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We consider a simple random walk on the T-fractal and we calculate the exact mean time �g to first reach the
central node i0. The mean is performed over the set of possible walks from a given origin and over the set of
starting points uniformly distributed throughout the sites of the graph, except i0. By means of analytic tech-
niques based on decimation procedures, we find the explicit expression for �g as a function of the generation
g and of the volume V of the underlying fractal. Our results agree with the asymptotic ones already known for
diffusion on the T-fractal and, more generally, they are consistent with the standard laws describing diffusion
on low-dimensional structures.
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I. INTRODUCTION

Many problems in physics and chemistry are related to
random walks on fractal structures �1–3�. The main reason is
that such structures are able to mimic the inhomogeneity and
scale-invariance typical of disordered materials. An impor-
tant class of fractal structures is given by the so-called ex-
actly decimable fractals which include deterministic finitely
ramified fractals such as the Sierpinski gasket and the
T-graph. These structures, being amenable to renormalization
procedures, allow exact analytic calculations �4–6�.

In general, the lack of translational invariance implies sig-
nificant corrections to the standard laws describing diffusion
on regular lattices. Indeed, in the fields of reaction-diffusion
and transport theory, a question of long-standing interest
concerns the interplay between spatial extent and system di-
mensionality in affecting the reaction kinetics and the trans-
port efficiency �7�.

A fundamental quantity characterizing diffusion is the
mean first-passage time �MFPT�, i.e., the expected time for a
random walker, starting with equal probability at any site
i� i0, to first reach a given site i0. This problem was first set
up by Montroll �8� in the case of regular structures and later
extended to more complex substrates �9–15�. Notice that this
definition of MFPT involves a double average: The first one
is over all the walks from a given origin i, then you must
average over a uniform distribution of initial sites, whose
support is the whole set of graph sites, except i0.

The MFPT is also intrinsically related to a number of
different problems �12�. In the context of reaction-diffusion
processes it represents the mean time to react for a particle
diffusing in the presence of an active site located in i0
�8,16–18�, which is sometimes referred to as target problem.
Also, the mean first-passage time defined above describes the
asymptotic behavior of the average time for two diffusive
particles to first encounter �19�.

The MFPT has been previously studied on different kinds
of structures and several analytical results have been found.
Most of them consist of scaling relations and asymptotic
behaviors �9,13,14�, while a very few exact results are
known �11,12�. Exact solutions on finite structures are espe-
cially longed for since they prove useful for a deeper com-
prehension of theoretical models and for checking approxi-
mate solutions or numerical simulations.

Here, we derive the exact mean first-passage time for a
random walker on the T-fractal, following the decimation
procedure recently introduced by Kozak et al. and applied to
the Sierpinski gasket �11�. In particular, we assume a simple
random walker �RW� in the presence of a perfect trap fixed at
the central site and we calculate the mean-walk length before
absorption. The closed-form expression we obtain for the
latter is akin to the one in �11� and consistent with known
asymptotic results �9,10,19�.

Though they are both deterministic fractals, the Sierpinski
gasket and the T-fractal display significant differences: While
the former models self-similar structures endowed with
closed loops, the T-fractal is representative for treelike struc-
tures �9,10,20–23�. For this reason it is worth extending and
comparing the related results.

The paper is organized as follows. In Sec. II we describe
the main features of the T-graph and we resume the analytic
background underlying the analytic solution; in Sec. III we
describe the decimation procedure applied and we obtain the
exact formula for the MFPT as a function of the generation
and the volume of the structure; finally, Sec. IV includes
conclusions and comments.

II. THEORY

A. Exactly decimable fractals

A generic graph G is mathematically specified by the pair
�� ,�� consisting of a nonempty, countable set of points �,
joined pairwise by a set of links �. The cardinality of � is
given by ���=V representing the number of sites making up
the graph, i.e., its volume. From an algebraic point of view, a
graph G= �� ,�� is completely described by its adjacency
matrix A. Every entry of this off-diagonal, symmetric matrix
corresponds to a pair of sites, and it equals one if and only if
this couple is joined by a link; otherwise, it is zero. The
number of nearest-neighbors of the generic site i, referred to
as coordination number, can be recovered as a sum of adja-
cency matrix elements: zi=� j��Aij. These are used to build
up the diagonal matrix Zij =zi�ij �6�.

