
only for a central collision when g,=0. If the particles collide
with finite tangential relative velocity, the vector ¢ cannot be
constant but changes its direction, as shown in Fig. 11.

By means of numerical integration of Newton’s equation
of motion for a pair of colliding spheres of mass m;=m;

J
=1 g and radii R;=R;=4 mm. We computed the variation of
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FIG. 11. During a noncentral collision the unit vector e= (r;
—r;)/|F;=r;| changes its direction.

the unit vector ¢ during the collision to check whether the
assumption ¢ = const is justified. Figure 12 shows the change
A¢ as a function of the normal and tangential components of
the impact velocity. Here A¢ is defined as the angle in radi-
ans between the unit vector at the beginning of the collision
and its end.

For rather soft particles, k,=10°> N/m (bottom part of Fig.
12), the unit vector changes remarkably up to about 30°,
whereas for more stiff particles, k,=10° N/m (top part), the
angle is below 1°. Hence, for sufficiently hard particles the
assumption ¢=const is justified.

The significant change of the unit vector during a colli-
sion for soft particles reminds us that the concept of the
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FIG. 12. Variation of the unit vector e=7;—7;/|7;—7;| during a
collision as a function of g, and g,. The change Ae is defined as the
angle in radians between the ¢ in the beginning and the end of the
collision. The parameters are pu=0.4, m;=m;=1 g, R;=R;=4 mm,
k,=k,=10° N/m (top), and k,=k,=10> N/m (bottom).
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coefficients of restitution is a hard-particle approach. The
softer the particles, the less accurate we can compare soft-
particle simulations (molecular dynamics) with hard-particle
simulations (event-driven MD). At the same time it cannot
be expected that results from Kinetic theory—e.g., [21]—
based on coefficients of restitution, are relevant for systems
of very soft particles.

V. CONCLUSIONS

We investigated the coefficient of tangential restitution for
linear normal forces and two different tangential force
models—the models by Haff and Werner [4] and by Cundall
and Strack [5].

For the model by Haff and Werner, we showed that the
coefficient of restitution is strictly non-negative. In a good
approximation its functional form can conveniently be de-
scribed as either a (non-negative) constant or the dependence
given by Eq. (18), whichever is larger [see Eq. (33)]. Thus,
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this model is unsuitable for describing collisions with nega-
tive coefficient of tangential restitution.

For the model by Cundall and Strack the coefficient of
tangential restitution shows a very complex behavior. For
certain combinations of impact velocities and material pa-
rameters one may observe a negative coefficient of tangential
restitution. By adopting suitable length and time scales one
can conveniently present the velocity dependence of &, by
only three parameters—the friction coefficient w, the ratio of
the components of the impact velocity, g,/ g,, and the ratio of
the tangential and normal spring, k,/k,—provided the dissi-
pation of the normal spring can be neglected (g,=1). We
showed that the latter parameter k,/k, is critical for the sign
of g,.

For the limit of sufficiently large tangential velocity there
is a universal velocity dependence of &,(g,,g,) which is not
only independent of the tangential but also of the normal
force law. We call this limit the limit of pure Coulomb force.
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