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The universality class, even the order of the transition, of the two-dimensional Ising model depends on the
range and the symmetry of the interactions �Onsager model, Baxter-Wu model, Turban model, etc.�, but the
critical temperature is generally the same due to self-duality. Here we consider a sudden change in the form of
the interaction and study the nonequilibrium critical dynamical properties of the nearest-neighbor model. The
relaxation of the magnetization and the decay of the autocorrelation function are found to display a power law
behavior with characteristic exponents that depend on the universality class of the initial state.
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I. INTRODUCTION

The parameters of a physical system are often subject to a
sudden change, such as, for example, fast cooling or heating
or the switching on or off of an external field. In material
science these processes are used to prepare new types of
�glassy� states of matter. After such a quench the systems are
out of equilibrium and their dynamical properties can be
completely different from those known in the equilibrium
situation. The phenomena of aging and rejuvenation are typi-
cal examples of such glassy dynamics �1,2�.

In a theoretical approach, a simple and often studied ex-
ample �3–5� is a d-dimensional ferromagnet, which is
quenched from its high-temperature �paramagnetic� phase to
a temperature T that is below or at the critical temperature
Tc. For T�Tc we have phase-ordering kinetics where order
grows through domain coarsening �6�. For a critical quench,
T=Tc, the domains are fractals, and the growth and dynamics
involve critical exponents �7�, such as the magnetization
scaling dimension x=� /� �� and � are the critical exponents
of the magnetization and the correlation length, respectively�
and the dynamical exponent z.

In this case one often measures the autocorrelation func-
tion �8� G�t ,s�= ���t���s��, where ��t� is the operator of the
magnetization and t and s are the observation time and the
waiting time, respectively. Aging is manifested by the fact
that G�t ,s� is nonstationary, but instead has the scaling form

G�t ,s�= t−2x/zG̃�s / t�, where the scaling function for small ar-

gument behaves as lim�→0G̃������d−xi−x�/z. Here xi is a new
nonequilibrium exponent, the anomalous dimension of the
initial magnetization �9�. The autocorrelation function for
t�s behaves as G�t�� t−�/z, where the autocorrelation expo-
nent satisfies the relation �=d−xi+x. Another common mea-
surement after a critical quench concerns the relaxation of
the magnetization �10�, m�t�= ���t��, where the system is ini-
tially prepared in a state with a small initial magnetization

mi. Here we have asymptotically m�t�� t�, where the initial
slip exponent is given by �= �xi−x� /z.

In critical nonequilibrium dynamics, the initial state might
contain some kind of correlations. In the case of a perfectly
correlated initial state the relaxation process involves only
equilibrium exponents. Here we have m�t�� t−x/z, and, simi-
larly, for t�s, G�t�� t−x/z. The dynamic crossover between
the ordered and disordered cases has been the subject of a
recent series of papers �11–13�. Another possibility is given
by initial states that display quasi-long-range order, i.e.,
where correlations decay as a power law. This happens for
the two-dimensional XY model if both the initial temperature
Ti and the final temperature of the quench, T, are below the
Kosterlitz-Thouless temperature, TKT. If Ti�T�TKT, we
have, according to spin-wave theory �14,15�, G�t�
� t−�x�T�−x�Ti��/z, where x�T� is the value of the anomalous di-
mension at the given temperature. Other recent studies have
focused on the d-dimensional spherical model with an initial
state of prescribed correlations �16� or on the Ising model
with initial states generated through random field effects
�17�.

In the present paper, we consider quenches during which
the temperature of the system remains the same, but where
the form and the local symmetry of the interactions are
changed. Interestingly, the recent progress in experiments on
phase transitions in optical lattices could make this type of
investigation possible. We here consider the case of Ising
spins on a square lattice with different types of interaction.
The phase transition encounterd in the Ising model is consid-
ered to be the paradigm of an order-disorder transition since
the exact solution of Onsager �18� of the standard model
with nearest-neighbor couplings. The same model, however,
with three-spin product interaction for each elementary tri-
angle belongs to a different universality class. According to
the exact treatment by Baxter and Wu �19� the �static� critical
exponents of this so-called Baxter-Wu �BW� model are the
same as those of the four-state Potts model �20�. Still another
self-dual model has been introduced by Turban �21–23� and
others �24,25�, which has nearest-neighbor interactions in the
vertical direction, but n-spin product interactions in the hori-
zontal direction. Of course, for n=2 we recover the Onsager
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problem, whereas for n=3, according to symmetry argu-
ments, approximate mappings and numerical investigations,
the system belongs to the four-state Potts universality class.
For n�4 the phase transition is of first order.

