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We present calculations for the relaxation rates of phonons in one-dimensional chains in which atoms
interact with a class of pairwise potentials which are anharmonic with odd powers. The calculations are based
on a self-consistent procedure for second order processes and lead to integral equations for the wave-vector-
dependent on-shell relaxation rate �q for phonons. For the cubic anharmonicity, one finds that for small q,
�q�q3/2. The self-consistent procedure is extended to potentials with higher odd powers and one finds that the
leading order behavior is still �q�q3/2+O�q2�. With the assumption that the transport relaxation rate has the
same wave-vector dependence, this result implies that the thermal conductivity, � diverges with the chain size,
N, as ��N1/3 for this class of potentials. Thus, our calculations provide a microscopic basis for one class of
universal behavior.
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I. INTRODUCTION

One-dimensional chains of vibrating atoms coupled by
anharmonic potentials have evoked a lot of interest in recent
times in the context of thermal conduction. The thermal con-
ductivity, �, of such chains diverges with the system size, N,
as ��N�. Much numerical and analytical effort has been
expended to obtain the values of � for a number of inter-
atomic potentials �1�. The transport behavior is intimately
related to the dispersion and relaxation of normal modes in
the system. Hence the value of � also reflects the manner in
which the wave-vector-dependent transport or the current re-
laxation rate, �tr�q�, depends on the wave-vector q especially
for small q.

The numerical studies have been largely done on Fermi-
Pasta-Ulam chains which have cubic �FPU-� chain� and
quartic �FPU-� chain� anharmonicities �2,1�. Several earlier
studies on FPU-� chains of few thousand atoms gave values
of ��0.4, which also implies a nonanalytic form for �tr�q�,
�tr�q��q� with �= �1−��−1�5 /3 �1,3�. A slightly larger
value of 0.44 for � has been found for FPU-� chains �4�,
while a numerical study of diatomic Toda lattice finds � in a
similar range �5�. A recent study on much longer on FPU-�
chains, however, claims that �=0.33 �6�, the earlier value
being attributed to finite-size errors, though another study on
the same size chain finds ��0.4, but at low energy density
�7�. Curiously, a study which includes both longitudinal and
transverse vibrations finds two kinds of behaviors: in one
parameter range where the effect of transverse vibrations are
negligible, ��0.4, whereas in other parameter regimes �
�0.33 �8�. These results have naturally brought focus to
questions of universality of conduction and mode relaxations
in these chains and other one-dimensional systems. In a nu-
merical study we explored the extent of universality by con-
sidering chains with longer range couplings, and found that
for weak additional couplings � is still around 0.4, but seems
to increase with the strength of additional couplings �9�.

Analytical studies for classical FPU chains have em-
ployed two kinds of methods: The mode-coupling method
and the kinetic theory method. The mode-coupling procedure
basically calculates the mode-mode correlation function

G�q , t� or its frequency transform G�q ,z� for the mode of
wave vector q. The first calculation, due to Lepri et al. �10�
and Lepri �3�, found that the associated relaxation function
��q ,z��q2 /z1/3 for both cubic and quartic anharmonicities.
The nonanalytic z dependence is rather generic to one dimen-
sion. Setting z equal to normal mode frequency, one obtains
the mode relaxation rate ��q��q5/3. Wang and Lee �11� have
carried out a similar calculation for a chain in which both
longitudinal and transverse vibrations are permitted. They
find that for their model the relaxation functions for the two
kinds of modes have different frequency dependences, and
consequently, �=0.4 when the transverse modes can be ne-
glected, but �=0.33 when the transverse modes influence the
conduction process. This is in accordance with their numeri-
cal results �8�. Recently, Delfini et al. �12,13� have refined
the mode-coupling analysis and found that the results do
depend on the nature of the nonlinearity of the interatomic
potential. They found that for the cubic anharmonicity,
G�q , t��ei�qt exp�−bq2t4/3�, while for quartic anharmonicity
G�q , t��ei�qt exp�−bq2t�, where �q denotes the harmonic
frequency of the mode. The former result corresponds to �
=1 /3, while the latter is the expectation from the standard
hydrodynamic analysis corresponding to the mode relaxation
rate ��q��q2 and �=1 /2.

