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In this paper we derive an exact master equation for two coupled quantum harmonic oscillators interacting
via bilinear coupling with a common environment at arbitrary temperature made up of many harmonic oscil-
lators with a general spectral density function. We first show a simple derivation based on the observation that
the two harmonic oscillator model can be effectively mapped into that of a single harmonic oscillator in a
general environment plus a free harmonic oscillator. Since the exact one harmonic oscillator master equation is
available �B. L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev. D 45, 2843 �1992��, the exact master equation with all
its coefficients for this two harmonic oscillator model can be easily deduced from the known results of the
single harmonic oscillator case. In the second part we give an influence functional treatment of this model and
provide explicit expressions for the evolutionary operator of the reduced density matrix which are useful for
the study of decoherence and disentanglement issues. We show three applications of this master equation: on
the decoherence and disentanglement of two harmonic oscillators due to their interaction with a common
environment under Markovian approximation, and a derivation of the uncertainty principle at finite temperature
for a composite object, modeled by two interacting harmonic oscillators. The exact master equation for two,
and its generalization to N, harmonic oscillators interacting with a general environment are expected to be
useful for the analysis of quantum coherence, entanglement, fluctuations, and dissipation of mesoscopic objects
toward the construction of a theoretical framework for macroscopic quantum phenomena.
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I. INTRODUCTION

Macroscopic quantum phenomena �MQP� manifested in
double slit experiments, micromechanical resonators, Bose-
Einstein condensates, Josephson junction circuits, mesos-
copic systems, or even mirrors �see, e.g., �1–15�� is a subject
of both basic theoretical and practical application interest.
Theoretically it focuses on issues at the intersection of two
trunk lines of important inquires in physics: the relation be-
tween the microscopic and the macroscopic world on the one
hand, and the relation between the quantum and the classical
on the other. Rapid recent advances in precision measure-
ments with high degree of control and adaptability in atomic-
optical, electromechanical, optomechanical, nanomaterial,
magnetic-spin, and low-temperature systems have provided
the rationale and substance for such theoretical investiga-
tions, and in some emergent areas where high goals are set,
such as the quest for quantum information processing, even
with some sense of urgency.

The issues of interest in MQP include quantum dissipa-
tion, entanglement, teleportation, decoherence, noise, corre-
lation, and fluctuations. A familiar model which one could
use to address many of these issues is the quantum Brownian
motion �QBM� �16–20� and its dynamics described by the
master equation or the associated Langevin or Fokker-Planck

equations. But since the systems of interest to MQP neces-
sarily involve many microscopic or mesoscopic constituents,
a many-body generalization of QBM is needed. In addition,
since most of these systems involve non-negligible correla-
tions among their components, quantum memory �non-
Markovian� effects cannot be ignored. Even for the well-
studied single harmonic oscillator �1HO� QBM, Markovian
approximation is valid only for a high-temperature ohmic
bath �17�. Fortunately an exact master �Hu-Paz-Zhang
�HPZ�� equation �19� for the 1HO with bilinear coupling to a
general environment has been found via several techniques
ranging from the influence functional �19� and Wigner func-
tion �20� to quantum trajectories �21�. The 1HO master equa-
tion for the QBM is complex enough to encompass non-
Markovian dynamics yet simple enough to yield exact
solutions �see, e.g., �22� and references therein�. The new
challenge is to find the master equation for N oscillators in a
general environment that is good for the analysis of these
issues in mesoscopic physics.

In this paper we show the derivation of such an equation
for two coupled harmonic oscillators �2HO�. A key observa-
tion is that this problem can be mapped into that of a single
harmonic oscillator in a general environment plus a free har-
monic oscillator. Since the master equation with all its coef-
ficients for the 1HO QBM is known �19,20� one can derive
the master equation for the 2HO QBM easily from them. As
an application of this model, we can deduce the decoherence
properties of the 2HO system following the similar pattern of
the 1HO. As another example, we show explicitly how, in
some parameter choice, under the Markovian limit, an en-
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tangled state evolves into a separable state in a finite time.
The results derived in this paper may be deduced by in-

tuitive reasoning, but we are not aware of any theoretical
study which yields our results. Our aim here is to provide a
proof, or at least a plausibility argument, to the effect that the
center-of-mass coordinate is the one most sensitive to the
environmental influence. This model and its generalization to
N harmonic oscillators are expected to be useful for the
analysis of quantum coherence, entanglement, fluctuations,
and dissipation of mesoscopic and macroscopic objects.

The paper is organized as follows: in Sec. II, we consider
the dynamics of two harmonic oscillators coupled to a com-
mon heat bath. By employing the center-of-mass and relative
coordinates we show how to derive the master equations of
the two coupled Brownian particles. In Sec. III we use the
influence functional method and derive an exact form of the
propagators for the reduced density matrices. These results
are expected to be useful for analyzing general statistical
mechanical properties of quantum open systems. In Sec. IV
we give three examples as applications of this master equa-
tion: the quantum decoherence and disentanglement of two
interacting Brownian oscillators in a general environment,
and the uncertainty relation at finite temperature for a com-
posite object modeled by two interacting oscillators. In Sec.
V we mention a few more problems and physical issues
where the results from this work can be usefully applied for
their analysis and further extension of the present study.
Technical details are relegated to the two appendixes.

II. MODEL AND EXACT MASTER EQUATION

Quantum Brownian motion of a damped harmonic oscil-
lator bilinearly coupled to a bath of harmonic oscillators has
been studied for decades, notably by Feynman-Vernon and
Caldera-Leggett using path integral techniques �16,17�. For
such a model an exact master equation can be deduced with-
out making the Markovian approximation �19�. The purpose
of this section is to extend the well-known Brownian motion
model into the case where the system of interest contains two
coupled harmonic oscillators.

A. Model

The Hamiltonian of the total system consisting of a sys-
tem �sys� of two mutually coupled harmonic oscillators of
equal mass M and frequency � interacting with a bath �bath�
of NB harmonic oscillators of masses mn and frequencies �n
in an equilibrium state at a finite temperature T can be for-
mally written as

Htot = Hsys + Hbath + Hint, �1�

where

Hsys =
P1

2

2M
+

1

2
M�2x1

2 +
P2

2

2M
+

1

2
M�2x2

2 + ��x1 − x2�k

�2�

is the system Hamiltonian for the two system oscillators of
interest, with �x1 ,x2� displacements, conjugate momenta
�P1 , P2�, and coupling constant �,

Hbath = �
n=1

NB � pn
2

2mn
+

1

2
mn�n

2qn
2� �3�

is the bath Hamiltonian with displacement qn for the nth
oscillator and conjugate momentum pn and

Hint = �x1 + x2��
n=1

NB

Cnqn �4�

is the interaction Hamiltonian between the system and the
bath. Here for simplicity, we have assumed that the two har-
monic oscillators are coupled with the same coupling con-
stants Cn to the bath oscillators.

Our primary focus in this paper is to derive an exact mas-
ter equation for the two coupled harmonic oscillators. Since
the two harmonic oscillators interact with a common thermal
bath, there will be induced coupling between the two har-
monic oscillators even when initially they are uncoupled.
Thus, the master equation for 2HO QBM is not simply the
addition of the two master equations for 1HO QBM. It must
account for the mutual interactions between the two Brown-
ian particles introduced by their coupling to the common
heat bath. Of interest is a comparison with the model that
consists of 2HO each in its own heat bath. In our model, the
coupling to a common heat bath can give rise to several new
features, of particular interest here is the generation of en-
tanglement between the two Brownian particles due to the
back-action of the heat bath on the system �23–26�.

However, as is well-known for classical mechanics, the
dynamics of an N-body quantum open system can be made
simpler by changing the N-body coordinates to that of their
center-of-mass �c.m.� and relative �rel� coordinates. Here, the
difference is that the N harmonic oscillators �NHO� are
coupled with an environment and we seek a quantum me-
chanical treatment. A quantum mechanical theory of N-body
dynamics forms the theoretical basis for treating MQP. In
this paper we treat the 2HO case. We will show in what
follows that the exact master equation for the two coupled
harmonic oscillators can be obtained directly from the master
equation for the single harmonic oscillator, known as the
HPZ master equation.

Let us first rewrite the total Hamiltonian in terms of a set
of new variables X ,x , P , p defined as

X =
1

2
�x1 + x2�, x = x1 − x2, �5�

P = P1 + P2, p =
1

2
�P1 − P2� , �6�

and the new masses M1=2M , M2=M /2. In terms of these
new variables the Hamiltonian �1� takes the following form:

Hsys = Hc.m. + Hrel, �7�

where

Hc.m. =
P2

2M1
+

1

2
M1�2X2, �8�
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Hrel =
p2

2M2
+

1

2
M2�2x2 + �xk, �9�

and

Hint = �x1 + x2��
n=1

NB

Cnqn = 2X�
n=1

NB

Cnqn = X�
n=1

NB

C̃nqn, �10�

where C̃n=2Cn are modified coupling constants. Since �5�
and �6� are canonical transformations, all the commutators
are preserved, and it is easy to check that

�X,P� = �x,p� = i�, �P,x� = �p,X� = �X,x� = �P,p� = 0.