In our study we prepare the system in an initial state that
is an equilibrium critical state of the BW model or of the
multispin model with n=3 and 4. In the initial state of the
BW model and that of the n=3 model there are the same
type of critical correlations, since the two models belong to
the same universality class. On the other hand, for the n=4
model we have phase coexistence at the phase transition
point between the ordered and disordered phases. Having
prepared the system in this way, at time t=0 we change the
form of the interaction and then let the system evolve ac-
cording to spin-flip dynamics with nearest-neighbor interac-
tions. We thereby measure the relaxation of the magnetiza-
tion and the decay of the autocorrelation function and
determine the exponents � /z and �.

The structure of the paper is the following. In Sec. II we
define the models and describe their critical properties. The
results of nonequilibrium relaxation are presented in Secs. III
and IV, where the initial state corresponds to an equilibrium
state of a second- or first-order transition point, respectively.
We discuss our results in the final section.

II. MODELS AND THEIR CRITICAL PROPERTIES

We consider in the following Ising spins �i,j = 	1 at the
sites of a square lattice with different types of ferromagnetic
interactions.

a. Ising model. The standard Ising �or Ising-Lenz� model
contains only nearest-neighbor ferromagnetic couplings, so
that the Hamiltonian is given by

HI = − �
i,j

J��i,j�i,j+1 + �i,j�i+1,j� , �1�

where i and j label the lattice sites, whereas J is the strength
of the couplings. The critical point is given by the condition
�18�

sinh�2J/kTc� = 1, �2�

which separates a twofold-degenerate ordered phase from a
paramagnetic phase. The static critical exponents are known
exactly, whereas the dynamical exponent z and the nonequi-
librium exponents � /z and � are calculated numerically with
high precision. The values of these exponents are collected in
Table I.

b. Baxter-Wu model. In the Baxter-Wu model we have
three-spin product interactions with strength JBW between
spins located on elementary triangles, and the Hamiltonian is
given by

HBW = − �
i,j

JBW��i,j�i−1,j�i,j−1 + �i,j�i+1,j�i,j+1� . �3�

The ordered phase of the system is fourfold degenerate, with
the majority spin orientations in the three equivalent sublat-
tices being given by ↑ , ↑ ,↑; ↑ , ↓ ,↓; ↓ , ↑ ,↓; and ↓ , ↓ ,↑. Ac-
cording to exact results the critical point of the system is
located at �19�

sinh�2JBW/kTc� = 1, �4�

and the static critical exponents are the same as for the four-
state Potts model �20�, but without logarithmic corrections to
scaling. Numerical results indicate that universality also
holds for the dynamical exponent z. The nonequilibrium ex-
ponents � and �, however, seem to be different �see Table I�.

c. Turban model. In this model we have nearest-neighbor
interactions with strength J2 in the vertical direction and
n-spin product interactions with strength Jn in the horizontal
direction, so that the Hamiltonian is given by

Hn = − �
i,j

�J2�i,j�i,j+1 + Jn	
k=0

n−1

�i+k,j� . �5�

The ordered phase of the system is 2n−1-fold degenerate. The
model is self-dual �21,23,24� and the self-dual point is lo-
cated at

sinh�2J2/kTc�sinh�2Jn/kTc� = 1. �6�

It is known from numerical studies that a single phase tran-
sition takes place in the system; thus the phase transition
temperature coincides with the self-duality point. In the fol-
lowing we take J2=Jn�=J=JBW�, so that all models described
in this section have the same critical temperature �see Eqs.
�2�, �4�, and �6��. As already mentioned in the Introduction,
the Turban model with n=3 has a continuous phase transi-
tion which belongs to the �static� universality class of the
four-state Potts model �22,25–29�; even the logarithmic cor-
rections are expected to be of the same form for the two
models. The numerical estimates of the dynamical exponent
of the two models are somewhat different, although they
could be the same within the error of the calculation. The
same conclusion holds also for the nonequilibrium exponents
� and � �see Table I�.