The kinetic theory treatment was first presented by Per-
everzev who analyzed the problem for the quartic anharmo-
nicity, using a classical version of the Boltzmann equation
for the modes �14�. In this case modes relax only through
umklapp scattering process and the collision integral is sin-
gular at small q leading to the relaxation rate for the energy
in the mode to be proportional to q5/3. This result has re-
cently been put on a firmer mathematical footing by Luk-
karinen and Spohn �15�.

We have recently done a quantum calculation of the pho-
non relaxation and the thermal conductivity for FPU-� chain
�16�. The phonon relaxation rate was obtained at low tem-
peratures as �q�T2q5/3 for small q. Here, also, only the um-
klapp processes contributed to the phonon relaxation and the
singular behavior again comes from the collision integral
identical to the kinetic theory calculation. The calculation of
thermal conductivity was done using the Kubo-Green for-
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mula and the transport relaxation rate was obtained taking
into account the vertex corrections. The transport relaxation
rate was found to have the same wave-vector dependence as
above and we obtain �=2 /5. Motivated by our numerical
results, we also examined the effect of increasing the range
of interaction on phonon relaxation rate for FPU-� chain. We
found that when the ratio of the second neighbor interaction
to the first neighbor interaction is small, the relaxation rate
�q�Aq5/3+Bq2 �17�. This means that the asymptotic value
of � is 2 /5, but there are crossover effects for finite chains
due to the q2 term, leading to a higher effective value for �
for short chains.

The universality of anomalous conduction in one dimen-
sion has been explored further by considering transport in
fluids. Narayan and Ramaswamy �NR� �18� obtained �
=1 /3 from a renormalization group study of the hydrody-
namic equations and argued that this result applies to any
momentum-conserving system in which local thermal equi-
librium is established. The value of �=1 /3 was supported by
numerical studies on particles interacting with a hard sphere
potential �19�. The hydrodynamic arguments have been fur-
ther extended by Lee-Dadswell et al. �20�. Recognizing that
the energy transport and momentum transport are coupled,
they also studied the frequency dependent longitudinal vis-
cosity ���� and found that it has two different behaviors
depending on whether 	=cp /cv is equal to 1 or not. This
leads to different behaviors of the frequency dependent con-
ductivity ����. For 	=1, ����→�0 leading to ������−1/2

whereas for 	�1, ������−1/2 leading to ������−1/3. The
mode-coupling results of Delfini et al. are consistent with
this analysis as for the cubic anharmonicity 	�1 while for
the quartic case 	=1. It may be pointed out that for the
quartic interaction there is a variance in the results of the
mode-coupling analysis ��=2 /5 or 1 /2�, and it does not take
into account the umklapp scattering which is a key ingredient
in the microscopic approach.

To summarize, calculations on chains with different po-
tentials give rise to three values of �, namely 0.4, 0.33, and
0.5. The hydrodynamic and mode coupling theories suggest
two universality classes of conduction behavior, correspond-
ing to the latter two values of �. All the results are open to
some doubt: Numerical due to finite-size effects and analyti-
cal due to inevitable approximations. In this paper we
present a quantum study of the phonon relaxation for chains
with potentials of odd anharmonicity, with a view to examine
the question of universality from a microscopic point of
view.

This paper is organized as follows. In the next section we
present detailed calculations for FPU-� chain. The cubic an-
harmonicity has an important difference with the quartic an-
harmonicity studied earlier �16�. For the cubic case there are
no microscopic processes that contribute to the relaxation
rate of the phonons in second and third order in the coupling
strength of the nonlinear term. This is because the mode
dispersion �q being nonlinear in q, does not permit simulta-
neous energy and momentum conservation for these pro-
cesses. So, we do a self-consistent study of the second order
processes, in which the internal propagators are dressed and
have a wave-vector-dependent width. The width of the inter-
nal lines relaxes the energy-momentum conservation and we

are led to a self-consistent integral equation for the wave-
vector-dependent width. The integral equation is singular in a
way, which enables us to show that, ��q��T1/2q3/2 for small
q.

