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We present an entirely microscopic calculation of the Casimir force f�d� between two metallic plates in the
limit of large separation d. The models of metals consist of mobile quantum charges in thermal equilibrium
with the photon field at positive temperature T. Fluctuations of all degrees of freedom, matter and field, are
treated according to the principles of quantum electrodynamics and statistical physics without recourse to
approximations or intermediate assumptions. Our main result is the correctness of the asymptotic universal

formula f�d��−
��3�kBT

8�d3 , d→�. This supports the fact that, in the framework of the Lifshitz theory of electro-
magnetic fluctuations, transverse electric modes do not contribute in this regime. Moreover, the microscopic
origin of universality is seen to rely on perfect screening sum rules that hold in great generality for conducting
media.
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I. INTRODUCTION

A. Motivations

In 1948, Casimir �1� predicted that two neutral metallic
plates placed in vacuum at distance d attract one another due
to the electromagnetic field’s zero-point fluctuations. In his
calculation the microscopic structure of the conductors is not
taken into account. The latter are treated as macroscopic bod-
ies imposing metallic boundary conditions on the Maxwell
fields.

Early experiments aimed at probing this theoretical pre-
diction remained inconclusive �2� until the late 1990s where
first experimental demonstrations were performed �3–5�,
opening the way to many others �see, e.g., �6�, Sec. 3.5 and
�7� for short reviews�. A quantitative comparison with ex-
periments requires to include a number of effects not ac-
counted for in Casimir’s simple treatment, such as the finite
conductivity of the plates, the roughness of the surfaces, and
the dependence on the temperature T.

Lifshitz �8,9� provided a first major generalization by con-
sidering plates whose electric properties are described by a
frequency-dependent dielectric function ����. The plates are
in thermal equilibrium with a stochastic electromagnetic
field, whose random nature is generated by the quantum and
thermal fluctuations of photons and matter. The general force
formula obtained in this way covers in principle a broad
diversity of media, and should be valid for all regimes of
temperature T and plate separation d. These regimes are
characterized by the single dimensionless parameter

� =
�c

kBTd
=

	ph

d
, �1�

which measures the ratio of the photon thermal wavelength
	ph�
�c to the separation distance d �� is the Planck con-
stant, c is the speed of light, kB is the Boltzmann constant,

=1 /kBT�.

Although the Lifshitz theory �along with its various refor-
mulations �10–12,6,7�� is commonly used to interpret the
experimental data, its predictions are uncertain when applied

to conducting media at nonzero temperature. Indeed, the
value of the force then depends crucially on the behavior of
the dielectric function at vanishing frequencies—a behavior
not directly accessible to experiments. This has led to several
theoretical and numerical studies, resulting in a debate that
has not yet evolved to a concensual end �see �7,13–16�, and
references cited therein�. In short, the controversy amounts to
knowing whether the reflection coefficient of the transverse
electric �TE� mode of the field, rTE�� ,k� �depending on
�����, vanishes or not in the limit of zero frequency. In the
low-temperature, small-separation regime ��1 one finds
the force by unit surface1

f�d� � −
�2�c

240d4 + O�T4� if rTE�0,k� = 1, �2�

f�d� � −
�2�c

240d4 +
��3�kBT

8�d3 + O�T4� if rTE�0,k� = 0,

�3�

while in the high-temperature, large-separation regime
��1, one has

f�d� � −
��3�kBT

4�d3 if rTE�0,k� = 1, �4�

f�d� � −
��3�kBT

8�d3 if rTE�0,k� = 0. �5�

In �2� and �3�, the dominant term is in both cases the stan-
dard Casimir result, whereas in the high-temperature, large-
separation regime �4� and �5�, one sees a striking reduction
of the force amplitude by a factor 1/2 when the TE field
modes are assumed not to contribute. Let us add that formu-
las �2� and �4� can be obtained under the assumption of the
plasma relation for the low-frequency dielectric function

1In these formulas, negative and/or positive terms stand for attrac-
tive and/or repulsive contributions.
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������1−�p
2 /�2 , �→0, �p, the plasmon frequency�,

whereas the Drude expression ������1−4�i� /� , �, the
conductivity� leads to the results �3� and �5�. The force �4� is
also retrieved by extending Casimir’s original calculation to
finite temperature between macroscopic plates that are not
subject to charge fluctuation �17,18�.

Most of the actual debate focused on the finite-
temperature corrections in the low-temperature, small-
separation regime. In particular, the fact that the corrective
term linear in T in �3� reflects a nonzero entropy at T=0
consists in an unacceptable violation of the Nernst postulate
for some authors �7,14�, who thereby favor a nonvanishing
reflection coefficient rTE�0,k�. Other authors �15,19�, how-
ever, argue that this linear correction no longer holds at very
low temperature, and favor �3� and �5�.

In this paper, we pronounce on the controversy in the
large-separation regime �with fixed positive temperature�. In
order to decide which of the two alternatives �4� or �5� is
correct, we present a fully microscopic treatment of the Ca-
simir effect based on the principles of quantum electrody-
namics and statistical mechanics which does not suffer of
intermediate models, assumptions or approximations.2 By
fully microscopic treatment we mean that all degrees of free-
dom, matter and field, are taken into account, contrary to
Casimir’s original calculation that ignores particle fluctua-
tions inside the plates. Microscopic models have been pro-
duced to retrieve and justify Lifshitz’ formula in the case of
dielectric matter �23–25�, but conducting media offer more
difficulties as far as one must deal with screening phenomena
due to free charges and magnetic forces between free cur-
rents.

In �26�, we computed the average force by unit surface
between slabs containing purely classical charges and inter-
acting via the static Coulomb potential, finding

f�d� � −
��3�kBT

8�d3 , d → � . �6�

In Ref. �27� we improved the calculation by considering
slabs made of quantum charges and interacting, in addition to
the Coulomb force, with the transverse part of a classical
electromagnetic field. These features do not alter the form �6�
of the large-separation asymptotic force. Reference �27� to-
gether with the companion paper �28� stress the importance
of including in the calculation the effects of the charge fluc-
tuations in the metals, which are responsible for reducing the
asymptotic force amplitude �4� by the factor 1/2. It is also
understood why the entirely classical model treated in �26�
correctly predicts the high-temperature, large-separation re-
sult �6�: this is a consequence of the Bohr–van Leeuwen
theorem. The theorem states that in classical systems at ther-
mal equilibrium, matter decouples from the transverse elec-
tromagnetic field. Since high-temperature conducting phases
tend to behave classically, the corresponding Casimir force

will be determined at leading order by purely electrostatic
interactions.

B. Statement of results

The present paper addresses the question of the Casimir
force in the general framework of nonrelativistic thermal
quantum electrodynamics �TQED�, namely nonrelativistic
quantum charges in interaction with the quantized electro-
magnetic field. The model �described in more detail in Sec.
II� consists of mobile quantum charges confined in two slabs
A and B of thickness a and b with lateral faces of surface L2,
set at distance d from each other. The charges interact with a
quantum electromagnetic field enclosed in a large box �.
The Hamiltonian H�,L,d of the system is specified in formula
�10� of Sec. II. The photons and the particles are supposed to
be in thermal equilibrium at temperature T, so that all the
relevant information is contained in the grand-canonical po-
tential 
�,L,d associated with the Hamiltonian H�,L,d. The
average force by unit surface exerted between the plates is
defined by the rate of change occasioned in 
�,L,d when
varying the separating distance d,

f�,L�d� = −
1

L2

�

�d

�,L,d. �7�

The Casimir force is defined as

f�d� � lim
L2→R2

lim
�→R3

f�,L�d� , �8�

where the thermodynamic limit of the system is taken in two
stages. We first let the box enclosing the field �→R3, and
then extend the plates’ surfaces L2→R2. The plates’ thick-
nesses a and b are kept finite. The main result is that at any
fixed temperature T�0 �such that the thermal energy kBT is
much less than the rest mass energies mc2 of the particles�,
the large-separation asymptotic force is again given by for-
mula �6�. The amplitude is linear in T, independent of the
Planck constant � and of the speed of light c, and universal
with respect to the microscopic constitution of the plates.
Nonuniversal contributions and contributions depending on
� and c, will only occur at the next order O�d−4� in the
large-separation expansion of the force. This result not only
validates from first principles the second alternative in Eqs.
�4� and �5� �associated with the vanishing of the reflection
coefficient for TE modes�, but also establishes universality of
the leading term �6� on a microscopic basis. Since our meth-
ods might not be quite familiar, we summarize the main steps
of our derivation.

