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We investigate the predictability of extreme events in time series. The focus of this work is to understand
under which circumstances large events are better predictable than smaller events. Therefore we use a simple
prediction algorithm based on precursory structures which are identified using the maximum likelihood prin-
ciple. Using the receiver operator characteristic curve as a measure for the quality of predictions we find that
the dependence on the event size is closely linked to the probability distribution function of the underlying
stochastic process. We evaluate this dependence on the probability distribution function analytically and nu-
merically. If we assume that the optimal precursory structures are used to make the predictions, we find that
large increments are better predictable if the underlying stochastic process has a Gaussian probability distri-
bution function, whereas larger increments are harder to predict if the underlying probability distribution
function has a power-law tail. In the case of an exponential distribution function we find no significant
dependence on the event size. Furthermore we compare these results with predictions of increments in corre-
lated data, namely, velocity increments of a free jet flow. The velocity increments in the free jet flow are in
dependence on the time scale either asymptotically Gaussian or asymptotically exponential distributed. The
numerical results for predictions within free jet data are in good agreement with the previous analytical
considerations for random numbers.
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I. INTRODUCTION

Systems with a complex time evolution, which generate a
great impact event from time to time, are ubiquitous. Ex-
amples include fluctuations of prices for financial assets in
economy with rare market crashes, electrical activity of hu-
man brain with rare epileptic seizures, seismic activity of the
earth with rare earthquakes, changing weather conditions
with rare disastrous storms, and also fluctuations of online
diagnostics of technical machinery and networks with rare
breakdowns or blackouts. Due to the complexity of the sys-
tems mentioned, a complete modeling is usually impossible,
either due to the huge number of degrees of freedom in-
volved, or due to a lack of precise knowledge about the
governing equations. This is why one applies the framework
of prediction via precursory structures for such cases. The
typical application for prediction with precursory structures
is a prediction of an event which occurs in the very near
future, i.e., on short time scales compared to the lifetime of
the system. A classical example for the search for precursory
structures is the prediction of earthquakes �1�. A more re-
cently studied example is the short term prediction of strong
turbulent wind gusts, which can destroy wind turbines �2,3�.

In a previous work �4�, we studied the quality of predic-
tions analytically via precursory structures for increments in
an AR�1� process and numerically in a long-range correlated
ARMA process. The long-range correlations did not alter the
general findings for Gaussian processes, namely, that larger
events are better predictable.

Furthermore we found other works which report the same
effect for earthquake prediction �5�, prediction of avalances
in models which display self organized criticality �6� and in
multiagent games �7�. In this contribution, we investigate the
influence of the probability distribution function �PDF� of
the noise term in detail by using not only Gaussian, but also

exponential and power-law distributed noise. This approach
is also motivated by the book of Egans �8� which explains
that receiver operating characteristic �ROC� curves obtained
in signal detection problems can be ordered families of func-
tions in dependence on a parameter. We are now interested in
learning how the behavior of these families of functions de-
pends on the event size and the distribution of the stochastic
process, if the ROC curve is used for evaluating the quality
of predictions.

After defining the prediction scheme in Sec. II A and the
method for measuring the quality of a prediction in Sec. II B,
we explain in Sec. II C how to consider the influence on the
event size. In Sec. II D we formulate a constraint, which has
to be fulfilled in order to find a better predictability of larger
�smaller� events. In the next section, we apply this constraint
to compare the quality of predictions of large increments
within Gaussian �Sec. III A�, exponential distributed �Sec.
III B�, and power-law distributed independent identically dis-
tributed �i.i.d.� random numbers �Sec. III C�. We study the
prediction of increments in free jet data in Sec. IV. Conclu-
sions appear in Sec. V.

II. DEFINITIONS AND SETUP

The considerations in this section are made for a time
series �9,10�, i.e., a set of measurements xn at discrete times
tn, where tn= t0+n� with a sampling interval � and n�N.
The recording should contain sufficiently many extreme
events so that we are able to extract statistical information
about them. We also assume that the event of interest can be
identified on the basis of the observations, e.g., by the value
of the observation function exceeding some threshold, by a
sudden increase, or by its variance exceeding some thresh-
old. We express the presence �absence� of an event by using
a binary variable Yn+1.
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Yn+1 = �1 an event occurred at time n + 1

0 no event occurred at time n + 1.
�1�

A. Choice of the precursor

When we consider prediction via precursory structures
�precursors, or predictors�, we are typically in a situation
where we assume that the dynamics of the system under
study has both, a deterministic and a stochastic part. The
deterministic part allows one to assume that there is a rela-
tion between the event and its precursory structure which we
can use for predictive purposes. However, if the dynamic of
the system was fully deterministic there would be no need to
predict via precursory structures, but we could exploit our
knowledge about the dynamical system as it is done, e.g., in
weather forecasting.

In this contribution we focus on the influence of the sto-
chastic part of the dynamics and assume therefore a very
simple deterministic correlation between event and precur-
sor. The presence of this stochastic part determines that we
cannot expect the precursor to precede every individual
event. That is why we define a precursor in this context as a
data structure which is typically preceding an event, allowing
deviations from the given structure, but also allowing events
without preceding structure.