Since this is different from the quartic case, a natural
course is to examine other potentials. So in Sec. III, we con-
sider the fifth power interaction and again look at the second
order diagrams. These bare diagrams do not contribute to the
relaxation rate as again the momentum and energy conserva-
tion cannot be satisfied simultaneously. So we proceed with
the self-consistent treatment. A set of these diagrams just
lead to an effective third order interaction, while the others
lead to an integral equation for ��q�. Analysis of the integral
equation shows that the latter diagram gives analytical cor-
rections like q2, giving a leading order self-consistent answer
��q��q3/2. The analysis for higher power potentials is car-
ried out using power counting arguments and gives the same
dominant low q behavior as the cubic anharmonicity. We
conclude the paper with a summary in Sec. IV.

II. FPU-� CHAIN

The system consists of a chain of particles of mass m,
arranged on a lattice, that interact with their nearest neigh-
bors. The Hamiltonian of the system is given by

H = �
l=1

N � pl
2

2m
+ V�xl − xl+1�	 , �1�

where xl and pl are respectively the position and the
momentum of the particle whose equilibrium position is la, a
being the lattice spacing. The interaction potential is V�x�
= 1

2m�0
2x2+ �g3 /3! �x3. For the quantum treatment, one writes

the Hamiltonian in terms of phonon creation and annihilation
operators ak

† and ak. In units defined by 
=�0=a=1, the
Hamiltonian takes the form,

H = �
k

�k
1

2
+ ak

†ak� +
g̃3

3 ! �N
�
k,q,p

v�k,q,p�AkAqAp, �2�

where

�k = 2
sin k/2
, Ak = ak + a−k
† ,

v�k,q,p� =
	k	q	p

��k�q�p

��k + q + p�, 	q = 1 − e−iq. �3�

The � function represents the momentum conservation in
phonon collisions. ��k�=1 when k is either zero, correspond-
ing to normal processes, or a nonzero integer multiple of 2�,
corresponding to umklapp processes; otherwise ��k�=0. g̃3

is the dimensionless coupling constant.
The thermal Green’s function for phonons is defined in

the standard manner

D�q,
� = − �T
�Aq�
�A−q�0��� = G�q,
� + G�− q,− 
� ,

G�q,
� = − �T
�aq�
�aq
†�0��� . �4�

Here T
 is the usual time-ordering operator and 0�
��.
One also defines the frequency transform as
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D�q,i�n� = �
0

�

D�q,
�ei�n
d
 , �5�

where �n=2�nT are the Matsubara frequencies where we set
the Boltzmann constant kB=1. We now calculate the self-
energy of the phonon perturbatively. The self-energy
��q , i�n� has the usual definition: ��q , i�n�=D0

−1�q , i�n�
−D−1�q , i�n�, where D0�q , i�n� is the unperturbed propagator
given by −2�q / ��q

2+�n
2�. The relaxation rate ��q ,�� is ob-

tained from the following equation:

��q,�� = − Im lim
�→0

��q,i�n → � + i�� . �6�

The lowest order contribution to the self-energy is from the
second-order diagram given by Fig. 1�a�. This contribution is

��2��q,i�n� = −
g̃3

2

2N�
�
p,k

�
l


v�− q,p,k�
2

�D0�k,i�n + i�l�D0�p,i�l� . �7�

The corresponding on-shell relaxation rate is given as
��2��q ,�q�=�A

�2��q ,�q�+�B
�2��q ,�q�, with

�A
�2��q,�q� = −

g̃3
2�

2N
�q�

p,k
�p�k�1 + nk + np���− q + p + k�

�����q + �p + �k� − ���q − �p − �k�� ,

�B
�2��q,�q� = −

g̃3
2�

N
�q�

p,k
�p�k�nk − np�

���− q − p + k����q + �p − �k� . �8�

With the dispersion in Eq. �3� the energy and momentum
conservation conditions represented by the delta functions
cannot be satisfied, resulting in a zero contribution by both
the normal and umklapp processes. Therefore, a self-
consistent approach is required.

In the self-consistent calculation the bare phonon lines in
the diagram of Fig. 1�a� are replaced by the full phonon
Green’s functions. The contribution is as in Eq. �7�, with D0
being replaced by D. The next step uses the following spec-
tral representation for G.