C. Methods

1. Casting the quantum system in a classical-like form:
Space of loops

When we have a conducting medium it is of utmost im-
portance to deal properly with the collective screening ef-
fects. The idea is to cast the quantum system in a form which
is as close as possible to that of a classical system of charges,
where we have for instance the well-developed Debye-
Hückel theory of screening. To this effect we introduce a

2Experimental setups in cylinder-plane and parallel-plate geom-
etries are currently being developed with the purposes of discrimi-
nating between the different proposed values for the force �20–22�.
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joint functional integral representation of the Gibbs weight
associated with the total Hamiltonian of matter and field. In
this formalism, developed in �29� and recalled in Sec. II,
quantum particles appear as extended objects consisting of
random closed wires L �called loops� carrying both a charge
and a current. The loop size, which is measured by the ther-
mal de Broglie wavelength, reflects the intrinsic quantum
fluctuation of the particle. There are two kinds of pairwise
interactions between loops. The first one Vc�Li ,L j� origi-
nates from the electrostatic �Coulomb� potential between
charges, formula �20�. The second one, Wm�Li ,L j� �formula
�21�� is called the magnetic potential. It is an effective inter-
action resulting from integrating out the field degrees of free-
dom: one can figure it as current interactions between the
loops mediated by the transverse part of the electromagnetic
field. At this point, although being an exact representation of
the quantum TQED system, the statistical mechanics of
loops has a classical-like structure which enables a conve-
nient application of the methods of classical statistical me-
chanics.

2. Expressing the Casimir force in terms of loops

The force between two loops is given, as in classical
physics, by the gradients of the potentials �xV

c�Li ,L j� and
�xWm�Li ,L j� �along the x axis perpendicular to the plates�.
The average force, as usual, is obtained by averaging these
forces with the equilibrium correlation function ��2��Li ,L j�
between two loops. The precise expression is found in for-
mula �38� in Sec. III, where we have also singled out the
proper Casimir force due to fluctuations. The additional part,
called here capacitor force, is the direct Coulomb force that
would occur between globally non-neutral plates. One can
benefit from the translational invariance along the y direc-
tions parallel to the plates by using the corresponding two-
dimensional Fourier variable k and scale it as k=q /d where
q is now a dimensionless Fourier variable. The scaling trivi-
ally provides a prefactor 1 /d2 in the force formula �40�. The
remaining d dependence remains embedded in the micro-
scopic expressions of the forces and correlations between
loops.

3. Screening of the electrostatic interactions

This is the subject of Sec. IV. The main observation is that
the Coulomb interaction between loops can be decomposed
into Vc=Vel+Wc �see formulas �42� and �43��. Here Vel is the
genuine classical electrostatic interaction between charged
wires whereas Wc incorporates the proper effect of the quan-
tum nature of the particles manifested by the fluctuations of
the loops. One can easily extend to Vel the standard ideas of
the classical Debye-Hückel theory, providing an effective re-
summed potential 
 that becomes integrable at large dis-
tances �in the planar geometry one is concerned by the inte-
grability in the y directions along the plates, see Appendix
C�. One is therefore left with the screened potential 
 to-
gether with the additional interactions Wc and Wm. The latter
would not be present for classical charges: they result from
the intrinsic quantum fluctuations of the particles and behave
as electric and magnetic dipole interaction at large distance.

At this point on can use in the space of loops the methods of
Mayer expansion and integral equations well developed in
the context of classical Coulomb fluids. Of particular impor-
tance is the perfect screening sum rule stating that any speci-
fied loop is surrounded by a screening cloud of loops whose
total charge compensates that of the specified loop. This im-
poses an exact integral constraint on the two-loop correlation
function, formula �52�, that turns out to be at the origin of the
universality of the Casimir force.

4. Large-separation asymptotics

Apart from the obvious 1 /d2 scaling factor, the d depen-
dence of the force must be extracted from the forces and
correlations between loops. The Coulomb part of the force
�expressed in terms of the q transverse Fourier variable� has
a nonvanishing limit as d→� whereas the magnetic force
vanishes as 1 /d2 and the correlation between the plates as
1 /d �Sec. VI�. This implies that the dominant term decays as
1 /d3 and does not involve a direct contribution of the mag-
netic force. To obtain the amplitude of this 1 /d3 term it is
necessary to determine the exact asymptotic form of the cor-
relation. The latter is seen to be made of two terms �formulas
�59� and �62�� decaying as 1 /d times a product of certain
arrangements of correlations pertaining to the individual
plates. When this is introduced in the force formula �40� one
discovers that the perfect screening sum rules in each of the
plates wash out all details of the microscopic structure of the
conductors, thereby leading to the wonderfully simple result
�6� and providing a physical explanation of universality �Sec.
V�. The analysis of the correlation in Secs. VI A and VI C, if
somewhat lengthy, uses common reasoning in terms of
Mayer graph diagrammatic. It basically reveals that the elec-
tric and magnetic dipolar potentials between the loops Wc

and Wm do not eventually contribute to the dominant 1 /d3

term of the force. This term is entirely due to electrostatics
and screening, thus explaining why the purely classical
model of �26� gives the correct result. The complexity of the
full quantum mechanical treatment presented in this paper
contrasts with the simplicity of the result, a fact that we
could not foresee right away. More comments and perspec-
tives are offered in the concluding remarks of Sec. VII.

II. DESCRIPTION OF THE SYSTEM

A. The total Hamiltonian

We consider two parallel slabs A= �−a ,0��L2 and Bd

= �d ,b+d��L2 with thickness a and b and lateral surface L2.
The x axis is perpendicular to the plates, the inner face of
slab A being fixed at x=0 while the slab Bd is set at a dis-
tance d from it. The slabs contain nonrelativistic point par-
ticles of several species � �electrons, ions, nuclei� with
charges e�, masses m�, spins s� and appropriate statistics.
These particles are confined by walls without electrical prop-
erties in the two separate regions and no exchange is possible
from one slab to the other. Particles in one plate are always
distinguishable from alike particles in the other plate. To en-
sure the global neutrality of each plate, we impose
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�
a

e�a
= �

b

e�b
= 0, �9�

where the sums are carried over particles in A and Bd, re-
spectively.

This system of interacting charges is coupled to a quan-
tum electromagnetic field which is itself enclosed into a
larger box � englobing both plates. The N-particle Hamil-
tonian reads

H�,L,d = �
i=1

N
1

2m�i

�Pi −
e�i

c
A�ri�	2

+ �
i�j

e�i
e�j

v�ri − r j�

+ �
i=1

N

Vwalls�ri,�i� + H0,�
rad �10�

with v�ri−r j� the static Coulomb potential

v�ri − r j� =
1


ri − r j

. �11�

As is common in atomic physics when matter is nonrelativ-
istic and high-energy processes are neglected, we use the
Coulomb gauge and electrostatic Gaussian units �30�. The
Coulomb gauge has the advantage of clearly disentangling
electrostatic and magnetic couplings in the Hamiltonian. The
divergence-free vector potential A�r� is supposed to satisfy
periodic boundary conditions on the sides of the box �. Its
expansion in Fourier modes K is given by

A�r� = �4��c2

�
	1/2

�
K,	

g�K�
eK,	

�2�K

�aK,	
� e−iK·r + aK,	eiK·r� ,

�12�

where aK,	
� ,aK,	 are the creation and annihilation operators

for the mode K ,	 of frequency �K=c
K
 with the commuta-
tion relations �aK,	 ,aK,	�

� �=�K,K��	,	�; eK,	 ,	=1,2 are the
polarization vectors; g�K�, g�0�=1, is a real, spherically
symmetric, and smooth form factor taking care of ultraviolet
divergences. It is supposed to decay rapidly to 0 beyond the
characteristic wave number Kcut�

2�
	cut

= m̄
�c where m̄ is an av-

erage particle mass. The term H0,�
rad in �10� is the free field

Hamiltonian

H0,�
rad = �

K,	
��KaK,	

� aK,	. �13�

The wall potential Vwalls�ri ,�i� confines the particles either to
slab A or to slab Bd, depending on whether �i designates a
species in A or Bd. Note that we neglect spin-field couplings
in this model �see the comments in Sec. VII�.