�11�

We see that the fictitious particle with mass M2 and dynami-
cal variables x , p has no interaction with either the c.m. par-
ticle with mass M1 with canonical variables X , P or the os-
cillators of the heat bath with canonical variables qn.

The total Hamiltonian Htot in �1� can now be written as
Htot=Htot� +Hrel with a new effective total Hamiltonian

Htot� = Hc.m. + Hint + Hbath =
P2

2M1
+

1

2
M1�2X2 + X�

n=1

NB

C̃nqn

+ �
n=1

NB � pn
2

2mn
+

1

2
mn�n

2qn
2� . �12�

This Hamiltonian is formally the same as the Hamiltonian
for the single harmonic oscillator in c.m. variables �X , P�
coupled to the heat bath with coupling constants C̃n. Note

that for this case the spectral density Ĩ��� is given by

Ĩ��� = ��
n=1

NB C̃n
2

2mn�n
��� − �n� , �13�

which differs from the original spectral density I��� by a
numerical factor 4.

B. Density matrix

We now consider the dynamics of two coupled harmonic
oscillators interacting with a common heat bath. The density
matrix � evolves in time under the unitary operator

��t� = exp�− i
Htott

�
���0�exp�i

Htott

�
� . �14�

From �12�, it is easy to see that this evolution can be decom-
posed into two parts, a dissipative evolution of the center-of-
mass system,

�̃�t� = exp�− i
Htot� t

�
���0�exp�i

Htot� t

�
� , �15�

and the unitary evolution of the free harmonic oscillator with
mass M1,

��t� = exp�− i
Hrelt

�
��̃�t�exp�i

Hrelt

�
� , �16�

where Hrel is the Hamiltonian for the 1HO system with re-
duced mass M2=M /2 and x , p variables,

Hrel =
p2

2M2
+

1

2
M2�2x2 + �xk. �17�

For technical simplicity we make the usual assumption
that the initial state of the total system is uncorrelated,

��0� = �sys�0� � �bath�0� , �18�

and that the heat bath is in a thermal equilibrium state at
temperature T.

C. Exact master equation

If we are interested in the detailed dynamics of the system
but only the coarse-grained effect of the bath we can work
with the reduced density matrix obtained by tracing �, the
density matrix of the total system described by �1�, over the
bath variables �27,28�,

�r = Trbath ��t� . �19�

The reduced density operator for the center-of-mass
system is obtained in a similar way,

�̃r = Trbath �̃�t� . �20�

where �̃ defined in �15� is the density operator for the effec-
tive total system �12�. The relationship between �̃r and �r is
given by

�r�t� = exp�− i
Hrelt

�
��̃r�t�exp�i

Hrelt

�
� . �21�

Tracing over the heat bath variables in �15� leads us to a
HPZ-type master equation for the center-of-mass variables
X , P,

�̇̃r =
1

i�
�Hc.m., �̃r� +

a�t�
2i�

�X2, �̃r� +
b�t�
2i�

�X,�P, �̃r	�

+
c�t�
�2 �X,�P, �̃r�� −

d�t�
�2 �X,�X, �̃r�� . �22�

Note here that Hc.m. defined in �9� is the Hamiltonian for the
center-of-mass variables X , P only. This is the exact master
equation for X , P interacting with a thermal heat bath with

the spectral density Ĩ��� rather than I���. As a consequence,
the coefficients a ,b ,c ,d in the above master equation satisfy
the same types of equations given by �19� �or �20��, only the
coupling constants and mass are different here.

From the evolution equation �16�, the required master
equation for the reduced density matrix �r�t� is thus obtained,

�̇r =
1

i�
�Hsys,�r� +

a�t�
2i�

�X2,�r� +
b�t�
2i�

�X,�P,�r	�

+
c�t�
�2 �X,�P,�r�� −

d�t�
�2 �X,�X,�r�� . �23�

The only difference between Eq. �23� and Eq. �22� is that the
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unitary evolution is modified by the fictitious harmonic os-
cillator x , p.

In terms of the original variables x1 ,x2 , P1 , P2, we obtain

�̇r =
1

i�
�Hsys,�r� +

a�t�
8i�

��x1 + x2�2,�r�

+
b�t�
4i�

�x1 + x2,�P1 + P2,�r	� +
c�t�
2�2 �x1 + x2,�P1 + P2,�r��

−
d�t�
4�2 �x1 + x2,�x1 + x2,�r�� . �24�

This is the exact master equation for the two coupled har-
monic oscillators. In the coordinate representation,

�r�x1,x2,y1,y2� 
 �x1,x2��r�y1,y2
 , �25�

the master equation can be easily written as

i�
��r

�t
= −

�2

2M
� �2

�x1
2 −

�2

�y1
2 +

�2

�x2
2 −

�2

�y2
2��r +

1

2
M�2�x1

2 − y1
2

+ x2
2 − y2

2��r +
1

2
M��2�t��x1 − y1 + x2 − y2�

1

2
�x1 + y1

+ x2 + y2��r − i�	�t��x1 − y1 + x2 − y2�
1

2
� �

�x1
−

�

�y1

+
�

�x2
−

�

�y2
��r − iM
�t��x1 − y1 + x2 − y2�2�r

+ ���t��x1 − y1 + x2 − y2�

�� �

�x1
+

�

�y1
+

�

�x2
+

�

�y2
��r. �26�

A set of new notations in �26� is introduced to facilitate easy
adoption of results from �19�. In particular,

a�t� = M��2�t�, b�t� = 2	�t� , �27�

c�t� = ��t�, d�t� = 
�t� . �28�

It is often useful to use the Wigner function defined in phase
space, which is related to the reduced density matrix �r in the
following way:

W̃�x1,x2,P1,P2,t� =
1

�2��2� du1du2ei�u1P1+u2P2�/�

��r�x1 −
u1

2
,x2 −

u2

2
;x1 +

u1

2
,x2 +

u2

2
,t� .

�29�

In correspondence with �26� the Wigner function satisfies a
Fokker-Planck equation,

�W̃

�t
= − �

i=1,2

� Pi

M

�W̃

�xi
− M�2xi

�W̃

�Pi
� + M��2�t��x1 + x2�

�� �

�P1
+

�

�P2
�W̃ + 2	�t�� �

�P1
+

�

�P2
���P1 + P2�W̃�

+ 
�t�� �

�P1
+

�

�P2
�2

W̃ + ��t�� �

�P1
+

�

�P2
�

�� �

�x1
+

�

�x2
�W̃ . �30�

The time-dependent functions ��2�t� , 	�t� , ��t� , 
�t� are
derived following the same method used by HPZ which can
be found in Appendix A 5.

In deriving the exact master equation we assumed that the
initial state for the two harmonic oscillators is a product of a
function of the relative coordinates and a function of the
center-of-mass coordinates. However, it can be easily shown
that the derivation is valid for an arbitrary initial state of the
system regardless of the condition of separability.

D. Markov approximations

The derived master equation �26� is exact, so it is valid in
both the Markovian and the non-Markovian regimes.
Memory effects due to the environment are encoded in the
time-dependent coefficients. In the high-temperature ohmic
bath limit, the coefficients become constants and the spectral
density has the form

I��� = M1
� exp�−
�2

�2� , �31�

where � is a cutoff frequency. In the so-called Fokker-
Planck limit �kBT����, we have

��s� =
2M1kBT


�
��s�, ��s� = M


d

ds
��s� . �32�

Hence, ��2=−2
��0� , 	=
 , �=0, 
=2M1
kBT. The
constant coefficients obtained for such a model give rise to a
Markovian master equation. The Wigner function for the
center-of-mass coordinates obeys the Fokker-Planck-Markov
equation �29�,

�Wc.m.

�t
= −

P

M1

�Wc.m.

�X
− M1��2X2�Wc.m.

�P
+ 2


�

�P
�PWc.m.�

+ 2M1
kBT
�2

�P2Wc.m., �33�

where M1=2M and ��2=�2+��2.

III. INFLUENCE FUNCTIONAL METHOD

In the preceding section we showed a simple derivation of
the master equation for the reduced density matrix and the
Fokker-Planck equation for the Wigner function. In general it
is difficult to get a general analytical solution of the master
equation. It turns out that in some cases of interest, one can
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get analytic solutions of the master equation through the in-
fluence functional method �30�. Using this method, we can
get the evolution operator for the reduced density matrix or
the evolution kernel for the exact master equation which will
be very useful for the study of quantum decoherence and
disentanglement problems.

Because of this, in this section, we will outline the key
steps in the derivation of the master equation �26� via the
path integral method.