G�p,i�l� =� d��

2�

A�p,���
i�l − ��

. �9�

The spectral function A�q ,�� is given as

A�q,�� = − 2 Im lim
�→0

G�q,i�n → � + i��

=
2��q,��

�� − �q − �R�q,���2 + �2�q,��
, �10�

where �R and � are obtained from lim�→0��q , i�n→�
+ i��=�R�q ,��− i��q ,��. We now substitute the spectral
forms for G’s in the equation for � and perform the fre-
quency summation to obtain ��q ,��=�A�q ,��+�B�q ,��,
with

�A�q,�� =
g̃3

2�

2N
�q�e�� − 1��

p,k
�p�k� d��

�2��2A�p,���n����

��A�k,� − ���n�� − ���

− A�k,− � − ���n�− � − ������q − p − k� ,

�B�q,�� =
g̃3

2�

N
�q�e�� − 1��

p,k
�p�k

�� d��

�2��2A�p,����1 + n�����

�n�� + ���A�k,� + �����q + p − k� . �11�

Our interest in this paper is to evaluate the on-shell relax-
ation rate ��q ,�q� for small wave number phonons, and in
this limit the above expressions can be considerably simpli-
fied. We first use the physical argument that for small q,
�q��q, and the spectral function is well approximated by a
narrow peak at �= �̃q=�q+�R�q ,�q�. This allows us to re-
place A�p ,��f����A�p ,��f��̃p�, where f��� is any smooth
function of �, like the Bose factor n���. In the same spirit,
we also take

A�p,�� �
2��p,�̃p�

�� − �̃p�2 + �2�p,�̃p�
. �12�

Denoting the on-shell relaxation rate ��p , �̃p�=�p we obtain,
after performing the integral over ��, and using the above
approximation for A�p ,��,

�A�q,�̃q� =
g̃3

2

2N
�q�e��̃q − 1��

p,k
�p�kn��̃p�n��̃k�

���− q + p + k�� �k

��̃q − �̃p − �̃k − i�p�2 + �k
2

+
�p

��̃q − �̃p − �̃k + i�k�2 + �p
2

q, iωn q, iωn

k, iωn + iωl

p, iωl

(a) (c)

q, iωn

k1, iω1

k3, iω3

k2, iω2
q, iωn

k4, iωn − i(ω1 + ω2 + ω3)
(b)

k2, iω2
k4, iω4k1, iω1

q, iωn q, iωn

k3, iωn − iω2

FIG. 1. Second order contribution to the self-energy ��q , i�n� �a� for the cubic interaction and �b� and �c� for the fifth power interaction.
Solid lines represent bare phonon Green’s functions D0.
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+
�k

��̃q + �̃p + �̃k + i�p�2 + �k
2

+
�p

��̃q + �̃p + �̃k − i�k�2 + �p
2� �13�

and

�B�q,�̃q� =
g̃3

2

N
�q�e��̃q − 1��

p,k
�p�k�1 + n��̃p��n��̃k�

���− q − p + k�� �k

��̃q + �̃p − �̃k + i�p�2 + �k
2

+
�p

��̃q + �̃p − �̃k − i�k�2 + �p
2� . �14�

From the form of the interaction, it is seen that �̃q��q, the
proportionality factor being a temperature-dependent con-
stant for small q. This factor does not turn out to be impor-
tant in further analysis, so in the following we replace �̃q
=�q.

The on-shell relaxation rate �q has to be obtained by self-
consistently solving Eq. �13� and Eq. �14� using �q
=�A�q ,�q�+�B�q ,�q�. Further simplifications can be done
for the �A term. For narrow widths the last two terms in the
expression for �A are nonzero only if �q+�p+�k�0. Since
this can be satisfied only for very small q’s and p’s, the
contribution from these terms is of higher order in q com-
pared to that from the other terms. Accordingly, we neglect
these. Further, for small q we can approximate �q+�p
−�q+p�q�1−cos�p /2��=q�p. Similarly, �q−�p−�q−p

�q�1−cos�p /2��−2�p=q�̃p−2�p. Substituting these Eqs.
�13� and �14� assume the form

