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It is shown that the families of generalized matrix ensembles recently considered which give rise to an
orthogonal invariant stable Lévy ensemble can be generated by the simple procedure of dividing Gaussian
matrices by a random variable. The nonergodicity of this kind of disordered ensembles is investigated. It is
shown that the same procedure applied to random graphs gives rise to a family that interpolates between the
Erdös-Renyi and the scale free models.
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I. INTRODUCTION

The classes of random matrix ensembles introduced by
Wigner in the 1950s have found great sucess partly after
being connected with quantum manifestations of chaos in
physical systems �1�. In turn, this success generated great
activity and extensions and generalizations of those en-
sembles have occurred. In obtaining the Gaussian ensembles,
Wigner adapted the Wishart ensembles well known to statis-
titians. Some of the extensions of the Gaussian ensembles
can also be considered as applications of known processes in
statistics. For instance, models to describe symmetry break-
ing have been constructed by adding two random matrices,
one block diagonal and the other its complement �2�. Here
we consider a random process in which a new random quan-
tity is generated by taking not the sum but the ratio or the
product of two other independent ones.

In a previous paper �3�, an alternative to Shannon infor-
mation entropy, namely Tsallis-Renyi information �4� was
used to introduce a new family of generalized matrix en-
sembles �see also Ref. �5��. One of the main features of this
ensemble is the power-law characteristic of its statistical
properties. In particular, it was shown that individual matrix
elements behave similar to the elements of the so-called
Lévy matrices �6� �after the publication of Ref. �3�, Klauder
and Muttalib obtained an even more general family �7� on
similar lines�. One of the purposes of this note is to show that
all these families can be obtained, in fact, by the simple
procedure presented in the next section.

II. THE MODEL

Let HG��� be a random matrix of dimension N and vari-
ance 1 /2�2 and let its probability distribution be

PG�H;�� = ���

�
� f/2

exp�− ��trH2� , �1�

The matrices of the Gaussian ensemble are specified by �. In
Eq. �1�, f is the number of independent matrix elements f
=N+�N�N−1� /2 and � is the Dyson index �=1,2 ,4 for
GOE, GUE, and GSE �here and in what follows the subindex
G indicates Gaussian�. The distribution is normalized with
respect to the measure dH=�1

NdHii� j�i�k=1
� �2dHij

k .

Take now a positive random variable � with a normalized

density probability distribution w��� with average �̄ and vari-
ance ��

2 and introduce a new matrix ensemble by the follow-
ing relation �product of random variables has been consid-
ered in the context of covariace matrices �8��

H��,�� =
HG���
��/�̄

. �2�

In this way, an external source of randomness is superim-
posed to the fluctuations of the Gaussian matrix HG���. A
random process in which there is a competition between two
types of random variables is typical of disordered systems or,
in the case of Ising models, spin glasses �9�. As the two types
of randomness are independent, one can be kept frozen,
quenched in technical terms, while the fluctuations of the
other continue to operate. Here the disorder is represented by
� which is the quenched variable in opposition to the ran-
domness of the Gaussian matrices. We may refer to Eq. �2�
as a disordered ensemble.

From Eq. �2�, we deduce that the joint distribution of a set
of n	 f matrix elements is given by

p�h1,h2, . . . ,hn;�� = ���

��̄
�n/2	 d�w����n/2


exp�−
���

�̄


i=1

n

hi
2� , �3�

where hi=Hij for the diagonal and hi=�2Hij for the off-
diagonal elements. Equation �3� shows that matrix elements
are correlated. As a particular case, for n= f , Eq. �3� leads to
the ensemble distribution

P�H;�� =	 d�w�������

��̄
� f/2

exp�−
���

�̄
trH2� , �4�

where the term after w��� is just Eq. �1� with � replaced by

�� / �̄. Expressions such as Eq. �4� are being considered as
instances of superstatistics �10�.

The relation �2� makes straightforward to do numerical
simulations in terms of Gaussian matrices. However, it may
also be useful to directly generate matrices of the ensemble
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�taking into account the corrrelations among their elements�.
This can be done through the identity

p�h1, . . . ,hf� = p�h1��
n=2

f
p�h1, . . . ,hn�

p�h1, . . . ,hn−1�
, �5�

where each fraction gives the conditional probability for the
nth element once the n−1 previous ones are given. This
equation provides a way to sequentially generate all the ma-
trix elements. At each step, a new element, say the nth, is
sorted using Eq. �3� that implies

hn =
hG���
��n/�̄

, �6�

where hG is a Gaussian variable and �n is another random
variable sorted from the distribution

wn��� = w�����n−1�/2 exp�−
���

�̄


i=1

n−1

hi
2��

	 d�w�����n−1�/2 exp�−
���

�̄


i=1

n−1

hi
2� , �7�

which is univariate since all the previous n−1 elements have
already been determined.