As before, the density matrix of the total system at any
time t can be written as

��t� = e−iHtott/���0�eiHtott/�. �34�

The reduced density matrix of the system is evolved by the
propagator Jr from time t=0 to t as

�r�x1,x2;y1,y2,t� =� dqn�x1,x2,qn���t��y1,y2,qn
 =� dx0dy0Jr�x1,x2,y1,y2,t;x10,x20,y10,y20,0��r�x10,x20;y10,y20;t = 0� ,

�35�

where we have used the collective notation dx0dy0=dx10dx20dy10dy20.
The evolution propagator Jr can be written in a path-integral representation as

Jr�x1,x2,y1,y2,t;x1�,x2�,y1�,y2�,0� = �
k=1

2 �
xki

xkf

Dxk�
yki

ykf

Dyk exp� i

�
SS�x1,x2� −

i

�
SS�y1,y2��F�x1,x2,y1,y2� , �36�

where F�x1 ,x2 ,y1 ,y2� is the Feynman-Vernon influence functional defined by

F�x1,x2,y1,y2� =� dqn�dq̃n�dqn�bath�qn�, q̃n�,0��
qn�

qn

Dqn�
q̃n�

qn

Dq̃n exp� i

�
�SI�x1,x2,qn� − SI�y1,y2, q̃n� + SB�qn� − SB�q̃n���

= exp� i

�
�SIF�x1,x2,y1,y2��� , �37�

where SIF is the influence action. For the QBM model we are
considering here, the influence action can be written as

SIF�x1,x2,y1,y2� = − 2�
0

t

ds1�
0

s1

ds2��1�s1� + �2�s1����s1

− s2��
1�s2� + 
2�s2��

+ i�
0

t

ds1�
0

s1

ds2��1�s1� + �2�s1����s1 − s2�

���1�s2� + �2�s2�� , �38�

where


1 =
1

2
�x1 + y1�, 
2 =

1

2
�x2 + y2�, �1 = x1 − y1, �39�

�2 = x2 − y2.

Note that the integrand in Eq. �36� is Gaussian, hence the
integral can be computed exactly and the explicit form of Jr
is

Jr = Ñ exp� i

2
SI − SR� , �40�

where the expressions of SI and SR can be written in more
compact forms with the following notations:

xk
+ = x1k + x2k, yk

+ = y1k + y2k, �41�

xk
− = x1k − x2k, yk

− = y1k − y2k, �42�

whence

SI = b1�xt
+ + yt

+��xt
+ − yt

+� + b2�x0
+ + y0

+��xt
+ − yt

+� − b3�xt
+ + yt

+�

��x0
+ − y0

+� − b4�x0
+ + y0

+��x0
+ − y0

+� + b5�xt
− + yt

−��xt
− − yt

−�

+ b6�x0
− + y0

−��xt
− − yt

−� − b7�xt
− + yt

−��x0
− − y0

−� − b8�x0
− + y0

−�

��x0
− − y0

−� , �43�

and

SR = a11�xt
+ − yt

+�2 + a22�x0
+ − y0

+�2 + a12�x0
+ − y0

+��xt
+ − yt

+� .

�44�

The functions bi�t� and aij�t� depend on the environment and
can be constructed from the solutions to the equations

b2�t� 

1

2
u̇1�t�, b1�t� 


1

2
u̇2�t�, b6�t� 


1

2
ẇ1�t�,

b5�t� 

1

2
ẇ2�t� ,
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b4�t� 

1

2
u̇1�0�, b3�t� 


1

2
u̇2�0�, b8�t� 


1

2
ẇ1�0�,

�45�

b7�t� 

1

2
ẇ2�0� ,

where wi�t� are functions which satisfy the following equa-
tion:


̄
¨ �s� + �2
̄�s� = 0, �46�

with the boundary conditions

w1�0� = 1 = w2�t�, w1�t� = 0 = w2�0� , �47�

aij�t� =
1

2
�

0

t

ds1�
0

t

ds2ui�s1���s1 − s2�uj�s2� . �48�

With the expression of Jr, we can derive the master equation
for the reduced density matrix �26�. This is shown in Appen-
dix A.

An exact form of the evolutionary operator for the re-
duced density matrix is a priced object: Not only can one
derive from it the exact master equation for the reduced den-
sity matrix, with this explicit expression of the evolutionary
operator, given any initial reduced density matrix �r at time
t0 one can calculate �r at any later time t without having to
solve the complicated second-order partial differential equa-
tion with time-dependent coefficient functions.

For example, we will apply this evolutionary operator to
the study of the decoherence and disentanglement of two
coupled harmonic oscillators in a common heat bath. One
can also use it to calculate the higher moments of physical
observables of interest such as the position and the momen-
tum operators which enter into the derivation of a general-
ized uncertainty principle for composite objects at finite tem-
perature �31�. It can also be used to address the issue of the
influence of entanglement on the relation between the statis-
tical entropy of an open quantum system and the heat ex-
changed with a low-temperature environment such as studied
in �32�. Another interesting application would be the en-
tanglement between a qubit and an oscillator. Adopting a
level reduction scheme, Shiokawa and Hu �33� used the evo-
lutionary operator of 1HO QBM to study the dynamics of the
spin-boson model. The explicit expression of the evolution-
ary operator for the 2HO QBM may be used to construct
effective 1HO-spin-boson models found in many condensed
matter quantum computer schemes for the analysis of the
interaction between a qubit and a harmonic oscillator and
their decoherence and disentanglement dynamics in the pres-
ence of a general environment. See Sec. V for a more de-
tailed exposition of further applications and extensions.

IV. APPLICATIONS: QUANTUM DECOHERENCE AND
DISENTANGLEMENT, UNCERTAINTY RELATION

FOR A COMPOSITE OBJECT

In this section we give three examples for the application
of this master equation: the decoherence and disentangle-

ment of two coupled harmonic oscillators in a common heat
bath, and a derivation of the uncertainty relation at finite
temperature for a composite object modeled by two har-
monic oscillators in a general environment. For some simpli-
fied cases we obtain analytic results which show interesting
features such as finite-time disentanglement �34,35�.

A. Dynamics of quantum coherence

We will assume that the system and the environment are
initially uncorrelated. The total density matrix at time t=0
then factorizes into a product of density matrices for the
system and the environment. As usual, we further assume
that the environment is initially in thermal equilibrium at a
given temperature T.

We assume initially the 2HO �labeled as 1 and 2� are
separated with distance 2L0 and the initial wave function of
the 1-2 system is given by

��x1,x2,t = 0� = s1�1�x1��1�x2� + s2�1�x1��2�x2�

+ s3�2�x1��1�x2� + s4�2�x1��2�x2� , �49�

where we have defined the displaced Gaussian states as

�1,2�x� = N exp�−
�x � L0�2

2�2 �exp�±iP0x� , �50�

and si are any complex numbers subject to normalization
conditions. �We use 1 and 2 to label different initial positions
of the center of the Gaussian wave function of harmonic
oscillators while x and y label different time paths.�

With an initial reduced density matrix

�r�x10,x20;y10,y20;t = 0� = �x10,x20���0�
���0��y10,y20



 �
i,j

sisj
��ij�x10,x20;y10,y20;t = 0� ,

�51�

the reduced density matrix at t is given by

�r�x1,x2;y1,y2;t�

=� dx0dy0Jr�x1,x2,y1,y2,t;x10,x20,y10,y20,0�

��r�x10,x20;y10,y20;t = 0� . �52�

Because the QBM model is linear and the initial state is
Gaussian, we can solve the master equation exactly for the
dynamics of the 2HO system interacting with an environ-
ment with a general spectral density at any temperature.
Therefore, we can obtain the total density matrix if the ex-
plicit solutions for each component are known,

�ij�x1,x2;y1,y2;t�

=� dx0dy0Jr�x1,x2,y1,y2,t;x10,x20,y10,y20,0�

��ij�x10,x20;y10,y20;t = 0� . �53�

Note that since Jr and �ij are in the form of an exponential
with an exponent which is a quadratic function in
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�x10,x20;y10,y20�, we can use a standard trick for the evalu-
ation of the integral,

�ij�t� =� dx0dy0Jt�ij�t = 0�

=� dx0dy0 exp�− x�T · Gij · x� +
1

2
F� ij

T · x� +
1

2
x�T · F� ij + cij�

=
����4

�det Gij

exp�cij +
1

4
F� ij

T · Gij
−1 · F� ij� , �54�

where x�T= �x10,x20,y10,y20�.
Once we have �ij�x1 ,x2 ;y1 ,y2 ; t� we can perform the fol-

lowing substitution x1�X1−
z1

2 ; x2�X2−
z2

2 ; y1�X1

+
z1

2 ; y2�X2+
z2

2 , and then perform the Fourier transform to
obtain the Wigner function at a later time t,

Wij�X1,X2,P1,P2,t�

=
/

dz1dz2

�2���2exp�iP1z1 + iP2z2�

��ij�X1 −
z1

2
,X2 −

z2

2
;X1 +

z1

2
,X2 +

z2

2
;t� . �55�

Since after the substitution the exponent of �ij is quadratic in
z1 ,z2, the above integration can be evaluated explicitly.
These solutions �54� and �55� will be useful in decoherence
and disentanglement analysis below. The detailed results and
the explicit expressions of �ij can be found in Appendix B.