�A�q,�q� =
g̃3

2

2
�q�e��q − 1��

0

2� dp

2�
�p�q−pn��p�n��q−p�

�
��q−p + �p���q�̃p − 2�p�2 + ��p − �q−p�2�
��q�̃p − 2�p�2 + �q−p

2 + �p
2�2 − 4�q−p

2 �p
2 ,

�15�

�B�q,�q� = g̃3
2�q�e��q − 1��

0

2� dp

2�
�p�q+pn��q+p��1 + n��p��

�
��q+p + �p��q2�p

2 + ��q+p − �p�2�
�q2�p

2 + �q+p
2 + �p

2�2 − 4�q+p
2 �p

2 . �16�

These equations are rather complex, but the leading analyti-
cal behavior at small q can be obtained by assuming �q
�qx with x�1. With this assumption, which will be justified
a posteriori, we note that at q=0, the integrands in above
expressions for both �A and �B diverge due to singularity at
p=0. The major contribution to the integrals comes from
small p region and to examine the singularity we can safely
take, �pn��p�=�q±p�1+n��q±p��=1 /�. Now we note that
the integrand in Eq. �15� behaves like px / �p2+ p2x�� px−2,
since we expect 1�x�2. This makes the integral finite. On
the other hand, the integrand in Eq. �16� behaves like p−x and

the integral diverges. This means that when we consider this
integral at nonzero q, it diverges as some inverse power of q
and the leading power of �q in q is less than 2. Therefore the
leading order contribution to �q comes from �B. We first
show that the leading order behavior of �B gives a self-
consistent exponent and then observe that, with this behavior
for �q, the contribution from �A is of higher order.

Expanding in powers of q and keeping the first few terms,
Eq. �16� becomes

�B�q,�q� = �1�q,�q� + �2�q,�q� + �3�q,�q� ,

�1�q,�q� � Tq2�
0

2� dp

�p + �q+p
, �17�

�2�q,�q� � − Tq4�
0

2�

dp
p4��q+p

2 + �p
2�

��q+p
2 − �p

2���q+p + �p�
, �18�

�3�q,�q� � Tq4�
0

2�

dp
p4

��q+p
2 − �p

2���q+p − �p�
. �19�

Here, �1 is the leading order term in �q and we first try to
solve Eq. �17� self-consistently by taking �q��1�q ,�q�. The
solution is found by making a guess that �q�T1/2q3/2. Then
Eq. �17� becomes

�1�q,�q� � T1/2q2�
0

2�

dp
1

�q + p�3/2 + p3/2 . �20�

The integral diverges for q=0 and the singularity is extracted
by substituting p=zq. This yields

�1�q,�q� � T1/2q3/2�
0

2�/q

dz
1

�1 + z�3/2 + z3/2 . �21�

Setting q=0 in the integral results in a finite value for the
integral and we get �1�q ,�q��T1/2q3/2. Substituting this
form for �p, it is directly seen that �2�q ,�q��q3 and
�3�q ,�q��q2 and are thus of higher order.

Having obtained the leading order contribution of �B to
be proportional to q3/2, we turn our attention to �A. So, in Eq.
�15�, we set �p� p3/2 and make a small q expansion. It is
easily established that the integrand has a singularity at p
=0 like p−1/2. Therefore, the integral is finite and we get
�A�q ,�q��q2. Thus the leading order contribution to �q

comes from �1 �Eq. �17��, and the self-consistent solution is,
�q�T1/2q3/2+O�q2�.

The conductivity can be obtained by using the standard
kinetic theory formula. This, however, requires the knowl-
edge of the transport or current relaxation rate, which, in
principle, is different from the mode relaxation rate obtained
above. As mentioned earlier, for the quartic interaction we
have obtained the transport relaxation rate by including the
vertex corrections in the Kubo-Green formula and found that
the wave-vector dependence is the same as the mode relax-
ation. Assuming the same to hold here, as vertex corrections
seem to be of higher order here, we have for the conductivity
of a finite chain
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� = �
0

t0

dt� dq Cqvq
2 exp�− �qt� , �22�

where Cq is the mode specific heat, �q is the mode group
velocity, and t0 is of the order of the average time taken by
the modes to traverse the chain and is proportional to N. The
approximate evaluation of this formula for large N yields

� � N1/3T−1/3. �23�

Though our result for cubic anisotropy matches with that
of mode-coupling analysis, it is interesting to contrast the
nature of the two sets of arguments. The mode-coupling
analysis basically finds that the time/frequency behavior of
the correlator for the displacement mode is nonanalytic
���−1/3 for cubic anharmonicity�, whereas our analysis, be-
ing a quantum calculation, sets up a self-consistent integral
equation for the on-shell relaxation rate of the phonons. In
this situation, the nonanalytic behavior arises from the wave-
number dependence of the rate.