The states of this system of particles and field are sup-
posed to be thermalized at the inverse temperature 

= �kBT�−1, and statistical averages, denoted by �¯
, are taken
with the usual Gibbs weight e−
H�,L. We introduce the finite-
volume grand-canonical potential of the full system


�,L,d = − kBT ln Tr e−
�H�,L−�·N� �14�

where the trace Tr=TrmatTrrad is carried over particles’ and
field’s degrees of freedom. Here �= ���a

,��b
� is the collec-

tion of chemical potentials that fix the average particle den-
sities in each of the plates and N= �N�a

,N�b
� are the corre-

sponding particle numbers. In �14� Trmat is carried out only
on neutral configurations in each plate. The average force by
unit surface exerted between infinitely extended plates im-
mersed in the electromagnetic field is then defined by for-
mula �8�, the temperature and chemical potentials being
fixed.

In addition to the separation d, there is a number of other
characteristic lengths in the system, in particular, the thermal
wavelength of photon 	ph=
�c and of particles 	mat

=��
 / m̄. Moreover, the plates are assumed to be conduct-
ing, and therefore characterized by a screening length 	screen.
Our derivation holds for the following hierarchy of lengths:

	cut =
	mat

�
mc2
� 	mat � 	ph = �
mc2	mat � d , �15�

	screen � a, b � d . �16�

The first set of inequalities is necessary for the consistency of
the nonrelativistic treatment of matter, which requires

m̄c2�1 �the thermal energy is much smaller than the rest
mass energy of the particles�. Inequality �16� means that the
plates’ thickness should be large enough for allowing the
screening mechanisms to take place inside the conductors.
Finally, the conductors will be assumed to be invariant under
translations and rotations in the plate directions.

B. Loop formalism

Our analysis relies on the formalism developed in �29�,
based on a joint functional representation of both matter and
field. In this formalism, the field degrees of freedom can be
integrated out exactly. Then, the particle variables live in an
auxiliary classical-like phase space whose elements are loops
of random shape �for the statistical mechanics of charged
loops, see the review �31�, Chap. V and references therein�.
A loop L= �r ,�� is specified by a position r in space and a
number of internal degrees of freedom �= �� , p ,X�¯�� con-
sisting of a species index �, a charge number p�1,2 ,3 , . . .,
and a closed Brownian path s�X�s�, s� �0, p�, X�0�
=X�p�. The loop’s shape X�s� is a Gaussian stochastic pro-
cess �Brownian bridge� whose functional integral has unit
normalization, zero mean, and covariance given by

� D�X�X��s�X��s�� = ��� p�min� s

p
,
s�

p
� −

s

p

s�

p
	 .

�17�

The loop’s path is

r�s� � r + 	�X�s�, 0 � s � p , �18�

where 	�=��
 /m� is the de Broglie thermal wavelength.
The occurrence of the Brownian path results from the
Feynman-Kac path integral and 	� gives the extension of the
quantum particle’s fluctuation. The number p accounts for
the quantum statistics of the species �. It corresponds to
grouping together p particles that are permuted accordingly
to a cyclic permutation of length p.
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The pairwise interaction e�i
e�j

V�i , j� between two loops
i�Li and j�L j is the sum of two contributions

e�i
e�j

V�i,j� = e�i
e�j

�Vc�i,j� + Wm�i,j�� . �19�

The first contribution, inherited from the Coulomb potential,
is

Vc�i,j� = �
0

pi

dsi�
0

pj

dsj��si
˜ − sj

˜�
1


ri
�si� − r j

�sj�

, �20�

where s̃=s mod 1 and ��si
˜ −sj

˜� takes into account the equal-
time constraint imposed by the Feynman-Kac formula. The
second contribution is the effective potential resulting from
the elimination of the field’s degrees of freedom. We call it
the magnetic potential. It is given in Fourier representation
by formulas �66� and �67� of �29�

:

Wm�i,j� =� dK

�2��3eiK·�ri−rj�Wm��i,� j,K� ,

Wm��i,� j,K� =
1


�m�i
m�j

c2�
0

pi

dXi
��si�eiK·	�i

Xi�si��
0

pj

dXj
��sj�e−iK·	� j

Xj�sj�
4�g2�K�

K2 ���
tr �K�Q�K, s̃i − s̃ j� , �21�

with

Q�K, s̃i − s̃ j� �
	phK

2 sinh�	phK/2�
cosh�	phK�
s̃i − s̃ j
 − 1/2�� , �22�

and

���
tr �K� � ��� −

k�k�

K2 �K = �k���=1
3 , K = 
K
� �23�

is the transverse Kronecker function. In �21�, �0
pdX��s� are stochastic line integrals along the loop shape. The function Q,

depending only on 	ph, is the manifestation of the quantum photon field. This formula holds when the field region � has been
extended to infinity, replacing the discrete sum on Fourier modes by an integral.

Written in terms of loop variables, the grand-canonical partition function of the full system, normalized by that of the free
radiation field, has a classical structure

�L,d = lim
�→R3

Tr e−
�H�,L−�·N�

Tr e−
H0,�
rad = �

nA=0

�
1

nA! �
nB=0

�
1

nB!
�

A
�

a

nA

dLaz�La��
Bd

�
b

nB

dLbz�Lb�e−
U��La�,�Lb��. �24�

In �24�, the loop integration �AdLa=�Adrad�a

=�Adra��a
�pa

D�Xa� is carried over paths ra
�s� entirely con-

tained in slab A, respectively, �Bd
dLb over paths in slab Bd.

This corresponds to choosing hard walls on the faces of the
slabs, i.e., Dirichlet boundary conditions for the particle
wave functions. In �24� the sums run only on neutral con-
figurations of loops in each slab.

The total loop energy U can be separated into intraplate
and interplate contributions,

U = UA + UBd
+ UABd

, �25�

where

UA = �
i,j�A

e�i
e�j

V�i,j� �26�

is the sum of interactions occurring among loops confined
into slab A �likewise for UBd

in slab Bd�, and

UABd
= �

i�A
�

j�Bd

e�i
e�j

V�i,j� �27�

is the interaction energy between the two plates. Moreover,
each loop is equipped with an effective activity z�L� contain-
ing the loop self-energy e�

2V�L ,L�,

z�L� =
�2s� + 1�����p−1

p

�e
���p

�2�p	�
2�3/2e−
e�

2V�L,L�/2. �28�

The factor �2s�+1� accounts for the spin degeneracy of the
energy levels, �� is the chemical potential of species �, and
��= ±1 for bosonic-fermionic species.

We stress that although the loop partition function �24�
has a classical form, it is a mathematically exact representa-
tion of the original grand-canonical partition function of the
system of quantum charges and photons as defined by the
Hamiltonian �10�.
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III. CASIMIR FORCE

In view of �8�–�14� and the fact that the free-field partition
function does not depend on d, the Casimir force expressed
with the help of the loop partition function �24� reads

f�d� = lim
L→�

lim
�→R3

kBT

L2

�

�d
�ln Tr e−
�H�,L−�·N� − ln Tr e−
H0,�

rad
�

= lim
L→�

kBT

L2

�
�d�L,d

�L,d
. �29�

The dependence upon d in the partition function �24� occurs
only in the confinement of the loops in the slab Bd. For the
rest of the paper, it is convenient to shift the positional inte-
gration variable xb� �d ,b+d� of a loop in Bd to xb−d, so that
slab Bd is moved to the fixed region B= �0,b��L2. Then, the
d dependence is transferred to the interaction potential be-
tween slabs,

V�La,Lb�, xb � �d,b + d� � V�La,Lb + d�, xb � �0,b� ,

�30�

where Lb+d is the loop Lb shifted along the x axis from xb to
xb+d. This amounts to measure the positions in slab Bd from
its inner face. To abbreviate the notation, we set

VAB�La,Lb� � V�La,Lb + d� . �31�

From now on it will be implicitly understood that
VAB�La ,Lb� depends on d according to �31� and that in forth-
coming integrals the path of the loop La is restricted to the
fixed slab A of volume �−a ,0��L2 while that of Lb to the
fixed slab B of volume �0,b��L2.

Differentiating with respect to d in �29� is equivalent to
differentiating the potential V�La ,Lb+d� with respect to xb,
or with respect to −xa �since the dependence on the x com-
ponents is xa−xb−d�. This brings in the average force along
x

f�d� = lim
L→�

1

L2��
a

A

�
b

B

e�a
e�b

��xa
VAB

c + �xa
WAB

m ��La,Lb��
loops

.

�32�

The bracket �¯
loops denotes the grand-canonical statistical
average in the phase space of loops with activities �28� and
with respect to the Gibbs weight e−
U associated to the loop
potential energy �25�. Since the force is a two-body observ-
able, its thermal average can be expressed as an integral over
the two-loop correlation �L

�2� between a loop in A and a loop
in B,3

f�d� = lim
L→�

1

L2�
A

d1�
B

d2 e�1
e�2

��x1
VAB

c

+ �x1
WAB

m ��1,2��AB,L
�2� �1,2� , �33�

where we have followed the notation �31�,

�AB,L
�2� �L1,L2� � �L

�2��L1,L2 + d� , �34�

and the d1 integration is carried on loops in A, respectively,
the d2 integration on loops in B.