A very special class of graphs is given by the so-called
exactly decimable fractals which are geometrically invariant
under site decimation. In general, all deterministic, finitely
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ramified fractals are exactly decimable. The solution of both
the random walk and harmonic oscillations problems can be
obtained by standard renormalization group calculations
based on real space decimation procedures �4–6�. The Sier-
pinski gasket, the T-graph �Fig. 1�, and the branched Koch
curves are examples of exactly decimable fractals, which ac-
counts for their popularity. Notice that such structures are
characterized by strong restrictions on their topology which
can give rise to properties far from holding for all fractals
�20�.

Here, we consider a T-fractal which is iteratively con-
structed by performing the operation illustrated in Fig. 1 on
each link. The number of iterations is called the generation
g of the fractal. At the gth generation the cardinality
of the set of nodes V�g�, hereafter called volume, is given
by V�g�	��g�=3g+1. The T-fractal has fractal dimen-
sion df =log 3 / log 2
1.585 and spectral dimension

d̃=log 9 / log 6
1.226. We recall that the former gives the
dependence of the volume of the system on its linear size L:

V�g� � �L�g��df = �2g�df ,

while the latter governs �among other phenomena� the long-
time properties of diffusion on the graph. Indeed, if we con-
sider a random walker starting from a given site i of the
graph, the probability Pii�t� of returning back to the starting
point at time t, at long times, follows the law

Pii�t� � t−d̃/2.

When d̃�2 the random walker is said to perform a “compact
exploration” of the space �24� since the fractal dimension of
its trajectory is greater than the dimension df of the substrate.

It is worth underlining that the T-fractal is irregular; that
is, the coordination number is site dependent. We can distin-
guish among “internal site” with coordination number z=3
and “external site” with z=1. We call �int and �ext the set of
internal and external sites, respectively. Obviously �g

	�int
g ��ext

g .
Figure 2 shows generations g=2,3 and the labeling

method adopted, which will be useful in the next section. In
each new generation, we label only the new sites while old
sites keep their own labels. Hence, at generation g+1, we
name new sites progressively, starting from V�g�+1. The

first sites to be labeled are the innermost; the last ones are
those farthest from the central site i0=1. At each generation
we can distinguish sets of equivalent sites which are labeled
anticlockwise. Due to the symmetry of the T-graph, the car-
dinality of such sets is always a multiple of 3; for example,
we have �2,3 ,4 ,8 ,9 ,10�g=2, and �14,15,16�g=3.

Before proceeding further, let us recall some facts con-
cerning unbiased diffusion on a T-fractal of generation g rep-
resented by the adjacency matrix Ag �henceforth we will omit
the subscript g�. We consider a simple RW, starting, at t=0,
from site i; at each time step �taken to be unity� the particle
jumps with equal probability to any of its nearest-neighbor
sites. With Pji�t� being the probability of going from i to j in
t steps, the following master equation holds:

Pji�t + 1� = �
k=1

V

�Z−1A� jkPki�t� , �1�

which states that at each time step, the jumping probability
from an internal site is 1

3 . From the previous equation it
follows that Pji�t�= ��Z−1A�t� ji. It is also easy to verify that
the Markov chain representing such a random walk is er-
godic and the particle will visit all sites with probability 1,
independent of the origin i. Consequently, the walker will
reach any site with probability 1, in a time possibly diverging
when g→�.

FIG. 1. T-fractal of generation 4: V=34+1. The next generation
is obtained by performing the operation illustrated on the right on
each bond.

FIG. 2. �Color online� T-graph of generation 2 �top� and 3 �bot-
tom� with volume V=32+1 and V=33+1, respectively. Each site
has been labeled according to the procedure described in the text.