In view of the result that for the quartic potential �q
�q5/3, one wonders if other potentials lead to still other ex-
ponents or there are few universality classes. We examine the
higher order odd potentials in the next section.

III. ANALYSIS OF HIGHER ORDER POTENTIALS

We begin the analysis by considering the fifth power po-
tential, given as

V5 =
g5

5 ! N3�
�ki�

v�k1,k2,k3,k4,k5�Ak1
Ak2

Ak3
Ak4

Ak5
,

v�k1,k2,k3,k4,k5� = 
�i=1
5

	ki

��ki

���k1 + k2 + k3 + k4 + k5� .

�24�

The diagrams for the second order self energy are shown in
Figs. 1�b� and 1�c�. The diagram of Fig. 1�b� is like that of
cubic anisotropy with an effective coupling geff
= �g5 /2N��k�k�2nk+1� and simply renormalizes g3. Consid-
ering this diagram alone would yield �q�q3/2, but for this to
be the leading power we need to check if the diagram of Fig.
1�c� leads to a lower power. The bare diagram 1�c� fails to
contribute to the relaxation rate as due to nonlinear disper-
sion of modes the momentum and energy conservation can-
not be satisfied simultaneously. So, we proceed with the self-
consistent treatment by using full propagators for the internal
lines. Following the procedure described in the previous sec-
tion, one find the following self-consistent equation for the
on-shell relaxation rate:

�q =
�g5

2

4!
�q�1 − e−��q�

1

N3 �
�si=±�

�
�ki�

�1�2�3�4

�ns1
��1�ns2

��2�ns3
��3�ns4

��4�

��
q − �
i

siki�J�q,�ki�,�si�� . �25�

Here, the variable si takes the value ± and we use the nota-
tions: �1=�k1

, n+���=1+n��� and n−���=n���. This en-
ables us to write all the contributions of Fig. 1�c� in a com-
pact manner. The function J is a sum of eight terms, J
=�1

8Jn, which have the typical form

J1 =
1

�

�k1

��q��si�� − is1�k4
+ is2�k2

+ is3�k3
�2 + �k1

2 , �26�

where �q��si��=� j
4sj� j −�q. The other terms are some per-

mutations among k1 ,k2 ,k3 and are given in the Appendix. To
analyse these equations for small q, we again assume �k
�kx with 1�x�2 and check if the integrals involved di-
verge. Again one finds that for all the terms the integrand
diverges when k1, k2, k3→0, and since this region contrib-
utes to the integral dominantly one may write the contribu-
tion from J1 to leading order in q as

�q
�1� � q2T3� � � dk1dk2dk3

�k1

�k1

2 − ��q+k1−k2−k3
+ �k2

− �k3
�2 .

�27�

This is the analog of Eq. �17� and the other Jn�s contribute
similar terms. We first analyze this equation independently
by taking �k��k

�1�. The solution of this equation is again
obtained by trial. We take �k�k2 which makes the integrand
most singular. With this the numerator of the integrand has
five powers of momenta while the denominator has four,
which implies that the integral does not diverge from the
small-k singularity of the integrand. We have examined the
integrals using polar representation and find that they are
well behaved and yield constant values. A typical evaluation
is presented in the Appendix. This means that the solution of
Eq. �27� is, �q

�1��q2. Now let us consider the contributions
from both the diagrams together. If we set �q�q3/2+O�q2�,
the terms corresponding to Fig. 1�b� �which are similar to
Eq. �17�� will yield q3/2 while those corresponding to Fig.
1�c� will yield q2 �as the integral in Eq. �27� is finite for �q
�qx, x�2�. Thus �q�q3/2+O�q2� is a self-consistent solu-
tion for the fifth power potential.

The analysis of potentials with higher odd powers follows
a similar pattern. A set of second order diagrams renormalize
the lower order couplings and the new contribution comes
from analogs of Fig. 1�c�. These diagrams lead to integral
equations similar to Eq. �27�, but with each higher order
there are two additional integrals over momenta due to in-
crease of two internal lines, whereas the denominator always
contains squares of �k�s. The power counting argument
shows that these integrals are well behaved and constants
when we take �k�kx with x�2. This again yields �k�k2 for
the contributions coming from analogs of diagrams of Fig.
1�c� for all higher odd power interactions. Since all these
interactions also renormalize the cubic coupling, they yield
the result, �q�q3/2+O�q2�.