TABLE I. Upper part: Static and dynamic critical quantities of
the Ising model, the Baxter-Wu model, and the Turban model with
n=3 and 4. x, bulk scaling dimension; z, dynamical scaling expo-
nent; �, autocorrelation exponent; and �, initial slip exponent. For
n=4 the phase transition is of first order. Lower part: Nonequilib-
rium critical exponents of the two-dimensional Ising model starting
with an initial state corresponding to the critical state of the
Baxter-Wu model and the Turban model with n=3 and 4.

x z � /z �

Ising 1 /8 2.17 0.74�2� �38� 0.187

BW 1 /8 2.29�1� �39� 1.13�6� �38� −0.186�2� �39�
n=3 1 /8 2.3�1� �40� 0.98�2� �38� −0.03�1� �40�
n=4 0a 2.05�10� �32� 
b −1.00�5� �32�
BW 0.17�1� 0.18�1�

n=3 0.165�10� 0.18�1�
n=4 0.475�10�
aDiscontinuity fixed-point value.
bStretched exponential decay.
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The model for n�4 has a first-order transition �30,31�.
Detailed numerical studies are available for the n=4 case,
which exhibits a latent heat of � /kTc=0.146�3� and a jump
of the magnetization from zero to mc=0.769�6�. Nonequilib-
rium relaxation studies of this model have been performed
recently �32�. The autocorrelation function has thereby been
found to approach its limiting value, given by the magneti-
zation in the ordered phase at the transition point, mc,
through a stretched exponential decay. On the other hand,
relaxation of the magnetization starting with an uncorrelated
initial state with a small magnetization mi has been shown to
approach zero with an asymptotic power law time depen-
dence; thus from a nonequilibrium point of view the transi-
tion is continuous.

III. RELAXATION FROM SECOND-ORDER TRANSITION
POINTS

In the following we present results of the relaxation of the
critical Ising model where we start from a critical state of the
BW model and of the n=3 Turban model. The two models
have the same static critical exponents and, interestingly, the
decay of the critical correlations is the same as in the critical
Ising model. We start by presenting first the results for the
BW model.

A. Relaxation from a BW critical state

In the actual calculations we used finite systems com-
posed of L�L spins, with L ranging from 60 to 240. We set
the temperature to the critical value given in Eq. �4� and then
let the system evolve under the Hamiltonian HBW, �see Eq.
�3��, using the cluster-flip Monte Carlo algorithm �33�. After
equilibrium is reached, the critical BW states are extracted
and sorted by magnetization. For each magnetization mi, we
have selected 1000 independent starting states. A typical
starting configuration for mi=0 is shown in the left panel of
Fig. 1.

After having selected the initial state, we subject the sys-
tem to the heat-bath dynamics of the critical Ising model,
i.e., the relaxation is performed at the same temperature as
the initialization but the couplings between the spins are
changed. For a given starting configuration the relaxation is
repeated with typically a few hundred independent sets of
random numbers.

Figure 2 shows the time dependence of the magnetization
for different starting magnetizations mi. It is seen in Fig. 2�a�
that for small times the magnetization is monotonically de-
creasing, yielding negative values for mi�0.08. The
asymptotic dependence of m�t� is studied in more detail in
Fig. 2�b� for mi=0, where we plot the magnetization vs time
in a log-log scale. According to this figure the absolute value
of the magnetization has a power-law dependence. For times
shorter than some size-dependent time t1�L�, there is an ef-
fective exponent �1=0.13�1�, which changes to a different
value, �=0.18�1�, for t
 t1�L�. The available time scale is
restricted by the finite size of the system, through tm�Lz, z
being the dynamical exponent of the critical Ising model �see
Table I�. The crossover behavior seen in Fig. 2�b� is attrib-
uted to the structure of the initial state. As seen in Fig. 1�a�
the initial state can be described as a composition of the four
different pure ordered phases of the BW model, one with
magnetization m=1, and three others each with magnetiza-
tion m=−1 /3. In the early time steps, these pure phases re-
lax, and the relaxation of the mixture of the m=−1 /3 phases
has an effective exponent �1=0.13�1�. This effective expo-
nent can be used to fit the relaxation behavior in the case
where only a homogeneously magnetized initial state is con-
sidered with 
mi
=1 /3 �see Fig. 2�a��. In this respect, for
such a high magnetization only the value of mi seems to
matter in the relaxation process, while the actual form of this
state plays only a secondary role. This assumption is in ac-
cordance with the effective exponent measured in Fig. 2�a�
for mi=1 /3. Then for t
 t1�L� the remains of the pure m
=−1 /3 phases are dissolved and we are in the true
asymptotic regime.