At this stage we take the limit L→� of infinite plate
surfaces. Since the conductors are assumed to become homo-
geneous in the y= �y ,z� plane of the plates, the two-loop
correlation function tends to a function �AB

�2��1,2 , 
y1−y2
�. In
this geometry, it is convenient to decompose r1= �x1 ,y1�, and

1 = �1,y1�, d1 = d1dy1, d1 = dx1d�1, �35�

where 1= �x1 ,�1� denotes the position along x of the loop L1

and its internal degrees of freedom �likewise for 2�. In the
limit, the factor 1 /L2 cancels with one of the y integrals in
�33�, yielding

f�d� = �
A

d1�
B

d2� dy e�1
e�2

��x1
VAB

c

+ �x1
WAB

m ��1,2,y��AB
�2��1,2,y� . �36�

We introduce in �36� the loop Ursell function h�1 ,2� defined
in the usual way by

��1���2�h�1,2� � ��2��1,2� − ��1���2� , �37�

where ��L� is the loop density, so that

f�d� = �
A

d1�
B

d2� dy e�1
e�2

��x1
VAB

c + �x1
WAB

m �

��1,2,y��A�1��B�2�hAB�1,2,y� + fcap�d� , �38�

where again hAB�L1 ,L2�=h�L1 ,L2+d� and �A�L1�
=��L1� , �B�L2�=��L2+d� according to the notation in �31�
and �34�. The capacitor force fcap�d�= fcap

c + fcap
m comes from

the subtracted product of the plates’ density in �37�. We show
in Appendix A that the electrostatic part fcap

c �d� due to the
term �x1

VAB
c reduces to

fcap
c �d� = 2���

−a

0

dx1cA�x1����
0

b

dx2cB�x2�� , �39�

where cA�x1� and cB�x2� are the mean charge densities in
plate A and B. It corresponds to the standard force �in Gauss-
ian units� between a capacitor’s plates whose surface charge
densities are, respectively, �−a

0 dx1cA�x1� and �0
bdx2cB�x2�. In

this work, we assume strict neutrality in virtue of �9�, so that
fcap

c �d��0. Moreover, we also show in Appendix A that the
magnetic contribution fcap

m �d� decays faster than any inverse
power of d. In the sequel, we will thus drop the capacitor
force and focus only on the first term of �38�, which is the
proper Casimir force generated by fluctuations.

There is a noteworthy simplification in the electrostatic
part due to �x1

VAB
c �1 ,2 ,y� in the Casimir force. Namely, one

can omit all multipolar contributions in the loop Coulomb
force �x1

e�1
e�2

Vc�1,2� �see �20�� replacing it by its pure
monopole term �x1

p1p2e�1
e�2

1

r1−r2
 = p1p2e�1

e�2
�x1

v�r1−r2�.
The underlying reason is that the electric force expressed in
terms of the original two-point particle correlation function
involves the average standard Coulomb force �x1

v�r1−r2� be-

3Loop correlation functions are defined similarly to particle den-
sity correlation functions, see �31�, Chap. V.
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tween point charges. The equivalence with the present for-
mulation in terms of loops is given in Appendix B.

Finally, we represent the remaining y integral in the two-
dimensional �transverse� Fourier space k and introduce the
dimensionless variable q=kd,

f�d� =
1

d2�
A

d1�
B

d2� dq

�2��2e�1
e�2

�p1p2�x1
vAB

+ �x1
WAB

m ��1,2,
q

d
	�A�1��B�2�hAB�1,2,

q

d
	 , �40�

where

�x1
vAB�1,2,

q

d
	 = �x1� dy

ei�q/d�·y

��x1 − x2 − d�2 + y2

= 2�e−qe−q�x2−x1�/d. �41�

The general formula �40� is an expression structurally similar
to the one developed in the purely classical model �Ref. �26�,
formula �29��. It reduces to it when charges are classical and
the field is switched off. The main purpose is now to extract
the d dependence of the Ursell function hAB�1,2 , q

d
�, which

embodies all correlations between the two plates.

IV. SCREENING OF THE ELECTROSTATIC
INTERACTION

The Ursell function can be conveniently analyzed by per-
forming a Mayer expansion in the phase space of loops. The
Mayer bonds f�i , j�=e−
e�i

e� j
V�i,j�−1 are built from the basic

loop-loop interaction �19�. The Coulombic part of �19� de-
cays as r−1 so that the Mayer bond is not integrable. In order
to remedy to this nonintegrability, it is necessary to take
screening effects into account. To this end, we first make the
following observation. From the Feynman-Kac formula the
potential �20� inherits the quantum-mechanical equal-time
constraint: i.e., every element of charge e�i

	�i
dXi�si� of the

first loop does not interact with every other element
e�j

	�j
dX j�sj� as would be the case in classical physics, but

the interaction takes place only if si=sj. It is therefore of
interest to split Vc into Vel+Wc, where

Vel�i,j� = �
0

pi

dsi�
0

pj

dsj
1


ri
�si� − r j

�sj�

, �42�

Wc�i,j� = �
0

pi

dsi�
0

pj

dsj���si
˜ − sj

˜� − 1�
1


ri
�si� − r j

�sj�

. �43�

The contribution Vel is the genuine classical Coulomb inter-
action between two uniformly charged wires of shapes ri

�si�

and r j
�sj�, whereas the quantum-mechanical constraint appears

in Wc.
Now, the complete two-loop potential �19� reads

V = Vel + W with W = Wc + Wm. �44�

It is known that Wc and Wm have a dipolar r−3 decay at large
distance, see Sec. VI of �29�. One can therefore view the

system of loops as behaving like classical random charged
wires �interacting with Vel� with additional electric and mag-
netic multipolar interaction W.

We deal with the screening effect generated by the classi-
cal Coulombic part Vel by the standard Debye-Hückel
method. This amounts to introduce the effective screened
potential 
 corresponding to the chain resummation of the
linear part −
e�i

e�j
Vel�i , j� of the bond f�i , j�: 
 satisfies the

integral equation


�i,j� = Vel�i,j� −� d1
�2�1�
4�

Vel�i,1�
�1,j� , �45�

where

�−1�1� = �4�
e�1

2 ��1��−1/2 �46�

defines a local screening length in the system of loops. This
potential is now short range in the sense that it is integrable
on the y direction along the plates �see Appendix C�, imply-
ing

lim
k→0



�1,2,k�
 � � . �47�

The Mayer series is reorganized by the Abbe-Meeron re-
summation process ��31�, Chap. V and references therein�
into so-called “prototype” graphs � with integrable bonds
F�i , j� and FR�i , j� 4 given by

F�i,j� = − 
e�i
e�j


�i,j� , �48�

FR�i,j� = e−
e�i
e� j

�
+W��i,j� − 1 + 
e�i
e�j


�i,j� . �49�

The resummed Mayer graph series of the Ursell function
reads

h�1,2� = �
�

1

S�
� d3��3� ¯� dm��m� �

�i,j���

F�i,j� ,

�50�

where F� �F ,FR�. The diagrams � have two root points and
m−2 internal circles �m=2,3 , . . .�, and a symmetry number
S�. In �50�, the weights of the integrated points are the den-
sity, so that the graphs contain no articulation points. Proto-
type graphs are subject to an important rule: convolution
chains of bonds F are forbidden to avoid double counting of
the original Mayer graphs.

Perfect screening sum rules. On the microscopic level, the
conducting behavior of a system at equilibrium is character-
ized by the fulfillment of the “perfect screening sum rule”
�32�: a fixed charge in the system is neutralized by the mean
charge density surrounding it. This property is expressed by
the following constraint on the two-particle Ursell function:

4At large distance, FR�i , j��−
e�i
e� j

W�i , j��r−3 is at the border
of integrability. Hence, some care must be exercised as it is the case
in dipole gases.
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�
�1

� dr1 e�1
��r1,�1�h�r1,�1;r2,�2� = − e�2

. �51�

It turns out that the same perfect screening sum rule holds in
the auxiliary system of loops

� d1 p1e�1
��1�h�1,2� = − p2e�2

. �52�

The interpretation is the same: the fixed loop 2 with charge
p2e�2

is surrounded by a screening cloud of loops with op-
posite total charge.