When viewed from the center-of-mass coordinate the
physics of decoherence for a 2HO system is essentially simi-
lar to that described in �19,36� using the Hu-Paz-Zhang mas-
ter equation for 1HO because the environment couples to the
system only through the center-of-mass coordinate X and is
independent of the relative coordinate x. The evolution of the
relative coordinate part in the reduced density matrix is uni-
tary and hence will not affect the decoherence processes.
One can easily recognize these features from �22� and �21�.
The effects of environment-induced decoherence are en-
coded in the coefficient functions a�t� , b�t� , c�t� , d�t� of
�22�. As one can see from this example, four of the matrix
elements �11, �14, �41, �44 are similar to those in the ex-
ample considered in �36�, sans the relative coordinates.

However, the issue of disentanglement is quite different
because usually the entanglement measure is related to the
global property of the whole reduced density matrix. In gen-
eral, entanglement involves both the center-of-mass and the
relative coordinate dynamics. It is difficult to make any pre-
diction on how disentanglement evolves from the informa-
tion of only the 1HO system. For instance, while the center-
of-mass coherence always disappear asymptotically, in
contrast, entanglement of the two particles may terminate in
a finite time. In Sec. IV C, we will address this issue with a
simple illustrative example.

B. Uncertainty principle for composite objects

In this section, the generalized uncertainty relation for a
composite object is investigated from the viewpoint of quan-

tum open systems. Here the system is modeled by two har-
monic oscillators and the environment by a heat bath at tem-
perature T. As such, both thermal fluctuation and quantum
noise come to play when the uncertainty relation between
position and momentum is considered �19,31�.

The exact solution for the two harmonic oscillators
coupled to a common heat bath can be found by decompos-
ing the total system into two fictitious surrogate subsystems,
namely, the subsystems described by the center-of-mass and
the relative coordinates, respectively. Such a decomposition
guarantees that the two subsystems are decoupled, and as
such, the solution of the total system is a tensor product of
the two subsystems,

�r = �c.m. � �rel. �56�

Using the center-of-mass coordinate as described by the
Hamiltonian �1�, the complete information about the state of
the open system is contained in the reduced density operator
�r�t�.

For a class of initial Gaussian states given by

��x,0� = N0 exp�−
�x − x0�2

4�2 +
i

�
p0x� , �57�

where N0=1 / �2��2�1/4, the initial density operator for each
fictitious harmonic oscillator in the coordinate representation
can be written as

��x,x�,0� = ���x,0���x�,0�

= N0
2 exp�−

�x − x0�2

4�2 −
�x� − x0�2

4�2 −
i

�
p0x

+
i

�
p0x�� . �58�

In order to compute the variance of position and momentum
operators, it is more convenient to use the Wigner function
which can be obtained from the Fourier transform of the
density operators �29�. To be more specific, for the harmonic
oscillator representing the center-of-mass degree of freedom,
the corresponding Wigner function is simply given by

Wc.m.�X,P� = N0
2 exp�−

�X − x0�2

2�2 −
2�2

�2 �P − p0�2� .

�59�

The variance of the operator X , P denoted by ��X�2= �X2

− �X
2 and ��P�2= �P2
− �P
2 can be computed easily,

�X2
 =
1

2��
� dXdPX2Wc.m.�X,P,t� , �60�

�P2
 =
1

2��
� dXdPP2Wc.m.�X,P,t� , �61�

where Wc.m.�X , P , t� is the solution of the Fokker-Planck
equation for a single harmonic oscillator �see Appendix B or
�31��. In particular, for an ohmic environment �32�, the un-
certainly relation in the weak damping limit �
�2�� is
given by
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U�t� = ��X�2��P�2��x�2��p�2 = fc.m.�t�f rel�t� �62�

with

fc.m.�t� =
�2

4
�e−
t + coth

���

2kBT
�1 − e−
t��2

+ �2 coth
���

2kBT
� �1 − ��2

4�
�1 − e−
t�

−
�1 − �2�


8���
sin 2��t�e−
t + �2�1 − �2

4�
sin 2��t

+



2��
�coth

���

2kBT
−

1 + �2

2�
�sin2 ��t�2

e−2
t,

�63�

f rel�t� =
�2

4
�1 +

1

4�2 �1 − �2�2sin2 2�t� , �64�

where ��=��2−
2 /4 and �=2��2 /�. At short times
�t�1 /
 ,1 /��,

fc.m.�t� =
�2

4
�1 + 2�� coth

���

2kBT
− 1�
t� , �65�

f rel�t� =
�2

4
. �66�

In this short time span, the time-dependent quantum disper-
sion of the wave packet constructed in the relative coordinate
may be ignored. It is interesting to compare the uncertainty
relation �62� with that between the x1 ,x2 and p1 , p2, denoted
by Uxipi

,

Uxipi
= ��x1�2��p1�2��x2�2��p2�2 �

1

8
U�t� . �67�

As will be shown in the next section, the variance of the
operators x and X, etc., can indeed provide some useful in-
formation about the evolution of quantum entanglement of
the Gaussian states.

C. Dynamics of entanglement: An example

As shown in Sec. IV A, the decoherent effects of a ther-
mal heat bath is captured by the influential functional appear-
ing in �52�. An environment that destroys quantum coherence
can also disentangle two quantum Brownian particles. The
dynamics of decoherence and entanglement of two harmonic
oscillators interacting with a common environment is useful
for understanding some basic issues in macroscopic quantum
phenomena. We will present a more detailed study of this
issue in a later paper. Here we show a simple example which
has analytic solutions. Take as initial state the Wigner func-
tion

W�x1,x2,P1,P2� = Wc.m.�X,P�Wrel�x,p�

= e−X2/2a2−P2/2b2
e−x2/2c2−p2/2d2

. �68�

where P, X, x, and p are canonical variables defined in �5�

and �6�. We have omitted an irrelevant normalization factor.
Note that the widths a2, b2, c2, and d2 cannot be chosen
arbitrarily since they must satisfy the uncertainty relations

a2b2 �
�2

4
, c2d2 �

�2

4
. �69�

For a wide range of parameters a, b, c, and d, the Wigner
function W�X , P ,x , p� is entangled, since generally it cannot
be written as a product of W1�x1 , P1� and W2�x2 , P2�. At any
time t, it is known that the separability of the state �68� can
be easily detected �37,38�.

Now we consider the dynamics of this state under the
influence of a common environment. For greatest simplicity,
we assume two free particles coupled to a Markovian ther-
mal bath �setting �=0 and �=0� and assume the dissipation
in c.m. coordinates is negligible. Under these conditions, the
Wigner equation Wc.m.�X , P� for c.m. coordinates �33� takes
on a simple form,

�Wc.m.

�t
= −

P

M1

�Wc.m.

�X
+ D

�2Wc.m.

�P2 , �70�

where D=2M1
kBT. The solution for the dissipative evolu-
tion of the center of mass can be easily obtained, and from it,
we can compute the variances of X and P at time t to be

��X2��t� =
2Dt3

3M2 +
b2t2

4M2 + a2, �71�

��P2��t� = 2Dt + b2. �72�

Since the evolution of the Wigner function Wrel�x , p� for the
relative coordinates x , p is unitary,

�Wrel

�t
= −

p

M2

�Wrel

�x
, �73�

the variances at t are simply given by

��x2��t� =
4d2

M2 t2 + c2, �74�

��p2��t� = d2. �75�

According to �37�, we may choose the einstein-podolsky-
rosen �EPR�-like operators as

u = x̃1 − x̃2, v = P̃1 + P̃2, �76�

where x̃i , P̃i�i=1,2� are the dimensionless variables satisfy-

ing �x̃i , P̃j�= i�ij,

x̃i = �MD

�3 �1/4
xi, P̃i = � 1

�MD
�1/4

Pi, �i = 1,2� . �77�

Then the Gaussian state �68� at t is disentangled if and only
if the following inequality is satisfied:

��u2��t� + ��v2��t� � 2. �78�

Inserting �72� and �74� into the above inequality, one obtains
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At2 + Bt + C � 2, �79�

where

A =
4d2

M2�MD

�3 , �80�

B = 2� D

�M
, �81�

C =
b2

��MD
+ c2�MD

�3 . �82�

From �79�, the disentanglement time tdent can be determined
to be

tdent =
− B + �B2 − 4AC + 8A

2A
. �83�

Thus after t� tdent the state �68� becomes completely
separable.

In situations when the 2HO are coupled or share the same
environment, it is expected that for some initial states en-
tanglement will persist longer than the case when there is no
direct coupling between the two oscillators and each of them
is coupled to a separate environment �see, e.g., �39� for two
qubits in a common electromagnetic field�. This is what one
might anticipate would happen for our model in the more
general cases. On the other hand, as shown in this simplified
example, finite-time disentanglement may yet occur for some
initial states when there is no direct coupling between the
two oscillators.

Such finite-time decay behavior has been noted before in
several cases where two qubits �34� or two harmonic oscil-
lators �35,40� are individually coupled to their own heat
baths. We show here the onset of the finite-time decay for the
case of a common heat bath. However, it should be empha-
sized again that the finite-time disentanglement process
found here depends crucially on the choice of initial states
because for some initial states the mutual actions between
the two harmonic oscillators may lead to entanglement gen-
eration. As shown in the case of two-qubits under phase
noises, when the initial states are protected by a
decoherence-free subspace quantum entanglement is shown
to be robust against the thermal noise �41�. The 2HO model
considered here will exhibit similar features, but further de-
tails will go beyond the scope of this paper.