We should emphasize that our analysis applies only to odd
potentials of polynomial type. The analysis is perturbative
and is valid only at low temperatures where the vibration
amplitudes are small compared to lattice constant. One may
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consider an odd potential, V�x�=A−cos�x�+b sin�2x�, which
has been investigated by Giardina et al. �21�. For such po-
tentials, which apply to a chain of coupled rotors, one ob-
tains finite conductivity, presumably due to jumps between
potential wells. Clearly our peturbative analysis does not ap-
ply to these situations.

IV. SUMMARY

To summarize, we have shown by a self-consistent analy-
sis of the second order process that the phonon relaxation
rate for an FPU-� chain goes as �q�q3/2+O�q2�. We further
show that a similar analysis for interactions of higher odd
powers also yield the same result, thereby establishing a uni-
versal behavior for the phonon relaxation. With the further
assumption that the transport relaxation rate has the same
wave-vector dependence, it is argued that for this whole class
of potentials the thermal conductivity diverges with chain
length as ��N1/3. For the cubic potential we have an addi-
tional result regarding temperature dependence, �
�T−1/3N1/3. Our result matches partially the results obtained
from hydrodynamic considerations by providing support for
one class of universal behavior. Moreover, the hydrodynamic
criterion that distinguishes the two universal behaviors in
terms of the value of 	=cp /cv also holds here as 	�1 for
odd power potentials, which implies �=1 /3. Our results are
dependent on the assumption that the self-consistent analysis
of the second order diagram captures the essential physics of
the phonon relaxation. From a microscopic point of view it
would be tempting to obtain a universal result for even pow-
ered potentials, but for such potentials the relaxation occurs
due to umklapp scattering and the analysis of such collision
integrals for higher power interactions is quite tedious.
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APPENDIX

The function J�q , �ki� , �si�� in Eq. �25� is given by

Jq =
1

�
� �1

��q − is1�4 + is2�2 + is3�3�2 + �1
2

+
�2

��q − is1�4 − is2�1 + is3�3�2 + �2
2

+
�2

��q + is1�1 − is2�4 + is3�3�2 + �2
2

+
�3

��q − is1�4 − is2�1 − is3�2�2 + �3
2

+
�3

��q − is1�4 + is2�2 − is3�1�2 + �3
2

+
�3

��q + is1�1 − is2�4 − is3�2�2 + �3
2

+
�3

��q + is1�1 + is2�2 − is3�4�2 + �3
2

+
�4

��q + is1�1 + is2�2 + is3�3�2 + �4
2� �A1�

where we have simplified the notation in the following way:
Jq=J�q , �ki� , �si��, �q=�q��si�� which is defined after Eq.
�26� and �i=�ki

.
Now we evaluate a typical term in Eq. �25� corresponding

to the first term in Eq. �A1� with �si�= �−, + , + , + �. This
leads to Eq. �27� which can be written as �q

�1��q2T3I�q�. The
integrand of I�q� has singularity due to small-k behavior of
�k’s. We now show if we assume �k�k2 the integral is finite
and should be so for �q�qx for 1�x�2 as well. Noting that
the major contribution comes from the small k behavior of
�k’s, we get

I�q� �� � � dk1dk2dk3

�
k1

2

k1
4 − �k1

2 + 2k2
2 + 2k3

2 − 2k1�k2 + k3� + 2k2k3�2 .

�A2�

Using the polar coordinates k1=K cos �, k2=K sin � cos �
and k3=K sin � sin �,

I�q� � − �
0

�

d��
0

2�

d�
cos2 � sin �

cos2 �S��,�� + S2��,��
, �A3�

S��,�� = sin2 ��1 + sin � cos �� − cos � sin ��cos � + sin �� .

�A4�

The transformation x=cos � simplify this expression as

I�q� � �
−1

1

dx�
0

2�

d�
x2

x2S̃�x,�� + S̃2�x,��
,

where S̃�x ,��= �1−x2��1+sin � cos ��−x�1−x2�1/2�cos �
+sin ��. The integrand is singular at x= ±1 where it is like
�1−x2�−1/2�cos �+sin ��−1 and is integrable. We, therefore,
conclude that the contribution from this term is of O�q2�
even when we use �k�k3/2.
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