The sum rule �52� holds in great generality for infinitely
extended conductors, in particular for slab geometries. A jus-
tification of this sum rule is easily given when the loop
Ursell correlation h is replaced by the single bond F. Equa-
tion �45� written in the transverse Fourier space reads


�i, j,k� = Vel�i, j,k� −� d1
�2�1�
4�

Vel�i,1,k�
�1, j,k� ,

�53�

where from �42�

Vel�i, j,k� = �
0

pi

dsi�
0

pj

dsje
ik·�	�i

Yi�si�−	� j
Yj�sj��

2�

k
e−k
xi

�si�−xj
�sj�
.

�54�

Here X�s� and Y�s� are the components of X�s� along x and
in the y plane and x�s�=x+	�X�s� is the component along x
of r�s� in �18�. We divide both members of �53� by Vel�i , j ,k�
and let k→0. In view of the fact that 
�i , j ,k� remains finite
�see �47��, that limk→0 Vel�i ,1 ,k� /Vel�i , j ,k�= p1 / pj, and
from the definition �46�, one obtains

� d1 p1 e�1
��1�F�1, j,k = 0� = − pje�j

, �55�

which is the same as �52� with F replacing h.
In fact, it can be shown that the general case �52� is a

consequence of �55�, by using the same dressing argument as
that presented in �63�–�68� of �26�, Sec. 5.

V. ASYMPTOTIC CASIMIR FORCE

To analyze the asymptotic d dependence of the force �40�,
we need to extract that of the electrostatic part �x1

vAB and of
the magnetic part �x1

WAB
m together with that of the Ursell

correlation hAB. It is immediate from �41� that �x1
vAB�1,2 , q

d
�

has the limit

�x1
vAB�1,2,

q

d
	 → 2�e−q = O�1� �56�

as d→�. We will establish in Sec. VI the following facts:

�x1
WAB

m �1,2,
q

d
	 = O�d−2� , �57�

hAB�1,2,
q

d
	 = O�d−1� . �58�

As a consequence, the average of the magnetic part
�x1

WAB
m �1,2 , q

d
� does not contribute to the Casimir force at

leading order since it is O�d−5�, whereas the electrostatic part
of the force is O�d−3�. To calculate the coefficient of this
�d−3 dominant contribution, the exact structure of hAB at
O�d−1� is needed. The latter is analyzed in detail in Sec.
VI C. In short, both bonds FAB in �48� and FAB

R in �49� are of
order d−1 and the diagrams contributing to hAB�1,2 , q

d
� at this

order comprise only one of these AB links. Those having a
single FAB bond sum up to the factorized expression

−
1


d

q

4� sinh q

GA
0�1,0,0�

e�0

GB
0�0,2,0�

e
0

, �59�

where

GA
0�1,0,0� = hA

0�1,0,0� −� di�A
0�i��FA

0�1,i,0� +
��1,i�
�A

0�i� 	
��hA

0�nn�i,0,0� �60�

comprises internal correlations occurring in slab A. The su-
perscript “0” qualifies statistical-mechanical quantities char-
acterizing the system governed by the same Hamiltonian
�10� but where Vwalls confines particles in a single slab �either
A or B�. hA

0�1,0 ,0�=hA
0�1,0 ,k=0� is the Ursell correlation

between a loop “1” in slab A and a classical charge e�0
lo-

cated at its right-hand border, denoted by the loop argument

0 � �x = 0,�0,p = 1,X�¯� � 0� . �61�

The structure of GA
0 is determined by the excluded convolu-

tion rule applied to FAB. The partial Ursell function �hA
0�nn

occurring in the right-hand side of �60� is defined in Sec.
VI C, see �84�. The same notations and definitions apply to
the plate B.

The diagrams having a single FAB
R bond sum up to the

expression

� di �A
0�i�� dj �B

0�j��hA
0�1,i,0� +

��1,i�
�A

0�i� 	
��− 
e�i

e�j
�WAB�i, j,

q

d
	�hB

0�j,2,0� +
��j,2�
�B

0�j� 	 , �62�

where again hA
0 and hB

0 are the Ursell functions of the single
plate systems A and B.

The rest of the analysis relies on the application of the
perfect sum rule �52� for loops. Indeed, introducing the con-
tribution �62� into the force �40�, one builds the integral

� d1p1e�1
�A

0�1��hA
0�1,i,0� +

��1,i�
�A

0�i� 	 = 0 �63�

which vanishes by �52�.
Introducing now the contribution �59� into the force �40�,

we see that the integrals on the two slabs factorize as
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f�d� �
d→�

−
1

4�
d3�
0

�

dq
q2e−q

sinh q�� d1p1e�1
�A

0�1�
GA

0�1,0,0�
e�0

	
��� d2p2e�2

�B
0�2�

GB
0�0,2,0�

e
0

	 . �64�

From �60�, we have

� d1 p1e�1
�A

0�1�
GA

0�1,0,0�
e�0

=� d1 p1e�1
�A

0�1�
hA

0�1,0,0�
e�0

= − 1. �65�

The first equality follows from the sum rule �55� for the F
bond in the single plate A. The second equality is again a
consequence of the perfect screening for loops �52�. Perfect
screening in plate B implies similar identities for the second
set of large parentheses in �64�.

Noticing that the q integral provides the constant ��3� /2,
the Casimir force at large separation is

f�d� �
d→�

−
��3�

8�
d3 , �66�

which is the main result of this paper.

VI. ASYMPTOTIC CORRELATIONS
BETWEEN THE TWO SLABS

To extract the asymptotic large-separation behavior of the
Ursell correlation hAB�1,2 , q

d
�, we select the class of proto-

type graphs that give the dominant contribution by analyzing
them one by one, as done in Appendix C of �26�.

It is important to distinguish situations where arguments
Li ,L j both lie in the same plate or in the two different plates.
As done before �see �31� and �34�� we index any quantity
with arguments Li�A= �–a ,0��R2 and L j �B= �0,b��R2

with an index AB. We introduce a similar notation for inter-
actions and correlations internal to a given plate, using the
index AA, BB when loops lie in the same slab, e.g.,

FAA�Li,L j� = F�Li,L j�, FBB�Li,L j� = F�Li + d,L j + d� ,

hAA�Li,L j� = h�Li,L j�, hBB�Li,L j� = h�Li + d,L j + d� .

�67�

In the limit d→�, the plates will no longer have any mutual
interaction: AB correlations are expected to vanish whereas
AA and BB quantities will tend to those pertaining to the
system constituted by a single plate. Using the superscript
“0” to qualify the statistical mechanical description of the
single plates, one will have in particular

�A�1� →
d→�

�A
0�1�, �B�2� →

d→�

�B
0�2� ,

FAA�i,j� → FA
0�i,j�, FBB�i,j� → FB

0�i,j� ,

hAA�i,j� → hA
0�i,j�, hBB�i,j� → hB

0�i,j� . �68�

In the next sections, we analyze in more detail the behavior
of hAB�1,2 , q

d
� occurring in the force formula �40� at large d.

A. Large-distance behavior of the screened potential �AB

The main fact to be established in this section is the fac-
torization of the screened potential 
AB�i , j , q

d
�, at order d−1,

into two independent parts pertaining to the individual slabs
A and B. We extend the arguments developed for a system of
classical charges presented in Sec. 3.2.3 of Ref. �33�. One
observes first that this factorization is already present in the
bare Coulomb potential Vel�i , j ,k� of �54�. Indeed taking into
account the shift �30� of the loops’ positions as well as xi

�si�

�0�xj
�sj� for all si ,sj, one can write

VAB
el �i, j,k� =

ke−kd

2�
��

0

pi

dsie
ik·	�i

Yi�si�
2�

k
e−k
xi

�si�
	
���

0

pj

dsje
−ik·	� j

Yj�sj�
2�

k
e−k
xj

�sj�
	
�

ke−kd

2�
VAA

el �i,0,k�VBB
el �0, j,k� . �69�

We have identified the first set of large parentheses to the
Coulomb potential inside A between a loop i and a loop
variable denoted 0, corresponding to an �arbitrary� classical
charge situated on the inner side of the slab �see �61��, and
likewise for the second set of large parentheses. We show
below that the factorization extends to the screened potential
as d→� in the form


AB�i, j,
q

d
	 �

d→�1

d

q

4� sinh q

A

0�i,0,0�
B
0�0, j,0� , �70�

where 
A
0�i ,0 ,0� is the screened potential at k=0 inside the

single plate A between a loop i and a classical charge 0 at its
right-hand boundary, and likewise for 
B