V. FURTHER APPLICATIONS AND DEVELOPMENTS

�a� Summary. In this work we derive an exact master
equation for two coupled quantum harmonic oscillators in-
teracting via bilinear coupling with a common environment
at arbitrary temperature made up of many harmonic oscilla-
tors with a general spectral density function. We first show a
simple derivation based on the observation that the two har-
monic oscillator model can be effectively mapped into that
of a single harmonic oscillator in a general environment plus
a free harmonic oscillator. Since the exact one harmonic os-

cillator master equation is available �19� the exact master
equation with all its coefficients for this two harmonic oscil-
lator model can be easily deduced from the known results of
the single harmonic oscillator case. In the second part we
give an influence functional treatment of this model and pro-
vide explicit expressions for the evolutionary operator of the
reduced density matrix which are useful for the study of
decoherence and disentanglement issues. We show three ap-
plications of this master equation: on the decoherence and
disentanglement of two harmonic oscillators due to their in-
teraction with a common environment and a derivation of the
uncertainty principle at finite temperature for a composite
object, modeled by two interacting harmonic oscillators. For
the example of entanglement dynamics under Markovian ap-
proximation we find finite-time disentanglement taking place
for a Gaussian state.

�b� Decoherence and disentanglement. We mention some
further developments and applications where our analysis of
the 2HO QBM model can be usefully extended to or com-
pared with. First, for the study of decoherence and disen-
tanglement between two observers, a direct comparison can
be carried out with some recent findings in �42� where the
model of two harmonic oscillators in relativistic motion �one
could be in uniform acceleration� in a common field in
Minkowsky or a black hole space time. In the latter situation
it is of interest to see how entanglement and teleportation
will be affected by its unusual causal properties. The case of
two oscillators in inertial motion in ordinary Minkowsky
space time would correspond to our problem here after in-
voking Lorentz invariance. Second, pursuant to our analysis
of the uncertainty principle for composite objects, the sub-
stance of our calculations there could be applied to another
interesting physical issue pertaining to the Landauer prin-
ciple �43� and the Clausius inequality. Landauer principle
which rests at the foundation of the thermodynamics of in-
formation processing, states that �paraphrased in the words
of Bennett �44�� “any logically irreversible manipulation of
information, such as the erasure of a bit or the merging of
two computation paths, must be accompanied by a corre-
sponding entropy increase in noninformation bearing degrees
of freedom of the information processing apparatus or its
environment. Conversely, it is generally accepted that any
logically reversible transformation of information can in
principle be accomplished by an appropriate physical mecha-
nism operating in a thermodynamically reversible fashion”
�see also �45–47�, the last contains a proposal for a general-
ized Landauer’s principle�. It is well known that the root of
this relation is the second law of thermodynamics, but how
to measure a logical operation in physical terms or to asso-
ciate a logical state or its transformation with an energy cost
and an entropy increase is a new challenge.

�c� Quantum information and thermodynamics. There are
many angles to see how Landauer’s bound in quantum infor-
mation theory is related to Clausius’ inequality in classical
thermodynamics. One such approach is by way of quantum
open systems which can treat the dynamics of the system and
its quantum information content in fully nonequilibrium set-
tings. This is the conceptual framework and technical sys-
tematics we have adopted. Here, dissipation and decoherence
in the system and disentanglement between the system and
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its environment may be followed closely by the evolution of
the reduced density matrix �RDM�, and the entropy change
of the system in the thermodynamic limit may be calculated,
with little difficulty. In this vein, using the quantum Brown-
ian model of the Caldeira-Leggett �CL� type, Hörhammer
and Büttner �32� investigated the influence of entanglement
on the relation between the statistical entropy of an open
quantum system and the heat exchanged with a low-
temperature environment �see also �48��. Their two Brown-
ian oscillator model is of particular relevance to our work
here. Compared to the case of a single Brownian particle,
two coupled harmonic oscillators can account for how the
internal degrees of freedom of the system would affect the
heat and entropy changes. Because they adopted the CL
treatment their results are subcases of ours here �in the same
way that the CL treatment �17� of QBM is related to the HPZ
treatment �19�, viz., the latter preserves the positive definite-
ness of RDM in its entire evolution and the HPZ master
equation extends the range of validity to non-Markovian re-
gimes�. The CL results are valid only for ohmic baths at high
temperatures pertaining to the Markovian regime. For low
temperatures and nonohmic baths pertaining to the non-
Markovian regimes the HPZ treatment is expected to yield
more accurate results. Thus, using the master equation pre-
sented here for the 2HO QBM model following HPZ treat-
ment and the analytical solutions found recently �49� for
various parameter ranges one could obtain an improved Lan-
dauer bound for quantum information processing in the non-
Markovian regimes. On the other side of the balance, the
Clausius inequality, operative only in the thermodynamic
limit, would be too coarse a measure for the energy cost and
entropy change of quantum information processing anyway.
With the master equations derived here there is much room
for tightening the Landauer bound.

�d� Qubit-oscillator entanglement. As subcases of the
present model one can investigate the interaction between a
two-level system with a harmonic oscillator in a general en-
vironment which is of general interest for quantum computer
design purposes. One could apply a level reduction scheme
such as that used in �33� to one of the two harmonic oscilla-
tors, turning the 2HO-bath model into an effective 1HO-
spin-boson model where the bimodal oscillator mocks up a
qubit. The simpler case without an environment would cor-
respond to a two-level atom in a multimode cavity, such as
studied in �50�. Doing a level reduction scheme for both
oscillators and viewing the harmonic oscillator bath as a field
would reduce our 2HO QBM model to that of two qubits
interacting either directly or indirectly through a common
field. An example of the latter situation is studied in �39�.
One can use the exact master equations here under appropri-
ate simplifications to describe the non-Markovian dynamics
of such systems.

�e� Quantum superposition of two mirrors. As mentioned
in the Introduction, a category of problems which has re-
ceived much attention lately is represented by the quantum
superposition of two mirrors �8�. The two mirrors can be
modeled by two quantum harmonic oscillators, but in most
models for proposed experimental designs, the mirrors are
coupled by radiation pressure. This class of model with pho-
ton number–mirror-displacement �Nx� type of coupling used

for mirror-photon entanglement �51�, entanglement cooling
of a mirror �52� and entanglement of test masses, and stan-
dard quantum limit �53� is very different from the class with
bilinear coupling in QBM studies �beware of inconsistencies
in the usual master equations for this problem, see �54��. On
the surface the convenience of the 2HO model which pos-
sesses many useful solutions would not be readily available,
but a recent observation by Galley could provide a bridge to
these two common classes of models and unleash the re-
sources gathered from the 2HO QBM problem for the solu-
tion of this type of quantum optics problems �see �55��.

�f� Macroscopic quantum phenomena. Finally, a whole
range of issues in macroscopic quantum phenomena can be
addressed with the master equation �or the associated Lange-
vin or Fokker-Planck equations� derived here. In particular,
decoherence and disentanglement in the 2HO system under
more general conditions and N-harmonic oscillators systems
�56� are currently under study. It can also be applied to the
analysis of quantum decoherence, entanglement, fluctua-
tions, dissipation, and teleportation of electromechanical
and/or optomechanical systems and superposition of moving
mirrors due to quantum and radiative effects.
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APPENDIX A: DERIVATION OF EXACT MASTER
EQUATION FROM PATH INTEGRAL

Deriving the master equation from the path integral is
lengthy, but one of the advantages of this derivation is that
the explicit form of the propagator can be used to find an
explicit solution of the equation in many interesting cases.
We will mainly follow the steps in �19� and outline the key
steps in deriving the master equation from the path integral
method.

From �35�, it is easy to see that, to get the master equa-
tion, one first needs to calculate Jr�t+dt ,0�−Jr�t ,0�. The
complete derivation can be decomposed into the following
four steps.

1. Step one

Our first task is to take the functional representation of
Jr�t+dt ,0� and divide each of the path integrals into two
parts. We introduce four intermediate points
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x1m , x2m , y1m , y2m at time t and integrate over them, thus
symbolically, we write

�
0;x10

t+dt;x1f

Dx1�
−�

�

dx1m�
0;x10

t;x1m

Dx̄1�
t;x1m

t+dt;x1f

Dx̃1. �A1�

There are three similar expressions for the sum over x2 ,y1 ,y2
histories.

The original histories x1��� are functions defined on
�0, t+dt� time interval with x1�0�=x10,x1�t+dt�=x1f. The
new set of histories x̄1��� , x̃1��� are functions defined on
�0, t� , �t , t+dt� intervals with x̄1�0�=x10, x̄1�t�=x1m , x̃1�t�
=x1m , x̃1�t+dt�=x1f.

So we can write

A�x1,x2,y1,y2� = SS�x1,x2� − SS�y1,y2� + �A�x1,x2,y1,y2�

= A�x̄1, x̄2, ȳ1, ȳ2� + A�x̃1, x̃2, ỹ1, ỹ2�

+ Ai�x̄1, x̄2, ȳ1, ȳ2, x̃1, x̃2, ỹ1, ỹ2� , �A2�

where the Ai term mixes the x̃ histories with x̄ ones. The
appearance of the Ai term is due to the nonlocality of the
influence functional.