Next we consider the nonequilibrium autocorrelation
function G�t�, calculated from a critical BW state with van-
ishing magnetization, mi=0. The autocorrelation function is
thereby defined by

G�t� =
1

L2�
i=1

L2

��i�t��i�0�� , �7�

where we average over both initial states and different real-
izations of the noise. According to the numerical results

FIG. 1. Typical initial state of the BW model �left� and the n
=3 Turban model �right� with L=120, having a magnetization mi

=0. The initial state is a mixture of the pure phases.
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FIG. 2. �Color online� �a� Relaxation of the magnetization start-
ing with a critical BW state with different initial magnetizations mi

�from top to bottom, mi=0.33, 0.16, 0.08, 0.04, and 0�. The data
shown were obtained for L=60. �b� Relaxation of the magnetization
starting with a critical BW state with initial magnetization mi=0 in
a log-log scale for different system sizes.
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shown in Fig. 3�a�, the autocorrelation function in a finite
system of linear size L is well described by the functional
form

G�t� = At−�/z exp�− t/�L� , �8�

where the characteristic time �L is a monotonically increas-
ing function of L, so that in the thermodynamic limit G�t�
has a power-law dependence. We tried to fit the measured �L
in the form �L�L� and for small L the obtained exponent � is
compatible with the dynamical exponent of the Ising model,
as listed in Table I. For larger L, however, when the charac-
teristic time becomes larger than t1, the measured � is found
to decrease below 1.5. A possible explanation of this behav-
ior is that the relevant length scale in the problem, the typical
size of the clusters of pure phases, � �see Fig. 1�a��, is
smaller than L.

In order to deduce the autocorrelation exponent � from
the numerical data, we have calculated the corrected autocor-

relation function G̃�t�=G�t�exp�t /�L�, in which we used the

estimate for �L calculated from Fig. 3�a�. G̃�t� is plotted in
Fig. 3�b� in a double-logarithmic scale for different system
sizes. Clearly, the curves are seen to approach an asymptotic
curve for large L.

Here, as for the relaxation process, one can observe an
early time period in which case the effective exponent is
�1 /z�0.14�1�. In the true asymptotic range the measured
autocorrelation exponent is somewhat larger, � /z=0.18�1�.
Interestingly, this value is much smaller than the value 0.74
obtained when starting from a fully disordered initial state.

B. Relaxation from an n=3 critical state

For the case of the n=3 Turban model we proceed as for
the BW case. Using Glauber dynamics, we generate equilib-
rium critical states of the Hamiltonian �5� with three-spin
interactions. After equilibrium is reached the initial states are
sorted by magnetization �see Fig. 1�b� for an example�.
These initial states are then subjected to the heat-bath dy-
namics of the critical Ising model. The linear sizes of the
system used here are the same as for the BW relaxation
described in Sec. III A.

Starting with initial states with mi=0 the magnetization
relaxes to negative values. To obtain a qualitative estimate of
the initial slip exponent � we plot in Fig. 4�a� the absolute
magnetization vs time in a log-log scale. From the
asymptotic slope of this curve we obtain �=0.18�1�, which is
within error bars the value obtained from a BW initial state
in Sec. III A.

For the autocorrelation function, the same ansatz as given
in Eq. �8� works in this case too, and the characteristic time
�L has a similar size dependence as for the BW model. Hav-
ing estimated �L for each size, we have calculated the cor-

rected autocorrelation function G̃�t�, which is plotted in Fig.
4�b� in a log-log scale. From the asymptotic slope of these
curves we have estimated the autocorrelation exponent as
� /z=0.165�10�, which is consistent, within the error of the
calculation, with the value obtained from BW initial states in
Sec. III A.

IV. RELAXATION FROM A FIRST-ORDER
TRANSITION POINT

The Turban model with four-spin product interaction, n
=4, has an eightfold-degenerate state in the ordered phase,
and this degeneracy is lifted at the first-order transition point
at T=Tc. The transition point is characterized by the phase
coexistence of the paramagnetic and the ordered phases,
yielding a state that has a completely different structure from
the equilibrium critical states of the n=3 model or the BW
model considered in the previous section. Since the order
parameter is nonzero even at T=Tc, we consider in the fol-
lowing only the nonequilibrium autocorrelation function.
Starting with an initial state of the n=4 model at Tc we have
used the heat-bath dynamics of the critical Ising model.