0�0, j ,0�.
In the chain summation of Vel bonds that constitutes 
AB,

obtained by iterating �53�, we keep only the dominant chains,
which turn out to be of order d−1. We follow the steps per-
formed in the classical situation in �33�. We split every inte-
gral on internal convolution points into an A and a B contri-
bution. Using again the notation �67�, i.e., specifying Vel as
VAA

el �i , j ,k� , VBB
el �i , j ,k� , VAB

el �i , j ,k� according to the loca-
tion of its argument in A or B, Vel chains are expanded into
chains made of VAA

el , VBB
el , and VAB

el bonds. One notes that
VAA

el �i , j ,k�=VBB
el �i , j ,k�, and that VBA

el �i , j ,k�=VAB
el �j , i ,−k� by

space inversion in the y plane. We call VAB
el �i , j ,k� a travers-

ing bond, and chains that link A with B, traversing chains.
Clearly, traversing chains that contribute to 
AB�i , j , q

d
� have

necessarily an odd number of traversing bonds VAB
el . Let


AB
�2n+1� be the sum of chains containing exactly 2n+1 tra-

versing bonds. The contribution 
AB
�1� is a sum of convolution

chains of the type ¯VAA
el �VAA

el �VAB
el �VBB

el �VBB
el
¯. Using the

factorization �69� of VAB
el , one can resum on either side of
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VAB
el convolution chains of VAA

el and VBB
el into quantities


̃AA�i ,0 , q
d

� and 
̃BB�0, j , q
d

�; 
̃AA differs from the screened
potential 
AA by the omission of traversing chains starting in
plate A and returning to it, which describe part of the elec-

trical influence of B on A �likewise for 
̃BB�. But for large d,
these traversing chains do not contribute anymore and by

�68�, 
̃AA�i ,0 , q
d

� and 
̃BB�0, j , q
d

� also tend as d→� to the
screened loop potentials 
A

0�i ,0 ,0� and 
B
0�0, j ,0� of the

single plates systems. Hence,


AB
�1��i, j,

q

d
	 �

d→�qe−q

2�d

A

0�i,0,0�
B
0�0, j,0� �71�

is of order d−1 with a factorized coefficient.
The contribution 
AB

�3� is then formed by convolution
chains of the type ¯VAA

el �VAB
el �
BA

�1�
�VAB

el �VBB
el
¯. Using

�69� and �71� and resumming again the convolution chains of

VAA
el and VBB

el on either extremity into 
̃AA and 
̃BB, one
obtains


AB
�3��i, j,

q

d
	 = �qe−q

2�d
	3


̃AA�i,0,
q

d
	�−� d1

�B
2�1�
4�

�VBB
el �0,1,

q

d
	
̃BB�1,0,

q

d
	��−� d2

�A
2�2�
4�

�
̃AA�0,2,
q

d
	VAA

el �2,0,
q

d
	�
̃BB�0, j,

q

d
	 .

�72�

By definition of 
̃AA and 
̃BB, these quantities satisfy the
integral relation �53� relative to A and B with inverse screen-
ing lengths �A

2�1� and �B
2�1� in place of �2�1�. The large

square brackets in �72� thus reduce to


̃BB�0,0,
q

d
	 − VBB

el �0,0,
q

d
	 = −

2�d

q
+ O�1� , �73�


̃AA�0,0,
q

d
	 − VAA

el �0,0,
q

d
	 = −

2�d

q
+ O�1� . �74�

On the right-hand side of �73� and �74�, the dominant terms
come from the Coulomb potentials �see �54��, while the es-

timates O�1� reflect the fact that 
̃AA�i , j ,k� and 
̃BB�i , j ,k�
are bounded in k �see �47� and Appendix C�. This yields


AB
�3��i, j,

q

d
	 �

d→�qe−q

2�d
e−2q
A

0�i,0,0�
B
0�0, j,0� . �75�

By induction on n, one easily sees that 
AB
�2n+1��i , j , q

d
� re-

ceives instead a prefactor qe−q

2�d e−2nq. Summing over n
=1,2 ,3 , . . . gives the result �70�. It is interesting to see that
the screened electrostatic interaction between the plates, at
order d−1, involves only particles located close to the inner
faces of the slabs.

For later convenience we write the equivalent factorized
form of the bond F �48�,

FAB�i, j,
q

d
	 �

d→�

−
1


d

q

4� sinh q

FA
0�i,0,0�

e�0

FB
0�0, j,0�

e
0

,

�76�

where e�0
and e
0

are two charges located at the inner bound-
ary of the slabs.

B. Large-distance behavior of the dipolar potential WAB

The partial Fourier transform WAB�1,2 ,k� is related to the
three-dimensional Fourier transform W��1 ,�2 ,K� �K
= �k1 ,k�� of �44� by

WAB�1,2,k� =� dk1

2�
eik1�x1−x2−d�W��1,�2,K� , �77�

remembering that WAB�L1 ,L2��W�L1 ,L2+d�. Changing
k1�q1 /d and setting k=q /d,

WAB�1,2,
q

d
	 =

1

d
� dq1

2�
eiq1�x1−x2�/de−iq1W��1,�2,

q1

d
,
q

d
	 ,

�78�

which shows that WAB�1,2 , q
d

�=O�d−1� provided the integral
has a limit as d→�. The analysis of W��1 ,�2 ,K� at small K
has been carried out in �29�. It was observed that the dipolar
electric part Wc was screened by thermalized photons at
large distance. As a consequence W��1 ,�2 ,K� behaves as
Wm��1 ,�2 ,K� when K→0, where Wm is the magnetic poten-
tial corresponding to a classical electromagnetic field �i.e.,
setting 	ph�0 in Wm�. The behavior of Wm��1 ,�2 ,K� itself
was worked out in �34�:

Wm��1,�2,K� �
	�1

	�2


�m�1
m�2

c2�
0

p1

dX1
��s1��

0

p2

dX2
��s2�

��K · X1�s1���K · X2�s2��
4�

K2 ���
tr �K�,

K → 0 . �79�

It is analogous to dipolar magnetic interaction between two
classical current loops of shape X1�¯� and X2�¯�. Since
this interaction only depends on the unit vector K=K /K,
W��1 ,�2 ,

q1

d , q
d
� is asymptotically independent of d, implying

WAB�1,2,
q

d
	 = O�d−1� . �80�

An explicit expression for the asymptotic form of �78� can be
found in Appendix D.

The potentials WAB
c and WAB

m could as well be separately
analyzed in the same way. One sees in �78� that
�x1

WAB
m �1,2 , q

d
� has an additional d−1 factor, so that

WAB
m �1,2,

q

d
	 = O�d−1�, �x1

WAB
m �1,2,

q

d
	 = O�d−2� .

�81�
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C. Ursell function at order O„d−1
…

From �76� and �80� and the definition of FAB
R �49�, one

sees that FAB�i , j , q
d

�=O�d−1� and FAB
R �i , j , q

d
�=O�d−1�. It is

clear that the decay rate of a prototype graph will depend on
the number of its traversing bonds. A rough counting gives

d−nABd−nAB
R

where nAB is the number of FAB bonds and nAB
R the

number of FAB
R bonds. A closer inspection shows that this

decay can be even faster, at least as

d−2Id−nABd−nAB
R

, d → � , �82�

where I, 0� I�nAB+nAB
R −1, depends on the topology of the

specific diagram and I=0 if there is a single traversing bond.
Formula �82� can be established repeating the same steps as
Appendix C of �26� �with integrals over loop degrees of free-
dom�.

From �82�, the slowest decaying Mayer diagrams have
either nAB=1, nAB

R =0 or nAB=0, nAB
R =1, namely only one

FAB or one FAB
R bond. In forming the complete correlation

function of the two-slab system, these bonds must be dressed
at their extremities by appropriate internal correlations of the
individual slabs in conformity with the diagrammatic rules.
Thus, the complete expression of the Ursell function
hAB�1,2 , q

d
� at order O�d−1� is

hAB �
d→�

DAA � FAB � DBB + DAA
R � FAB

R � DBB
R . �83�

The formation of the dressing function D differs from that of
DR because of the excluded convolution rule in prototype
graphs: no FAA or FBB bond can be attached alone to the
extremities of FAB whereas there is no such restriction for
FAB

R .
The dressing function DAA

R �DBB
R � of FAB

R consists of all
possible AA �BB� internal graphs. According to the discus-
sion at the beginning of the section �see �68��, it tends to the
Ursell function hA

0 �hB
0� of the individual plate. The corre-

sponding contribution to hAB�1,2 , q
d

� is thus given at O�d−1�
by �62�. The � terms in �62� account for the situation where
no bonds are attached to the extremities of FAB

R .
To deal with the excluded convolution rule when forming

the dressing function DAA, we introduce the function hAA
nn �i , j�

defined by the sum of all prototype graphs that do not begin
nor end with a F link alone. Its relation to the Ursell function
is

h = F + hnn � F + F � hnn � F + F � hnn + hnn. �84�

Then DAA=hAA
nn +FAA�hAA

nn +� /�A �likewise for DBB�. With
the factorization �76� of the link FAB, one sees that
�DAA�FAB�DBB��1,2 , q

d
� has the factorized form �59� with

GA
0 = � �

�A
0 + �hA

0�nn + FA
0 � �hA

0�nn	 � FA
0 . �85�

Since the bond FAB is already O�d−1�, all other quantities
have been evaluated for single plate systems according to
�68�. The final form �60� of GA

0 follows by noticing that the
first three terms of �84� build GA

0 as given in �85�.