Dotted links belong to �̄g and colored sites to �̄g; more precisely,

pink sites are in �̄ext
g and blue sites in �̄int

g .
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B. Mean time to absorption

Let us consider a perfectly absorbing trap, fixed on the
central site �labeled with index i0=1� of the T-graph. Our aim
is to obtain, through a decimation procedure, an exact,
closed-form solution for the average time to absorption,
where the average is meant both over all the possible walks
starting from the same origin i and over all sites i� i0 taken
as origin of the walk.

The special choice we made for the trap location makes
the decimation procedure easier to be applied as we can iden-
tify the site i0 since the first generation.

We now introduce �i,q
g to be the qth �q=0,1 , . . . � moment

of the trapping time for a walk starting from i on the gth
generation of the graph. Obviously, regardless of g, �0,q

g =0
and �i,0

g =1. The latter is the zeroth moment of the distribu-
tion of the time to absorption given i as origin and it is
unitary because the walker will be trapped with probability
1, whatever its origin.

The starting point for our analytic treatment is the discrete
differential equation introduced in �11�:

− �
j=2

V�g�

�ij� j,q+1
g = �q + 1��i,q

g , �2�

where �=AZ−1−I is a normalized version of the discrete
Laplacian whose first row and column �corresponding to the
trap site� have been removed. We recall that � is a nonsin-
gular matrix and each row has sum zero, apart from those
corresponding to sites V�g−1�+1, V�g−1�+2, and
V�g−1�+3, i.e., the three nearest neighbors of the trap, for
which the sum is − 1

3 . As discussed in �7�, Eq. �2� can be
generalized to the case of two or more particles simulta-
neously diffusing. In the following, we just focus on the set
of first moments � j,1

g , for which Eq. �2� simplifies into

− �
j

�ij� j,1
g = �i,0

g = 1.

Henceforth we can drop the index corresponding to q with-
out ambiguity:

− �
j

�ij� j
g = 1.

Now, we implement the average over the starting site i, cho-
sen according to a uniform distribution in �g \ �i0�:

�g =
1

V�g� − 1 �
i=2

V�g�

�i
g =

1

V�g� − 1 �
i=2

V�g�

�
j=2

V�g�

�− �−1�ij . �3�

In the next section we derive some recurrence relations
which allow to simplify the previous equation.

Equation �3� can be very easily interpreted if we look at
the random walk as a Markov chain. Indeed, −�−1 is just the
fundamental matrix for the process whose entry i , j repre-
sents, by definition, the expected number of times that the
process is in the transient state j, being started in the tran-
sient state i.

Finally, notice that, due to the symmetry and the absence
of loops characterizing the structure under consideration, the
mean time to absorption found in this case just corresponds
to the mean time to reach site 2 �or, analogously, 3,4�, on a
T-fractal of generation g−1. More generally, if we call �g the
mean time to first reach a given site arbitrarily chosen from
the set of sites farthest from the central one �distance 2g−1�,
then �g=�g+1.

III. DECIMATION PROCEDURE

The number of terms to sum up in Eq. �3� grows expo-
nentially with g, hence, a direct calculation of �i

g and �g can
be accomplished straightforwardly only for the very first
generations �see Tables I and II�. Such data allow one to get
some recurrence relations useful for the derivation of the
final formula. First of all, notice that for a given site i, we
have �i

g+1=6�i
g: in each generation the chemical distance

from i to the trap doubles while the mean time to first reach
the trap increases by a factor 6. This exact scaling follows

TABLE I. Mean time to absorption �i
g for a random walker starting from a given site i. For these values the average is only performed

over all possible random walks sharing the same origin. Due to the symmetry of the T-fractal we can distinguish sets of equivalent sites such
that, if taken as origin of the walk, they provide the same mean time �i

g. Notice that, for the farthest sites from the trap, having chemical
distance 2g−1, the average absorption time is 6g−1, consistent with the random walk dimension dw.

g \ i �2, 3, 4� �5,6, 7� �8, 9, 10� �11, 12, 13� �14, 15, 16� �17, 18, 19, 20, 21, 22� �23, 24, 25, 26, 27, 28� �29,30,31� �32, 33, 34�

1 1

2 6 5 6

3 36 30 36 17 18 35 36

4 216 180 216 102 108 210 216 53 54

TABLE II. Mean first-time �g obtained by direct calculation
from Eq. �3�; since this implies a sum over a number of terms
exponentially increasing with g, only small generations have been
considered.

g V�g� �g

1 4 1

2 10 51 /9

3 28 837 /27

4 82 14391 /81

5 244 254421 /243

6 730 4550175 /729
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from the symmetry and decimability of the graph and it is
consistent with the random walk dimension on the T-fractal:

dw=2df / d̃=log 6 / log 2 �11�.
Furthermore, at each generation g we insert on the

existing fractal some new links and some new vertices. We

call such sets �̄g=�g \�g−1 and �̄g=�g \�g−1, respectively. It

is easy to see that ��̄g�=V�g�−V�g−1�=2	3g−1 and

2	 ��̄g�= ��̄g�. Moreover, for each new link added we have a
new couple of connected vertices jext and jint, belonging to

�̄ext
g and �̄int

g , whose coordination numbers are zjext
=1 and

zjint
=3, respectively, and

�̄g = �̄ext
g � �̄int

g ,

1

2
�̄g = �̄ext

g = �̄int
g . �4�

For example, �̄ext
3 = �14,15,16,23,24,25,26,27,28�, as

shown in Fig. 2. Now, it is easy to see that

�iext

g = �iint

g + 1, �5�

since a RW starting from iext is necessarily on iint at time
t=1. These facts hold regardless of the generation g and for

any connected couple chosen from �̄g. Thus we can write

�
i=2

V�g�

�i
g = 6 �

i��g−1

�i
g−1 + �

i��̄g

�i
g. �6�

In the last sum we can highlight the contribution from exter-
nal and internal sites and, exploiting Eqs. �4� and �5�,

�
i��̄g

�i
g = �

i��̄ext
g

�i
g + �

i��̄int
g

�i
g = 2 �

i��̄int
g

�i
g + ��̄int

g � . �7�

Let us now focus on the sum appearing in the rightmost side
and estimate it in the case g=3 depicted in Fig. 2. The mean
time to absorption for a RW starting from site 5 can be ex-
pressed as

�5
3 = 1 + �P11,5�11

3 + P17,5�17
3 + P18,5�18

3 �

=
�1 + �11

3 � + �1 + �17
3 � + �1 + �18

3 �
3

=
�14

3 + �23
3 + �24

3

3
, �8�

where Pki represents the transition probability from state i to
state k. Hence, �5

3 is just the average of the absorption times
from 14, 23, 24, which mirrors the barycentric position of 5
with respect to the latter. Also notice that site 5 belongs to

�̄int
g−1. Since these facts hold for any analogous subtree of

generation 2, we are allowed to write

�
i��̄ext

g

�i
g = 3 	 6 �

i��̄int
g−1

�i
g−1. �9�

From Eqs. �7� and �9�

�
i��̄int

g

�i
g + 3g−1 = 18 �

i��̄int
g−1

�i
g−1, �10�

and solving this recurrence relation we obtain

�
i��̄int

g

�i
g =

3g−1

5
�1 + 4 	 6g−1� . �11�

By plugging the last expression into Eq. �6� we get

�V�g� − 1��g = 6�V�g − 1� − 1��g−1 +
2

5
	 3g−1�1 + 4 	 6g−1�

+ 3g−1

and, dividing by V�g�−1=3g,

�g = 2�g−1 +
1

15
�7 + 8 	 6g−1� . �12�

The last expression is, again, a recursive equation, whose
solution provides the exact mean time to absorption:

�g =
1

15
�− 7 + 5 	 2g + 2 	 6g� . �13�

A numerical check of this formula can be attained by com-
paring �g, 1
g
6 with data obtained by direct calculation
and reported in Table II: The agreement is perfect.