2. Step two

Next, we will use straight line histories approximation of
�x̃1 , x̃2 , ỹ1 , ỹ2�. First, note that

x̃1�s� = x1m + �x1f − x1m�
s − t

dt

 x1m + �1x

s − t

dt
, �A3�

and similarly,

x̃2�s� = x2m + �x2f − x2m�
s − t

dt

 x2m + �2x

s − t

dt
, �A4�

ỹ1�s� = y1m + �1y
s − t

dt
, ỹ2�s� = y2m + �2y

s − t

dt
. �A5�

To compute the time derivative of Jr, take the limit dt→0.
Thus we can write

�
k=1

2 �
0;xk0

t+dt;xkf

Dxk�
0;yk0

t+dt;ykf

Dyk exp� i

�
A�x1,x2,y1,y2��

= N�t��
k=1

2 �
−�

�

dxkmdykm exp� i

�
A�x̃1, x̃2, ỹ1, ỹ2��

��
k=1

2 �
0;xk0

t;xkm

Dx̄k�
0;yk0

t;ykm

Dȳk exp� i

�
A�x̄1, x̄2, ȳ1, ȳ2��

�exp� i

�
Ai�x̄1, x̄2, ȳ1, ȳ2, x̃1, x̃2, ỹ1, ỹ2�� . �A6�

Expanding A in dt and keeping the contributions of the first-
order terms, we obtain

A�x̃1, x̃2, ỹ1, ỹ2� �
m

2dt
��1x

2 + �2x
2 − �1y

2 − �2y
2 �

−
1

2
m�2dt�x1f

2 + x2f
2 − y1f

2 − y1f
2 � + ¯

�A7�

and

Ai�x̄1, x̄2, ȳ1, ȳ2, x̃1, x̃2, ỹ1, ỹ2� � − dt�
0

t

dsJ
� �s��
̄1�s� + 
̄2�s��

+ idt�
0

t

dsJ�� �s���̄1�s� + �̄2�s�� ,

�A8�

where

J
1
+ J
2


 J
� �s�
2

dt
�

t

t+dt

ds���̃1�s�� + �̃2�s�����s� − s�

� 2�x1f − y1f + x2f − y2f���t − s� + ¯ �A9�

and

J�1
+ J�2


 J�� �s�
1

dt
�

t

t+dt

ds���̃1�s�� + �̃2�s�����s� − s�

� �x1f − y1f + x2f − y2f���t − s� + ¯ . �A10�

Here we can keep only terms up to the first order in �i
2.

In summary, the propagator Jr can be formally written as

Jr��x1f,x2f,y1f,y2f,t + dt�x10,x20,y10,y20,0�

� N�t��
−�

�

d�1x�
−�

�

d�2x�
−�

�

d�1y�
−�

�

d�2y

�exp� im

2�dt
��1x

2 + �2x
2 − �1y

2 − �2y
2 ��

��1 −
i

�
dt�V�x1f,x2f� − V�y1f,y2f���

�J̃r��x1m,x2m,y1m,y2m,t + dt�x10,x20,y10,y20,0;�b��� ,

�A11�

where

J̃r��x1m,x2m,y1m,y2m,t + dt�x10,x20,y10,y20,0;�b���

= �
0;x10

t;x1m

Dx̄1�
0;x20

t;x2m

Dx̄2�
0;y10

t;y1m

Dȳ1�
0;y20

t;y2m

Dȳ2

�exp� i

�
A�x̄1, x̄2, ȳ1, ȳ2��exp� i

�
�− dt�

0

t

dsJ
� �s��
̄1�s�

+ 
̄2�s�� + idt�
0

t

dsJ�� �s���̄1�s� + �̄2�s���� , �A12�

and
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b� = �J
�

J��
� , �A13�

where the sources b� are functions of the end points. Note that

J̃r�b�� can be interpreted as the evolution operator under the
action of two external sources.

3. Step three

Computation of the path integral J̃r�b�� can be done as
follows. First, one can show that

J̃r��x1m,x2m,y1m,y2m,t�x10,x20,y10,y20,0;�b���

= Jr��x1m,x2m,y1m,y2m,t�x10,x20,y10,y20,0�

�W�x1m,x2m,y1m,y2m,x10,x20,y10,y20,dt� . �A14�

�Note that the function Jr is the evolution operator without
source while the function W is a function of the end points.�

Then we may parametrize the paths, and write


1�s� = �1�s� + 
cl,1�s�, 
2�s� = �2�s� + 
cl,2�s� ,

�A15�

�1�s��1�s� + �cl,1�s�, �2�s� = �2�s� + �cl,2�s� ,

�A16�

where the “classical paths” �
� �
cl

are the solutions to the

equation of motion derived from the real part of
A�
1 ,
2 ,�1 ,�2�.

After this path reparametrization and making a saddle
point approximation, this path integral

J̃r��x1m ,x2m ,y1m ,y2m , t�x10,x20,y10,y20,0 ; �b��� can be written
as

J̃r��x1m,x2m,y1m,y2m,t�x10,x20,y10,y20,0;�b���

= J̃r��0,0,0,0,t�0,0,0,0,0;�b���

�exp� i

�
A�
cl,1,
cl,2,�cl,1,�cl,2��

�exp� i

�
�− dt�

0

t

dsJ
� �s��
cl,1�s� + 
cl,2�s��

+ idt�
0

t

dsJ�� �s���cl,1�s� + �cl,2�s���� , �A17�

where

J̃r��0,0,0,0,t�0,0,0,0,0;�b����
0;�1=0

t;�1=0

D�1�
0;�2=0

t;�2=0

D�2�
0;�1=0

t;�1=0

�D�1�
0;�2=0

t;�2=0

D�2

�exp�i��
0

t

ds1�
0

t 1

2
�T�s1�Ô�s1,s2���s2�

+ �
0

t

ds�T�s� · B� �s��� . �A18�

Note that

� = ��1

�2
� =�

�1

�1

�2

�2

� �A19�

and

B� =�
− dtJ
�

idtJ�� + iJ̃��

− dtJ
�

idtJ�� + iJ̃��
� , �A20�

where J̃�� is a new source which appears because of the non-
locality of the influence functional. It couples the classical
paths to the � paths,

J̃�� �s� = �
0

t

ds���cl,1�s�� + �cl,2�s�����s − s�� . �A21�

The matrix operator Ô�s1 ,s2� is defined as follows:

O11�s1,s2� = O33�s1,s2� = O13�s1,s2�O31�s1,s2� = 0,

�A22�

O22�s1,s2� = O44�s1,s2� = O24�s1,s2�O42�s1,s2� = 2i��s1 − s2� ,

�A23�

O14�s1,s2� = O32�s1,s2� = 2��s2 − s1���s1 − s2� , �A24�

O41�s1,s2� = O23�s1,s2� = 2��s1 − s2���s1 − s2� , �A25�

O12�s1,s2� = O34�s1,s2� = � d2

ds1
2 + �2���s1 − s2�

+ 2��s2 − s1���s1 − s2� , �A26�

O21�s1,s2� = O43�s1,s2� = � d2

ds1
2 + �2���s1 − s2�

+ 2��s1 − s2���s1 − s2� . �A27�

The Gaussian path integral can be computed in terms of the

inverse of the operator Ô, which is given by Ĝ
 Ô−1. Hence
to first order in dt, we have
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J̃r��0,0,0,0,t�0,0,0,0,0;�b����
0;�1=0

t;�1=0

D�1�
0;�2=0

t;�2=0

D�2�
0;�1=0

t;�1=0

D�1�
0;�2=0

t;�2=0

D�2

�exp�i��
0

t

ds1�
0

t 1

2
�T�s1�Ô�s1,s2���s2� + �

0

t

ds�T�s� · B� �s���
=� D�1� D�2� D�1� D�2

�exp�i�1

2
��T + B� T · Ô−1�Ô�� + Ô−1 · B� � −

1

2
B� TÔ−1B���

= Z0�t�exp�−
i

2
B� TÔ−1B�� � Z0�t��1 −

i

2
B� TÔ−1B��

� Z0�t��1 − dt�
0

t

ds1�
0

t

ds2J
� �s1��G12�s1,s2� + G14�s1,s2� + G21�s2,s1� + G41�s1,s2��J̃�� �s2�� .