VII. CONCLUDING REMARKS

In this paper the large-separation asymptotics �6� of the
Casimir force between two conducting plates has been de-
rived exactly from the principles of quantum electrodynam-
ics and statistical mechanics for any fixed nonzero tempera-
ture, taking all microscopic degrees of freedom of matter and
field into account. This does not give a direct proof that the
TE mode reflexion coefficient does not contribute at zero
frequency, but a strong evidence for it. The derivation ap-
plies to any model of conductor consisting of mobile quan-
tum charges. The latter can be negative and positive charge
carriers �like ions and anions in electrolytes�, or, e.g., form
the one-component electron gas in the jellium model of a
metal, the central common point to all these systems being
the screening mechanisms and the perfect screening sum
rules.

Let us note that there can be no contradiction between the
behavior �6� and the Nernst heat theorem. As mentioned in
the introduction, it has been argued, and controversially de-
bated, that the use of the Drude expression of the dielectric
function �yielding �6�� was not consistent with the Nernst
postulate which requires that the entropy of the total system
vanishes at zero temperature. In our setting the question
arises in different terms. The asymptotic formula �6� is defi-
nitely true, whereas the Nernst theorem is the separate affir-
mation that the QED Hamiltonian �10� has a unique �or not
extensively degenerate� ground state, a nontrivial and uncor-
related mathematical problem.

A number of questions deserve further studies. We have
disregarded paramagnetic forces due to the Pauli coupling
−�� ·B of electronic and nuclear magnetic moments �� to
the magnetic field B. Preliminary investigations using spin
coherent states functional integrals indicate that such inter-
actions result in an additional effective dipolar potential
which, as the orbital diamagnetic part Wm, will not contrib-
ute to the asymptotic force.

We have kept the thickness a and b of the plates finite
while the separation d→�. Then, because of perfect screen-
ing, the asymptotic force is universal as well as independent
of a and b. This corresponds to the present experimental
situation where only thin coats of metal of order of 50 nm
are deposited on a substrate �35�. Compared to separations
ranging from 0.5 to 3 �m, the regime is clearly a ,b�d.
The opposite situation of thick plates a ,b�d, namely taking
here a=b=� at the very beginning, requires a careful analy-
sis since the magnetic potential Wm�1,2 , q

d
� loses integrabil-

ity as d→� �see the factor exp�iq1�x1−x2� /d� in �78��. Then
x integrals must be performed before taking the limit d→�
which appears to lead to a modification of the d−3 coefficient
with small �nonuniversal� terms of order O��
mc2�−1�.

Expression �66� is the first term of an expansion in inverse
powers of d whose terms will be of the form An /dn , n�4.
The amplitudes An�� ,T� are no longer universal. They will
depend on the thermodynamic and geometric parameters of
the plates �temperature, densities �, thickness a, b� as well
as their microscopic characteristics �particle masses and
charges�. Looking at the form of the electrostatic and mag-
netic dipole potentials Wm and Wc, the expansion can
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be cast in terms of dimensionless quantities including
�	mat /d�n , �	ph /d�n, where 	mat and 	ph are the matter and
photon thermal lengths. This expansion is therefore only
meaningful when the condition �15� is met. Of great interest
would be the calculation of the first subdominant amplitude
A4 that includes corrections from an imperfectly conducting
metal and to compare it with the predictions of the Lifshitz
theory �6�. Also the effect of the capacitor force, which can-
not be completely turned off in experiment, can be estimated
by analyzing the term �39� at large separation.

Finally, an open question is the understanding of the
crossover to the zero-temperature Casimir force f �
−�2�c /240d4 due to pure quantum fluctuations. In the
framework of Lifshitz theory, it was shown that plasmon
modes at the surfaces of the plates combine with photonic
modes to build the above usual zero-temperature Casimir
force calculated as if the plates were inert �36�. Notice that
we have not added to the Hamiltonian �10� the vacuum en-
ergy 1

2�K,	��K. In fact this �infinite� constant plays no role
since it will not appear in the force formula �8� �it is inde-
pendent of d in our setting�. To study the zero-temperature
case one cannot rely on the above-mentioned expansion
since 	mat ,	ph→� as T→0 and condition �15� does not hold
anymore. One must reconsider the whole analysis by first
evaluating the force �40� in the zero-temperature limit at
fixed d and then let d→�. In other words, the limits T→0
and d→� are not permutable, and the issue is about obtain-
ing a simultaneous control of the force jointly for T near zero
and d large. This will be the subject of forthcoming work.

APPENDIX A: CAPACITOR FORCE

Given that in the electrostatic part of the total force �36�,
only the monopolar part p1p2�x1

vAB of the loop Coulomb
force �x1

VAB
c contributes �see Appendix B�, the electrostatic

capacitor force fcap
c �d� is

fcap
c �d� = �

A

d1�
B

d2� dye�1
e�2

p1p2�x1
vAB�1,2,y��A�1��B�2� .

�A1�

The loop densities �A�1� and �B�2� are independent of y by
space homogeneity in the plates’ directions and
�dy�x1

vAB�1,2 ,y�=2� �set q=0 in �41��. The remaining in-
tegrals factorize, and yield the particle densities �A�x1 ,�1�
and �B�x2 ,�2� in plate A and B by means of the identity

��r,�� = �
p=1

�

p� D�X���L� �A2�

�see �37�, Appendix D�. Introducing the charge density c�x�
=��e���x ,�� in plate A and B, fcap

c �d� is thus given by for-
mula �39�. Note that the charge densities cA�x� and cB�x� are
still subject to the mutual interaction between the slabs, thus
depend on the separation d.

The magnetic part of the capacitor force is

fcap
m �d� = �

A

d1�
B

d2� dye�1
e�2

�x1
WAB

m �1,2,y��A�1��B�2� .

�A3�

We show hereafter that

� dy�x1
WAB

m �1,2,y� =� dk1

2�
eik1�x1−x2−d�ik1

�Wm��1,�2,k1,k = 0� �A4�

decays faster than any inverse power of �x1−x2−d� as d
→�. This ensures that the decay of fcap

m �d� with the plates’
separation has no power-law tail in view of �A3�.

The dipolar decay of Wm�1 ,2� �21� at large distance, re-
sponsible for the power-law estimates �81�, is generated by
the nonanalyticity k�k� /K2 due to ���

tr �K� in the transverse
Coulomb potential 4����

tr �K� /K2 �K= �k1 ,k��. However, set-
ting k=0 eliminates the k1 dependency in the transverse Kro-
necker symbol,

���
tr �k1,k = 0� = ���� if �,� � 1,

0 if � = � = 1.
� �A5�

Any nonanalyticity is thus removed in Wm��1 ,�2 ,k1 ,k=0�
around k1=0, ensuring the fast decay of �A4�. Indeed, in
Wm��1 ,�2 ,k1 ,k=0�, one is left with the stochastic integrals

�
0

p1

dY1�s1��
0

p2

dY2�s2�
4�g2�k1�

k1
2 Q�k1,s1

˜ − s2
˜�

�eik1	�1
X1�s1�e−ik1	�2

X2�s2�.

Both g2�k1� and Q�k1 ,s1
˜−s2

˜� are analytic functions of k1

expandable as 1+O�k1
2�. One sees by expanding the integrant

around k1=0 that the only singular terms are functions of
only s1 or s2. Their stochastic integration identically vanishes
by Itô’s lemma, stating that �0

pdX�s��0.