By generating matrices fixing, in the process, a set of
values �1 ,�2 , . . . ,� f we are, in the language of the disordered
systems, quenching the disorder. The differences among ma-
trices generated with different sets of � depend on the width
of the distribution w��� and one can expect that for wide
w��� due to the large spread among the matrices averages
performed running along one spectrum will not coincide
with averages over the ensemble of matrices. This kind of
behavior characterizes nonergodicity.

Turning now to eigenvalues and eigenvectors, we observe
that we have an ensemble invariant under unitary transfor-
mation in which, as it occurs with the Gaussian ensembles,
the joint distribution of eigenvalues and eigenvector factor-
izes. The eigenvectors behave as those of the Gaussian en-
sembles and we can integrate them out to obtain for the
eigenvalues the joint distribution

P�E1, . . . ,EN;�� =	 d�w������/�̄�N/2PG�x1, . . . ,xN;
�

2
� ,

�8�

where xi=��� / �̄Ei and

PG�x1, . . . ,xN;
�

2
� = KN

−1 exp�−
�

2 

k=1

N

xk
2��

j�i

�xj − xi��,

�9�

with KN being a normalization constant.
From Eq. �8�, measures of the generalized family can be

calculated by weighting the corresponding measures of the
Gaussian ensembles with the w��� distribution. Integrating,

for instance, Eq. �8� over all eigenvalues but one and multi-
plying by N, the eigenvalue density is expressed in terms of
the Wigner’s semicircle law �11� as

��E;�� =
�2�

�
	 d�w�����/�̄�1/2�2N − 2��E2/�̄ , �10�

where the condition ��E2�N on � has to be satisfied.
As previously stated, the introduction of the disorder rep-

resented by the variable �, breaks in principle the ergodicity
of the Gaussian ensembles. Let N�L�=E−L/2

E+L/2dE���E�� be the
average number of eigenvalues in the interval �E−L /2, E
+L /2� for an ensemble with eigenvalue density ��E�. The
variance 2�L� of the number of eigenvalues in that interval
can be expressed in terms of the two-point correlation func-
tion R�E1 ,E2� by

2�L� = 	
E−L/2

E+L/2

dE1	
E−L/2

E+L/2

dE2R�E1,E2� + N�L� − N2�L� .

�11�

By using in the above integrals “unfolded” variables y1,2
=E1,2��v�dv and assuming stationarity along the spectrum
�11� becomes the usual expression

2�N�L�� = N�L� − 2	
0

N�L�

dr�N�L� − r�Y�r� �12�

for the number variance in terms of the two-point cluster
function Y2�r� �11�. Ergodicity implies �12� the vanishing of

var� = ���E��22�N�L��/N2�L� �13�

when L→�. For the disordered ensemble we have

2�N� =	 d�w����G
2 �NG� − NG + NG

2 � + N − N2, �14�

where G
2 is given by Eq. �12�. In Eq. �14�, NG is the average

number of eigenvalues in the interval L calculated with a
semicircle density dependent on �; on the other hand, N is
the average number of levels calculated with the ensemble
density �10�. It is easy to see that, in Eq. �14�, the linear term
in N is cancelled while the NG

2 averaged with the distribution
w��� deviates from N2. If the difference between these two
terms increases for large N�L� with a power equal or greater
than two, then the variance of the density fluctuations given
by Eq. �13� does not asymptotically vanish and nonergodic-
ity follows.

Consider now a particular choice of the distribution w���.
Note that the factor multiplying the Gaussian matrices in Eq.
�2� acts on the variance of the Gaussian ensembles. In order
to investigate ensembles showing heavy-tailed densities it is
convenient to choose w��� to be the gamma distribution

w��� = exp�− ����̄−1/���̄� �15�

that becomes a �2 distribution for integer 2�̄. From Eq. �15�
��=��̄, showing that �̄ controls the behavior of the distribu-

tion w���. It becomes more localized when �̄ increases and
we should then expect to recover the Gaussian ensembles.
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However, for smaller values of �̄, departures from the Gauss-
ian case will be observed. Indeed, by substituting Eq. �15� in
Eq. �4� we find

P�H;�, �̄� = ���

��̄
� f/2�� 1

q − 1
�

���̄�
�1 +

��

�̄
trH2�1/�1−q�

�16�

for the ensemble density distribution, where

1

q − 1
= �̄ +

f

2
, with q � 1. �17�

Equation �16� is just Eq. �4� of Ref. �3�. In Ref. �3� it was
derived using a generalized maximum entropy principle �4�
with q being identified with the Tsallis entropic parameter.