Note that the Green‘s function �G12+G32�
 G̃12�s1 ,s2� satisfies the following equation:

d2

ds1
2G̃12�s1,s2� + �2G̃12�s1,s2� + 4�

0

s1

d���s1 − ��G̃12�s1,�� = ��s1 − s2� , �A28�

with boundary conditions G̃12�0,s2�= G̃12�s1 , t�=0. The equations for �G21+G23�
 G̃21�s1 ,s2� are analogous.
Now we can show that

J̃r��x1m,x2m,y1m,y2m,t�x10,x20,y10,y20,0;�b���

= J̃r��0,0,0,0,t�0,0,0,0,0;�b���exp�i�A�
cl,1,
cl,2,�cl,1,�cl,2��	exp�i�− dt�
0

t

dsJ
� �s�

��
cl,1�s� + 
cl,2�s�� + idt�
0

t

dsJ�� �s���cl,1�s� + �cl,2�s����
� Z0�t�exp�iA�
cl,1,
cl,2,�cl,1,�cl,2�	�1 − dt�

0

t

ds1�
0

t

ds2J
� �s1��G̃12�s1,s2� + G̃21�s1,s2��J̃�� �s2�

− idt�
0

t

dsJ
� �s��
cl,1�s� + 
cl,2�s�� + �i�2dt�
0

t

dsJ�� �s���cl,1�s� + �cl,2�s���
= Jr��x1m,x2m,y1m,y2m,t�x10,x20,y10,y20,0�W�x1m,x2m,y1m,y2m,x10,x20,y10,y20,dt� , �A29�

where W is given by

W�x1m,x2m,y1m,y2m,x10,x20,y10,y20,dt�

= 1 − idt��
0

t

ds2��1f + �2f���t − s�u1�s�
̃cl�0� + �
0

t

ds2��1f + �2f���t − s�u2�s�
̃cl�t��
− dt��

0

t

ds��1f + �2f���t − s�v1�s��̃cl�0� + �
0

t

ds��1f + �2f���t − s�v2�s��̃cl�t��
− dt��

0

t

ds1�
0

t

ds2�
0

t

ds32��1f + �2f���t − s1��G̃12�s1,s2� + G̃21�s2,s1�����s2 − s3�v1�s3��̃cl�0�

+ �
0

t

ds1�
0

t

ds2�
0

t

ds32��1f + �2f���t − s1��G̃12�s1,s2� + G̃21�s2,s1����s2 − s3�v2�s3��̃cl�t� . �A30�

To simplify the expressions, let us define
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d1�t� = 2�
0

t

ds��t − s�u1�s�, d2�t� = 2�
0

t

ds��t − s�u2�s� ,

�A31�

c1�t� = �
0

t

ds1�
0

t

ds2�
0

t

ds3��t − s1��G̃12�s1,s2�

+ G̃21�s2,s1����s2 − s3�v1�s3� , �A32�

c2�t� = �
0

t

ds1�
0

t

ds2�
0

t

ds3��t − s1��G̃12�s1,s2�

+ G̃21�s2,s1����s2 − s3�v2�s3� , �A33�

e1�t� = �
0

t

ds��t − s�v2�s� = �
0

t

ds��t − s�u1�t − s�

= �
0

t

ds��s�u1�s� , �A34�

e2�t� = �
0

t

ds��t − s�v1�s� = �
0

t

ds��t − s�u2�t − s�

= �
0

t

ds��s�u2�s� . �A35�

Finally, we have

Jr��x1f,x2f,y1f,y2f,t + dt�x10,x20,y10,y20,0� = N�t��
k=1

2 �
−�

�

d�kx�
−�

�

d�ky exp� i

2dt
��1x

2 + �2x
2 − �1y

2 − �2y
2 ��„1 − dt�i�V�x1f,x2f�

− V�y1f,y2f�� + i��1f + �2f��d1�t��
i,1 + 
i,2� + d2�t��
1f + 
2f��

+ ��1f + �2f���i,1 + �i,2��e2�t� + 2c1�t�� + ��1f + �2f�2�e1�t� + 2c2�t��	…

��Jr +
1

2
� �2Jr

�x1f
2 �− �1x�2 +

�2Jr

�x2f
2 �− �2x�2 +

�2Jr

�y1f
2

��− �1y�2 +
�2Jr

�y2f
2 �− �2y�2�� . �A36�

Hence

Jr�t + dt� − Jr = − dtJr�i
1

2
�2�x1f

2 + x2f
2 − y1f

2 − y2f
2 � + ��1f + �2f��i�d1�t��
i,1 + 
i,2� + d2�t��
1f + 
2f�� + ��i,1 + �i,2��e2�t�

+ 2c1�t�� + ��1f + �2f��e1�t� + 2c2�t��	� +
1

2

dt

− i

�2Jr

�x1f
2 +

1

2

dt

− i

�2Jr

�x2f
2 +

1

2

dt

i

�2Jr

�y1f
2 +

1

2

dt

i

�2Jr

�y2f
2 , �A37�

We can then get the evolution equation for the propagator Jr.

i
�

�t
Jr��x1f,x2f,y1f,y2f,t�x10,x20,y10,y20,0� = i

�

�t
�Jr��x1f,x2f,y1f,y2f,t + dt�x10,x20,y10,y20,0�

− Jr��x1f,x2f,y1f,y2f,t�x10,x20,y10,y20,0��

= �−
1

2
� �2

�x1f
2 +

�2

�x2f
2 −

�2

�y1f
2 −

�2

�y2f
2 � +

1

2
�2�x1f

2 + x2f
2 − y1f

2 − y2f
2 � + ��1f + �2f���d1�t�

��
i,1 + 
i,2� + d2�t��
1f + 
2f��	 − i��1f + �2f���i,1 + �i,2��e2�t� + 2c1�t��

− i��1f + �2f�2�e1�t� + 2c2�t���Jr��x1f,x2f,y1f,y2f,t�x10,x20,y10,y20,0� . �A38�

4. Step four

Now we have the explicit expression for Jr. But we still need to deal with terms of the form such as �1iJ. To do so we can
differentiate J with respect to 
1f and get

�
1f
J = �ib1�t���1f + �2f� + ib5�t���1f − �2f� − ib3�t���1i + �2i� − ib7�t���1i − �2i��J . �A39�

Similarly if we want �2iJ, we can differentiate J with respect to 
2f and get
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�
2f
J = �ib1�t���1f + �2f� − ib5�t���1f − �2f� − ib3�t���1i

+ �2i� + ib7�t���1i − �2i��J . �A40�

The sum of these two equations gives

��
1f
+ �
2f

�J = �2ib1�t���1f + �2f� − 2ib3�t���1i + �2i��J .

�A41�

This can be written as

��1i + �2i�J =
1

2b3�t�
�i��
1f

+ �
2f
� + 2b1�t���1f + �2f��J .

�A42�

Similarly, we can differentiate with respect to �1f �or �2f� to
get 
1iJ �or 
2iJ�. The sum of these two equations gives

���1f
+ ��2f

�J = 2�ib2�t��
1i + 
2i� + ib1�t��
1f + 
2f� − a12�t�

���1i + �2i� − 2a11�t���1f + �2f��J �A43�

and

�
1i + 
2i�J =
1

2b2�t��− i���1f
+ ��2f

� +
a12�t�
b3�t�

��
1f
+ �
2f

�

− 2b1�t��
1f + 
2f� − i�4a11�t� + 2
a12�t�b1�t�

b3�t�
�

���1f + �2f��J . �A44�

Substituting in what we already have for �
1i+
2i�J and
��1i+�2i�J, and multiplying by �0 and integrating over initial
coordinates, we obtain

��1f + �2f�d1�t��
1i + 
2i�J

= ��1f + �2f�d1�t�� − i

2b2�t�
���1f

+ ��2f
�

+
a12�t�

2b2�t�b3�t�
��
1f

+ �
2f
� −

b1�t�
b2�t�

�
1f + 
2f�

− i�2a11�t�
b2�t�

+
a12�t�b1�t�
b2�t�b3�t� ���1f + �2f��J �A45�

and

��1f + �2f��e2�t� + 2c1�t����1i + �2i�J

= ��1f + �2f��e2�t� + 2c1�t��� i

2b3�t�
��
1f

+ �
2f
�

+
b1�t�
b3�t�

��1f + �2f��J . �A46�

Hence we can write the evolution equation for the reduced
density matrix as

i
�

�t
�r = �−

1

2
� �2

�x1
2 +

�2

�x2
2 −

�2

�y1
2 −

�2

�y2
2� +

1

2
�2�x1

2 + x2
2 − y1

2

− y2
2���r + ��2�t���1f + �2f��
1f + 
2f��r − iA1�t�

���1f + �2f����1f
+ ��2f

��r − iA2�t���1f + �2f�2�r

+ A3�t���1f + �2f���
1f
+ �
2f

��r, �A47�

where

�

�

=

�

�x
+

�

�y
,

�

��
=

1

2
� �

�x
−

�

�y
� �A48�

and

��2�t� 
 d2�t� − d1�t�
b1�t�
b2�t�

, A1�t� 

d1�t�

2b2�t�
, �A49�

A2�t� 
 d1�t��2a11�t�
b2�t�

+
a12�t�b1�t�
b2�t�b3�t�

� + �e1�t� + 2c2�t��

+ �e2�t� + 2c1�t��
b1�t�
b3�t�

, �A50�

A3�t� 

d1�t�a12�t�
2b2�t�b3�t�

+
e2�t� + 2c1�t�

2b3�t�
. �A51�

This immediately leads to the general master equation �26�.