It is also possible to obtain an expression for �g as a
function of the volume V�g�=3g+1. In fact, recalling
the spectral dimension for the T-graph, we can write

2g= �V�g�−1�2/d̃−1, and

�g =
1

15
�5�V�g� − 1�2/d̃−1 + 2�V�g� − 1�2/d̃ − 7� . �14�

Notice that the last expression gives the exact, explicit de-
pendence of �g on V�g�. In the asymptotic limit, as V�g�
diverges,

�g → V�g�2/d̃. �15�

This result is consistent with the leading behavior of �g on
the T-fractal discussed in �9� and, more generally, to the lead-
ing behavior of the trapping time on low dimensional

�d̃�2� structures. In fact, as already remarked, the MFPT
represents the mean trapping time �trap for a diffusing particle
in the presence of a fixed perfect trap �or, symmetrically, the
trapping time for an immobile target in the presence of a
diffusive trap�. With Ps�t� being the survival probability at
the tth step, i.e., the probability that the RW has not yet
reached the trap site, then �1�

�trap = �
0

�

−
�Ps�t�

�t
t dt .

The asymptotic expression for the survival probability is �25�

Ps�t� = exp
−
��t�

V
� , �16�

with
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��t� � � td̃/2, d̃ � 2,

t

log t
, d̃ = 2,

t , d̃ � 2.
� �17�

One therefore expects that, for low dimensional structures,

�trap�V2/d̃. Our result and the one in �11� establish this rela-
tionship rigorously.

As can be shown by scaling arguments, on long times, the

factor 6g�V�g�2/d̃, which is the leading term in Eqs. �13� and
�14�, is involved in all the dynamical properties of diffusion
on the T-fractal. For example, the characteristic time in the
exponential decay of the survival probability increases with
the generation of the tree as 6g �9�.

Equation �14� is also consistent with a recent result ob-
tained by Condamin et al. �15� who found the asymptotic
�large V� expression for the average time �r taken by a RW
on a generic scale-invariant structure to first reach a trap
distant r from the starting point. In particular, for compact
exploration �dw�df�, �r�Vrdw−df. Thus, if we fix the trap on
a particular site i0, we can obtain an estimate for the MFPT,
by simply averaging over all possible distances r from i0. For
the T-fractal considered here, i0=1 and we can write

�g =

�
r=0

L�g−1�

�rn�r�

V�g�
,

where n�r� is the number of sites distant r from i0 and
L�g−1� is the largest distance from the central site. Under
the above-mentioned assumption of large volume, we can
adopt a continuous picture and n�r��3	rdf−1; by integrat-

ing the previous expression, we get �g�V�g�2/d̃, as expected.
Finally, in Fig. 3, we compare Eq. �14� with the analogous

formula found for the Sierpinski gasket �d̃=log 9 / log 5� in
�11�:

�g =
2V�g� − 3

V�g� − 1

 �2V�g� − 3�2/d̃

6
+

2�2V�g� − 3�2/d̃−1

5
−

1

6
� .

In the asymptotic limit, �g diverges faster for the T-fractal.
This can be trivially drawn algebraically while, from a topo-
logical point of view, it evidences the role of loops in reduc-
ing the average distance between two random sites, making
the diffusive particles survive shorter.

IV. CONCLUSIONS

In this work we study the MFPT �g for a random walker
on a T-fractal. The latter, being exactly decimable, allows the

use of the powerful technique of exact renormalization. We
find an exact, closed-form solution for �g as a function of
either the generation g or the volume V�g�. The leading term
of �g is consistent with known asymptotic results. It should
be underlined that an exact solution on a finite system is
generally very useful in order to understand more quantita-
tively the asymptotic limit.

Our findings are interesting also in the light of a recent
result concerning the survival probability for the trapping
problem A+B→B, with both species, A and B, diffusing
�19�. There, it was shown that on low-dimensional structures
�d�2� the survival probability for an A particle asymptoti-
cally does not depend on its diffusivity constant DA. Other-
wise stated, at long times, the target problem and the trap-
ping problem provide the same results. Hence exact results
concerning the target problem also provide the correct
asymptotic behavior for the trapping problem with diffusive
traps.
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FIG. 3. �Color online� Mean first-passage time for a simple ran-
dom walker moving on a T-fractal �stars� and on a Sierpinski gasket
�circles� as a function of the volume Vspan �the volume the RW can
actually span before being trapped�, according to exact analytic
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