Substituting Eq. �15� in Eq. �3� for n=1 �13�

p�h;�, �̄� = ���

��̄
�1/2���̄ + 1/2�

���̄�
�1 +

��

�̄
h2�−�̄−1/2

�18�

for the density distribution of a given matrix element. Since

for large �h�, p��h ;� , �̄��1 / �h�2�̄+1, Eq. �18� exhibits the
power-law character of the distribution. It is important to
remark that, apart from the lack of independence, the mar-
ginal distribution of the matrix elements have the same kind
of distribution, namely one with an asymptotic power-law
behavior, as the i.i.d. ones of the ensemble of Lévy matrices
�6�.

In Fig. 1 the eigenvalue density for three realizations of
the ensemble generated using the above random process with

�̄=1 /2 is histogrammed and compared with the semicircle

law. We recall that for �̄=1 /2 the matrix elements are
Cauchy, 1

�
1

1+x2 , distributed �see Eq. �18��. It is seen that the
individual matrices of large sizes are Gaussian ensemble ma-
trices as they should. As a comparison, in Fig. 2, it is shown

the eigenvalue density of just one Lévy matrix of large size
whose matrix elements also follow the Cauchy distribution.
We can see that although individual matrix elements of the
two ensembles are identically distributed, their eigenvalue
density behaves in a completely different way. While indi-
vidual Lévy matrices of large sizes do not depart from the
ensemble average, matrices generated according to Eq. �6�
show large fluctuations.

Of course, the result shown in Fig. 1 indicates strong non-
ergodicity. This is confirmed by the ensemble number vari-
ances shown in Fig. 3. The parabolic behavior seems to per-

sist even for large values of the parameter �̄, showing that the
ensemble is nonergodic.

III. RANDOM GRAPHS

Other systems in which nonergodicity may play an impor-
tant role are networks and their associated graphs. We now
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FIG. 1. Histogram: the eigenvalue density of three matrices of

size N=300 generated using Eqs. �6� and �15� with �̄=1 /2; full
lines: semicircle densities that reproduce the variance of the eigen-
values of each one of the three matrices.
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FIG. 2. The eigenvalue density of one Lévy matrix of size N
=600 whose elements are Cauchy distributed compared to a Cauchy
distribution.
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FIG. 3. Full lines: the number variances calculated with Eq. �14�
for the values �̄=5, 10, 20, 50, and 200 as indicated in the figure;
dashed lines: the linear Poisson number variance and the GOE num-
ber variance.
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show how the present approach can be applied in random
graph theory �14�. A graph is an array of points �nodes� con-
nected by edges. It is completely defined by its adjacency
matrix A whose elements Aij have value 1�0� if the pair �ij�
of nodes is connected �disconnected�. The diagonal elements
are taken equal to zero, i.e., Aii=0. Adjacency matrices of
graphs in which the connections are randomly set, are real
symmetric random matrices. The classical random graph
model proposed by Erdös-Renyi �ER� is simply defined by
giving a fixed probability p that a given pair of nodes is
connected, independently of the others �15�.

We start by showing that the ER model can be considered
as the equivalent in random graph theory to the Wigner
model of Gaussian matrices. In fact, the joint matrix element
distribution of its adjacency matrix A can be written as

PER�A,�� = �1 + exp�− ���−f exp�−
�

2
trA2� , �19�

where f =
N�N−1�

2 with N, the size of matrix, being equal to the
number of nodes. Equation �19� is just the defining equation
�1� of the GOE ��=1� ensemble with the constraint that the
matrix elements can only take the values 0 and 1 imposed by
the measure

dH = �
1

N

dHii��Hii��
j�i

�2dHij���Hij� + ��1 − Hij�� .

�20�

From Eq. �19� it follows that the marginal distribution of a
given matrix element, say Aij, is

PER�Aij,�� =
exp�− �Aij�
1 + exp�− ��

= �
exp�− ��

1 + exp�− ��
, if Aij = 1,

1

1 + exp�− ��
, if Aij = 0,�

�21�

which means that the probability p that defines the ER model
is connected to the parameter � by the relation

� = ln�1

p
− 1� . �22�

Since the probability p is defined in the interval �0,1�, the
domain of variation of � is �� ,−��. This suggests that the
statistical properties of the ER model must show a symmetry
with respect to the point �=0 �or p=1 /2�.

It is important to remark that although Eq. �19� has the
same structure as Eq. �1� there are striking differences be-
tween the two models. Despite the presence of the trace in
Eq. �19�, the discrete nature of matrix elements imposed by
the measure, �20�, destroys the rotational invariance and pre-
vents the factorization of the joint distribution of eigenvalues
and eigenvectors. The parameter � is just a scaling parameter
in the Gaussian case. In contrast, the properties of ER model
depend strongly on the value of the probability p, and here �
plays an essential role. Notice also that, contrarily to the
Gaussian cases, the adjacency matrices form an ensemble

with a finite number of matrices. It is convenient in the study
of the graphs, to introduce the scaling p�N−z �z�0�. For
instance, connectivity properties of the graph are character-
ized by z.