APPENDIX B: ELECTROSTATIC FORCE

In formula �32�, the Casimir force has an electrostatic part
fc�d� due to �xVAB

c and a magnetic part fm�d� resulting from
differentiating the magnetic potential. One could write the
average electrostatic force between the two slabs directly by
summing the Coulomb forces between the point charges,

fc�d� = lim
L→�

1

L2��
a

�
b

e�a
e�b

�xvAB�ra,rb��
= lim

L→�

1

L2�
A

dr1�
B

dr2�
�1

�
�2

e�1
e�2

�xvAB�r1,r2�

��AB,L
�2� �r1,�1;r2,�2� , �B1�

where vAB�ra ,rb� is the Coulomb potential �11�, �L
�2� is the

particle density correlation function, and the same notation
from �31� and �34�, translating positions from slab Bd to slab
B is used. Going to the phase space of loops by means of the
identity
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�AB,L
�2� �r1,�1;r2,�2� = �

p1=1

�

�
p2=1

�

p1p2� D�X1�� D�X2�

��AB,L
�2� �1,2� �B2�

�see �37�, Appendix D� yields

fc�d� = lim
L→�

1

L2�
A

d1�
B

d2 e�1
e�2

�p1p2�x1
vAB��1,2�

��AB,L
�2� �1,2� . �B3�

In formula �B3�, multipolar contributions of the Coulomb
force are not present, in contrast to the electrostatic part of
�33�. The strict equivalence of these formulas relies on an
invariance property regarding the choice of a reference point
for a loop’s position. Clearly, the loop

L�u� � �r�u�,�,p,X�u��¯�� with X�u��s� � X�s + u� − X�u�

�B4�

describes the same path as the loop L= �r ,� , p ,X�¯�� but
has its origin r�u�=r+	�X�u� shifted by the vector 	�X�u�
�the time parameter is shifted by u�. Such a shift does not
affect the loop density,

��L�u�� = ��L� ∀ u , �B5�

whereas the two-loop correlation function satisfies

�L
�2��L1

�u1�,L2
�u2�� = �L

�2��L1,L2� if u1 − u2 � Z �B6�

�see below�. In the electrostatic part of �33�,

��x1
VAB

c ��1,2� = �
0

p1

ds1�
0

p2

ds2��s1
˜ − s2

˜��x1
vAB�r1

�s1�,r2
�s2��

�B7�

�see �20�� and one can replace �AB,L
�2� �L1 ,L2� by

�AB,L
�2� �L1

�s1� ,L2
�s2�� �at fixed p1 , p2 ,s1 ,s2� because of the equal-

time constraint in �B7� that forces s1−s2 to be an integer.
Performing first the changes of variable r1�r1

�s1�, r2�r2
�s2�,

and then

X1�¯� � X1
�s1��¯�, X2�¯� � X2

�s2��¯� , �B8�

one obtains the electrostatic force

lim
L→�

1

L2�
A

d1�
B

d2e�1
e�2�

0

p1

ds1�
0

p2

ds2

���s1
˜ − s2

˜��x1
vAB�r1,r2��AB,L

�2� �1,2� . �B9�

Indeed, the Jacobian of the transformations �B8� is equal to
1: the random process X�u��¯� is still Gaussian with unit
normalization, zero mean, and the same covariance �17� as
X�¯�, so that the Gaussian measure is unchanged: D�X�u��
=D�X� �see �37�, Lemma 1 or �38�, Lemma 2�. Formula

�B9� eventually reduces to �B1� since �0
p1ds1�0

p2ds2��s1
˜−s2

˜�
= p1p2.

The properties �B5� and �B6� both follow from the fact
that the loop’s self-energy in the activity �28� is invariant

under a shift of origin and the loop pairwise interaction
V�Li ,L j� of �19� is invariant when the loops Li and L j

have their origin shifted to Li
�u1� and L j

�u2� with u1−u2�Z.
The restriction u1−u2�Z is the manifestation of the
Feynman-Kac equal-time constraint in Vc and of the quan-
tum nature of the photon field in Wm, occurring through the

function Q�K ,s1
˜−s2

˜� in �22�: Wm is unchanged because

Q�K , �s1+u1
˜�− �s2+u2

˜��=Q�K ,s1
˜−s2

˜� when u1−u2�Z by
periodicity of the function s�Q�K ,s�.

APPENDIX C: SCREENING OF THE RESUMMED
INTERACTION �

The classical Debye-Hückel potential 
class�x1 ,x2 ,y� for
slab geometry has been extensively studied in �26�. Because
of the wall constraint on the screening clouds, this potential
does not decay exponentially fast as would be the case in the
bulk, but still has an integrable tail �y−3 along the wall.5

This implies that its transverse Fourier transform

class�x1 ,x2 ,k� is finite at k=0, see formula �A.11� of �26�. In
the sequel, we infer that the same property remains true for
the screened potential between loops 
�1,2 ,k� defined by
�45�. The only difference between the Coulomb potential
v�r1−r2� for point charges and Vel�1 ,2� is the extension of
the loops that generates additional multipole interactions. To
disentangle the monopole interaction from the multipole con-
tributions, we proceed with the same method as in Sec. VB2
of �31� and only sketch the arguments. Introducing the mul-
tipole operator

Mi = �
0

pi

ds�
l=1

� �	�i
Xi�s� · �ri

�l

l!
, i = 1,2, �C1�

the loop interaction is decomposed into its charge-charge
�cc�, charge-multipole �cm, mc� or multipole-multipole �mm�
components, Vel=Vcc

el +Vcm
el +Vmc

el +Vmm
el , where

Vcc
el �1,2� = p1p2v�r1 − r2�, Vcm

el �1,2� = p1M2v�r1 − r2� ,

Vmc
el �1,2� = M1p2v�r1 − r2�, Vmm

el �1,2� = M1M2v�r1 − r2� .

�C2�

Summing the chains of Vel to form 
 amounts to summing
all possible chains with bonds Vcc

el , Vcm
el , Vmc

el , and Vmm
el . Sum-

ming first the pure Vcc
el chains builds the classical Debye-

Hückel potential 
class with screening length �−1�x�
= �4�
���p�D�X�p2e�

2��x ,���−1/2.6 One is then left with the
screened bonds

Fcc = − 
e�1
e�2

p1p2
class, Fcm = − 
e�1
e�2

p1M2
class,

5This was noticed long ago in Ref. �39�, see also Sec. IIIC2
of �32�.

6This screening length reduces to the classical expression
�4�
��e�

2��x ,���−1/2 when exchange effects are disregarded ��31�,
Sec. VB2�.
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Fmc = − 
e�1
e�2

M1p2
class, Fmm = − 
e�1
e�2

M1M2
class.

�C3�

Finally, 
 is built from convolution chains of these screened
bonds subject to excluded convolution rules with respect to
Fcc. One sees that

Fcm�1,2� = − 
e�1
e�2

p1�
0

p2

ds2�
class�r1,r2 + 	�2
X2�s2��

− 
class�r1,r2�� �C4�

is integrable in the y direction and so has a finite transverse

Fourier transform at k=0. The same holds for the other
screened bonds and their chain convolutions, hence the result
�47�. These considerations apply to the various types of
screened potentials considered in this work, e.g., the
screened potential of the single plate systems 
A

0 ,
B
0 and the

potentials 
̃AA ,
̃BB occurring in Sec. VI A.

APPENDIX D: DIPOLE POTENTIAL WAB

AT ORDER O„d−1
…

From �78� and �79�, the asymptotic form of WAB�1,2 , q
d

�
is

WAB�1,2,
q

d
	 �

d→�1

d
� dq1

2�
e−iq1x�W��1,�2,

q1

d
,
q

d
	�

x=1

=
1

d

	�1
	�2


�m�1
m�2

c2�
0

p1

dX1
��s1��

0

p2

dX2
��s2�� dq1

2�
e−iq1x�q1X1�s1� + q · Y1�s1��

��q1X2�s2� + q · Y2�s2��
4�

q1
2 + q2 
���

tr �q1,q�
x=1

=
1

d

	�1
	�2


�m�1
m�2

c2�
0

p1

dX1
��s1��

0

p2

dX2
��s2��iX1�s1�

�

�x
+ q · Y1�s1�	�iX2�s2�

�

�x
+ q · Y2�s2�	
v���x,q�
x=1,

�D1�

where

v���x,q� =� dq1

2�
eiq1x 4�

q1
2 + q2���

tr �q1,q� =
�

q
e−q
x
�

��� + q
x
 , � = � = 1,

��� − iq�x , � � 1, � = 1,

2��� − �1 + q
x
�
q�q�

q2 , � � 1, � � 1 � �D2�

is the partial Fourier transform of the transverse Coulomb potential. The final result �formula �5.88� in �40�� is obtained by
working out the derivatives in �D1�.
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