5. Coefficients of the master equation

The determination of the coefficients is reasonably stan-
dard, so we only provide the explicit forms of those time-
dependent functions that will be used later on. As shown in
�19�, the functions ��2�t� , 	�t� , ��t� , 
�t� can be con-
structed in terms of the elementary functions ui�s� , i=1,2,
which satisfy the following homogeneous integrodifferential
equation:

f̈�s� + �2f�s� +
4

M
�

0

s

d���s − ��f��� = 0 �A52�

with the boundary conditions

u1�s = 0� = 1, u1�s = t� = 0, �A53�

and

u2�s = 0� = 0, u2�s = t� = 1. �A54�

Here ��t−s� is the dissipation kernel given by

��s� = − �
0

�

d�I���sin��s� , �A55�

and I��� is the spectral density of the environment. Note that
the numerical factor 4 before the integral in this equation is
different from that in �19�. This is the main difference due to
the presence of two harmonic oscillators. Although the two
harmonic oscillators are not coupled directly, they are con-
nected by the common reservoir, hence they affect each other
dynamically.
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Let G1�s ,�� be the Green function obeying the following
equation:

d2

ds2G1�s,�� + �2G1�s,�� +
4

M
�

0

s

d���s − ��G1�s,��

= ��s − �� , �A56�

with initial conditions

G1�s = 0,�� = 0,
d

ds
�G1�s,���s=0 = 0. �A57�

The Green function G2�s ,�� is defined analogously. The co-
efficients can then be written as

��2�t� =
2

M
�

0

t

ds��t − s��u2�s� −
u1�s�u̇2�t�

u̇1�t�
� , �A58�

	�t� =
1

M
�

0

t

ds��t − s�
u1�s�
u̇1�t�

, �A59�

��t� =
�

2M
�

0

t

d�G1�t,����t − �� −
4�

M2�
0

t

ds�
s

t

d��
0

t

d���t

− s�G1�t,��G2�s,����� − �� , �A60�

and


�t� =
�

2
�

0

t

d�G1��t,����t − �� −
4�

M
�

0

t

ds�
s

t

d��
0

t

d���t

− s�G1��t,��G2�s,����� − �� , �A61�

where ��s�, defined as

��s� = �
0

+�

d�I���coth�1

2
����cos��s� , �A62�

is the noise kernel of the environment. Here a “prime” de-
notes taking the derivative with respect to the first variable of
G1�s ,��.

APPENDIX B: EXPLICIT EXPRESSIONS FOR �ij

We find that the matrix Gij is the same for all the �ij.
Thus, we can write Gij 
G. The matrix elements for the
matrix G are given by

G11 = G22 = a22 +
ib4

2
+

ib8

2
+

1

2�2 , �B1�

G33 = G44 = a22 −
ib4

2
−

ib8

2
+

1

2�2 , �B2�

G12 = G21 =
1

2
�2a22 + ib4 − ib8� , �B3�

G34 = G43 =
1

2
�2a22 − ib4 + ib8� , �B4�

G13 = G14 = G23 = G24 = G31 = G32 = G41 = G42 = − a22.

�B5�

Then the determinant of G can be explicitly computed,

det G = b4
2b8

2 +
1

16�8 +
a22

2�6 +
b4

2

2�4 +
b8

2

4�4 +
2a22b8

2

�2 .

�B6�

Moreover, the matrix elements of the inverse matrix G−1 are

G11
−1 = G22

−1 =
1

det G
�−

i

2
b4

2b8 + a22b8
2 −

i

2
b4b8

2 +
1

8�6 +
3a22

4�4

−
ib4

8�4 −
ib8

8�4 +
b4

2

4�2 −
ia22b8

�2 +
b8

2

4�2� , �B7�

G33
−1 = G44

−1 =
1

det G
� i

2
b4

2b8 + a22b8
2 +

i

2
b4b8

2 +
1

8�6 +
3a22

4�4

+
ib4

8�4 +
ib8

8�4 +
b4

2

4�2 +
ia22b8

�2 +
b8

2

4�2� , �B8�

G12
−1 = G21

−1 =
1

det G
� i

2
b4

2b8 + a22b8
2 −

i

2
b4b8

2 −
a22

4�4 −
ib4

8�4

+
ib8

8�4 −
b4

2

4�2 +
ia22b8

�2 +
b8

2

4�2� , �B9�

G34
−1 = G43

−1 =
1

det G
�−

i

2
b4

2b8 + a22b8
2 +

i

2
b4b8

2 −
a22

4�4 +
ib4

8�4

−
ib8

8�4 −
b4

2

4�2 −
ia22b8

�2 +
b8

2

4�2� , �B10�

G13
−1 = G14

−1G23
−1 = G24

−1 = G31
−1 = G32

−1 = G41
−1 = G42

−1

=
1

det G
�a22b8

2 +
a22

4�4� . �B11�

For the case of �11:

�11�t = 0� = N4 exp�−
�x10 − L0�2 + �x20 − L0�2 + �y10 − L0�2 + �y20 − L0�2

2�2 �exp�iP0�x10 + x20 − y10 − y20�� , �B12�

then the matrix elements for F are
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F11
1 = iP0 − a12x1 +

ib2x1

2
−

ib3x1

2
+

ib6x1

2
−

ib7x1

2
− a12x2 +

ib2x2

2
−

ib3x2

2
−

ib6x2

2
+

ib7x2

2
+ a12y1 −

ib2y1

2
−

ib3y1

2
−

ib6y1

2

−
ib7y1

2
+ a12y2 −

ib2y2

2
−

ib3y2

2
+

ib6y2

2
+

ib7y2

2
+

L0

�2 ,

F11
2 = iP0 − a12x1 +

ib2x1

2
−

ib3x1

2
−

ib6x1

2
+

ib7x1

2
− a12x2 +

ib2x2

2
−

ib3x2

2
+

ib6x2

2
−

ib7x2

2
+ a12y1 −

ib2y1

2
−

ib3y1

2
+

ib6y1

2

+
ib7y1

2
+ a12y2 −

ib2y2

2
−

ib3y2

2
−

ib6y2

2
−

ib7y2

2
+

L0

�2 ,

F11
3 = − iP0 + a12x1 +

ib2x1

2
+

ib3x1

2
+

ib6x1

2
+

ib7x1

2
+ a12x2 +

ib2x2

2
+

ib3x2

2
−

ib6x2

2
−

ib7x2

2
− a12y1 −

ib2y1

2
+

ib3y1

2
−

ib6y1

2

+
ib7y1

2
− a12y2 −

ib2y2

2
+

ib3y2

2
+

ib6y2

2
−

ib7y2

2
+

L0

�2 ,

F11
4 = − iP0 + a12x1 +

ib2x1

2
+

ib3x1

2
−

ib6x1

2
−

ib7x1

2
+ a12x2 +

ib2x2

2
+

ib3x2

2
+

ib6x2

2
+

ib7x2

2
− a12y1 −

ib2y1

2
+

ib3y1

2
+

ib6y1

2

−
ib7y1

2
− a12y2 −

ib2y2

2
+

ib3y2

2
−

ib6y2

2
+

ib7y2

2
+

L0

�2 ,

where F11
T = �F11

1 ,F11
2 ,F11

3 ,F11
4 � and

c11 = − a11x1
2 +

i

2
b1x1

2 +
i

2
b5x1

2 − 2a11x1x2 + ib1x1x2 − ib5x1x2 − a11x2
2 +

i

2
b1x2

2 +
i

2
b5x2

2 + 2a11x1y1 + 2a11x2y1 − a11y1
2 −

i

2
b1y1

2

−
i

2
b5y1

2 + 2a11x1y2 + ib1x1y2 + 2a11x2y2 + ib1x2y2 − 2a11y1y2 + ib5y1y2 − a11y2
2 +

i

2
b1y2

2 −
i

2
b5y2

2 −
2L0

2

�2 . �B13�

For the case of �12,

�12�t = 0� = N4 exp�−
�x10 − L0�2 + �x20 − L0�2 + �y10 − L0�2 + �y20 + L0�2

2�2 �exp�iP0�x10 + x20 − y10 + y20�� , �B14�

F12
1 = F11

1 , F12
2 = F11

2 , F12
3 = F11

3 , F12
4 = F11

4 + 2iP0 − 2
L0

�2 , c12 = c11. �B15�

For the case of �13,

�13�t = 0� = N4 exp�−
�x10 − L0�2 + �x20 − L0�2 + �y10 + L0�2 + �y20 − L0�2

2�2 �exp�iP0�x10 + x20 + y10 − y20�� , �B16�

F13
1 = F11

1 , F13
2 = F11

2 , F13
3 = F11

3 + 2iP0 − 2
L0

�2 , F13
4 = F11

4 , c13 = c11. �B17�

For the case of �14,

�14�t = 0� = N4 exp�−
�x10 − L0�2 + �x20 − L0�2 + �y10 + L0�2 + �y20 + L0�2

2�2 �exp�iP0�x10 + x20 + y10 + y20�� , �B18�

F14
1 = F11

1 , F14
2 = F11

2 , F14
3 = F11

3 + 2iP0 − 2
L0

�2 , F14
4 = F11

4 + 2iP0 − 2
L0

�2 , c14 = c11. �B19�

Similarly, one can work out the cases for �2i, �3i, and �4i�i=1,2 ,3 ,4�.
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