The nonequilibrium autocorrelation function of this sys-
tem is shown in Fig. 5�a�. The decay of the autocorrelation is
again well described by the same functional form �8� that we
have already observed for the two cases discussed before.
From the system-size-dependent characteristic times �L, we
infer a value z�2.1 for the dynamical exponent, in good
agreement with the literature value 2.17 for the two-
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FIG. 3. �Color online� �a� Autocorrelation function starting from
a critical BW initial state for different system sizes. In the semi-
logarithmic plot the asymptotic slope is proportional to the inverse
characteristic time ��L�. �b� The corrected autocorrelation function

G̃�t�=G�t�exp�t /�L� in a double-logarithmic scale for the same sys-
tem sizes. The slope of the curves corresponds to the exponent � /z.
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FIG. 4. �Color online� �a� Relaxation of the magnetization start-
ing with a critical n=3 state with initial magnetization mi=0 in a
log-log scale for different system sizes. �b� The corrected autocor-

relation function G̃�t�=G�t�exp�t /�L� in a double-logarithmic scale
for the n=3 model. The slope of the curves corresponds to the
exponent � /z.
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dimensional critical Ising model. The corrected autocorrela-

tion G̃�t�=G�t�exp�t /�L� displays a power-law decay as
shown in Fig. 5�b�, but with an exponent � /z=0.475�10� that
is much larger then the value we obtained when starting from
the critical BW or n=3 Turban model. Interestingly, the
value of � /z is compatible with 1 /z, yielding the value �
=1 for the autocorrelation exponent.

In the following we present a simple scaling argument
that could explain the origin of this numerical finding. First
we note that the initial state at t=0, being the state of a
system at a first-order transition point, is a mixture of clus-
ters of the pure phases, and the typical size of the clusters, �,
is finite and given by the correlation length at the first-order
transition point. Now, for t
0, we change the form of the
interaction and allow the system to relax during which cor-
related domains of typical size ��t�� t1/z are created. In the
correlated volume V�t�� � �t�d, due to random fluctuations, a
given initial pure phase has an excess volume �V�t�
� � �t�d/2 �compared to the average�. Consequently the �cor-

rected� autocorrelation decays as G̃�t���V�t� /V�t�� t−d/2z,
so that �=d /2, in agreement with the numerical results.

V. DISCUSSION

In this paper, we have considered a relaxation problem
during which the form �and the symmetry� of the interaction
between the particles is suddenly changed, whereas the tem-
perature of the system is kept constant. In particular, we
studied such cases when the system before and after the
quench is at a critical temperature, but nevertheless belongs

to different universality classes. We then studied well-known
questions in nonequilibrium dynamics, such as the relaxation
of the magnetization and the decay of the autocorrelation
function. It is known �34� that nonequilibrium critical dy-
namics at time t, after a quench at t=0 from a state with Ti
=
, is analogous to the static critical behavior of a semi-
infinite system �35� at a distance y from a free surface lo-
cated at y=0. The analogous static critical problem to our
dynamical problem here is the interface critical behavior at a
distance y from a straight interface, which separates two
coupled semi-infinite critical systems which belong to differ-
ent universality classes �36,37�. According to our numerical
calculations, the nonequilibrium critical behavior in our
problem is the result of the interplay and competition be-
tween the critical fluctuations of the two systems.

The specific problem we studied is the Ising model on the
square lattice, with different types of multispin interaction in
the initial states, but with nearest-neighbor interactions after
the quench. Two initial models, the BW model and the n
=3 Turban model, belong to the same static universality
class. Interestingly, the magnetization scaling dimension of
these models, x=1 /8, coincides with that of the normal Ising
model. Nevertheless, due to the quench, the change of the
symmetry of the interaction has a strong effect on the non-
equilibrium dynamics. Our main observation is that nonequi-
librium dynamics has the same asymptotic behavior when
we start from initial states of different models that are in the
same �static� universality class. For the specific problem we
considered here, the nonequilibrium exponents are found to
satisfy the relation �=� /z within the error of the calculation.

The third initial model we considered, the n=4 Turban
model, has a first-order phase transition; thus the structure
and topology of the initial state are completely different from
the previously discussed cases. Also, the asymptotic behavior
of the nonequilibrium autocorrelation function is described
by a different exponent �=1. This exponent is expected to
have the value �=d /2 and therefore to depend only on the
dimension of the system, but to be universal otherwise, i.e.,
not dependent on the type of initial state, provided it corre-
sponds to a first-order transition point.
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