An analytical expression of the spectral density for arbi-
trary values of the probability p and matrix size N is an
unsolved problem �16�. However, when p is fixed and N is
very large, the density can be deduced in the following way.
A is a symmetric non-negative matrix with maximum princi-
pal eigenvalue E1 its value is close to the nonzero eigenvalue
of the constant matrix �A� with elements equal to the average
of the A elements, i.e., �A�ij = p. As the only nonzero eigen-
value of a constant matrix is equal to the product of its size
by the element, we conclude that E1= pN. Because of this
linear dependence with N, for fixed p the largest eigenvalue
grows faster than the others as the matrix size increases. In
this case, for very large matrices the other eigenvalues have
asymptotically the same eigenvalue density of the eigenval-
ues of the matrix A− �A�. This density can be obtained from
the moments of the trace of the powers of the matrix and one
finds that it obeys the Wigner semicircle law �14�

�ER�E,�� = � 1

2��2
�4N�2 − E2, if �E� � �4N�2,

0, if �E� � �4N�2,
�

�23�

where �2 is the variance of the matrix elements given by

�2 = p�1 − p� =
1

4 cosh2��/2�
. �24�

The above argument fails if p�1 /N �z�1� in which case
deviations from the semicircle appear �16,17�.

We now introduce a disordered model of random graphs
by defining an adjacency matrix with a distribution

P�A;�� =	 d�w���
exp�−

��

2
trA2�

�1 + exp�− ���� f . �25�

Therefore this generalized model is a superposition of Erdös-
Renyi random graphs with distribution P�A ,��� weighted
with w��� exactly as in Eq. �4� for the disordered Gaussian
ensembles. Again the width of the distribution of w��� is a
controling parameter and as remarked before the parameter �
also plays an essential role. In particular, for �=0 the en-
semble is just the ER with p=1 /2.

From Eq. �25� we can derive the probability distribution
for a set of matrix elements and use Eq. �5� to define a
random process entirely equivalent to the one used to gener-
ate matrices of the disordered Gaussian ensemble. As before,
a set of probabilities pn with n=1,2 ,3 , . . . , f is sequentially
generated and, from them, each new matrix element is ob-
tained taking into account those already determined. This
means that Eq. �25� defines a model of a disordered corre-
lated graph in which new attachments depend on the ones
already existing.

BOHIGAS, DE CARVALHO, AND PATO PHYSICAL REVIEW E 77, 011122 �2008�

011122-4



As in the case of the Gaussian ensembles, statistics of the
averaged graph �our model� are averages over the ER statis-
tics. For instance, the eigenvalue density is

��E;�� =
2

�
	

0

�m

d�w���cosh���

2
��N − cosh2���

2
�E2,

�26�

where

�m =
2

�
cosh−1��N

E
� . �27�

We now make for w��� the same choice as before, namely,

Eq. �15�. As before we expect for large values of �̄ small
fluctuations around ER, whereas for small values they will
become large and will govern the asymptotics.

In Fig. 4 we display the density of eigenvalues of the
adjacency matrices. When going from z close to 1 to z close
to 0, the density goes from a highly picked density with
heavy tails towards a Wigner semicircle, showing a cross-
over which is reminiscent from a scale-free to an ER graph.

IV. CONCLUSIONS

In summary, we have discussed a method to introduce
matrix ensembles which preserve unitary invariance present-
ing distribution with heavy tails. The price to pay to preserve
unitary invariance is �i� to abandon the statistical indepen-
dence of the matrix elements and �ii� to abandon the ergodic
property �equivalence of spectral and ensemble averages�.
There are cases, however, in which only ensemble averages
make sense. Consider, for instance, the behavior of indi-
vidual eigenvalues. Recently, extreme eigenvalues have been
a matter of great interest due to the discovery that the distri-
butions they follow, the so-called Tracy-Widom �18� in the
case of the Gaussian ensembles, show universality and have

wide applications �19�. The same authors have found grow-
ing systems in which an external source induces the extreme
values to have a behavior in which there is a competition
between their distribution and a Gaussian �20�. In a paper in
preparation, we show that the disordered ensemble can be a
useful model for this kind of systems.

Let us finally mention that the method discussed here �Eq.
�2� with the choice �15� for the probability density function
w���� was intended to rederive and to give new insight on
models previously studied. By making other choices for w���
new models preserving orthogonal invariance may be intro-
duced �see also Ref. �7��.
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