For reasons of simplicity the following considerations are
made for precursors in real space, i.e., structures in the time
series. However, there is no reason not to apply the same
ideas for precursory structures, which live in phase space.

In order to predict an event Yn+1 occurring at the time
�n+1� we compare the last k observations, to which we will
refer as the precursory variable

x�n−k+1,n� = �xn−k+1,xn−k+2, . . . ,xn−1,xn� , �2�

with a specific precursory structure

xpre = �xn−k+1
pre ,xn−k+2

pre , . . . ,xn−1
pre ,xn

pre� . �3�

Once the precursory structure xpre is determined, we give an
alarm for an event Yn+1=1 when we find the precursory vari-
able x�n−k+1,n� inside the volume

Vpre��,xpre� = �
j=n−k+1

n �xj
pre −

�

2
,xj

pre +
�

2
� . �4�

There are different strategies to identify suitable precursory
structures. We choose the precursor via maximizing a condi-
tional probability which we refer to as the likelihood �11,25�.
The likelihood

L�Yn+1 = 1	x�n−k+1,n�� =
j„�Yn+1 = 1�,x�n−k+1,n�…

��x�n−k+1,n��
. �5�

provides the probability that an event Yn+1=1 follows the
precursor x�n−k+1,n�. It can be calculated numerically by using
the joint PDF j(�Yn+1=1� ,x�n−k+1,n�). Our prediction strategy
consists of determining those values of each component xi of
x�n−k+1,n� for which the likelihood is maximal.

This strategy to identify the optimal precursor represents a
rather fundamental choice. In more applied examples one

looks for precursors which minimize or maximize more so-
phisticated quantities, e.g., discriminant functions or loss ma-
trices. These quantities are usually functions of the posterior
PDF or the likelihood, but they take into account the addi-
tional demands of the specific problem, e.g., minimizing the
loss due to a false prediction. The strategy studied in this
contribution is thus fundamental in the sense that it enters
into many of the more sophisticated quantities which were
used for predictions and decision making.

B. Testing for predictive power

A common method to verify a hypothesis or to test the
quality of a prediction is the receiver operating characteristic
curve �ROC curve� �8,12,13�. The idea of the ROC curve
consists simply of comparing the rate of correctly predicted
events rc with the rate of false alarms rf by plotting rc vs rf.
The rate of correct predictions rc and the rate of false alarms
rf can be obtained by integrating the aposterior PDFs
��x�n−k+1,n� 	Yn+1=1� and ��x�n−k+1,n� 	Yn+1=0� on the precur-
sory volume.

rc��,xpre� =
 ��x�n−k+1,n�	Yn+1 = 1�dVpre��,xpre� , �6�

rf��,xpre� =
 ��x�n−k+1,n�	Yn+1 = 0�dVpre��,xpre� . �7�

Note that these rates are defined with respect to the total
number of events Yn+1=1 and nonevents Yn+1=0. Thus the
relative frequency of events has no direct influence on the
ROC curve, unlike on other measures of predictability, as,
e.g., the Brier score or the ignorance �14�.

Plotting rc vs rf for increasing values of � one obtains a
curve in the unit square of the rf-rc plane �see, e.g., Fig. 3�.
The curve approaches the origin for �→0 and the point �1,1�
in the limit �→�, where � accounts for the size of the pre-
cursory volume Vpre���. The shape of the curve characterizes
the significance of the prediction. A curve above the diagonal
reveals that the corresponding strategy of prediction is better
than a random prediction which is characterized by the diag-
onal. Furthermore we are interested in curves which con-
verge as fast as possible to 1, since this scenario tells us that
we reach the highest possible rate of correct prediction with-
out having a large rate of false alarms.

That is why we use the so-called likelihood ratio as a
summary index, to quantify the ROC curve. For our infer-
ence problems the likelihood ratio is identical to the slope m
of the ROC curve at the vicinity of the origin which implies
�→0. This region of the ROC plot is in particular interest-
ing, since it corresponds to a low rate of false alarms. The
term likelihood ratio results from signal detection theory. In
the context of signal detection theory, the term a posterior
PDF refers to the PDF, which we call likelihood in the con-
text of predictions and vice versa. This is due to the fact that
the aim of signal detection is to identify a signal which was
already observed in the past, whereas predictions are made
about future events. Thus the “likelihood ratio” is in our
notation a ratio of a posteriori PDFs.
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m =
�rc

�rf
�

��xpre	Yn+1 = 1�
��xpre	Yn+1 = 0�

+ O��� . �8�

However, we will use the common name likelihood ratio
throughout the text. For other problems the name likelihood
ratio is also used for the slope at every point of the ROC
curve. Since we apply the likelihood ratio as a summary
index for ROC curves, we specify that for our purposes the
term likelihood ratio refers only to the slope of the ROC plot
at the vicinity of the origin as in Eq. �8�.

Note that one can show that the precursor, which maxi-
mizes the likelihood as explained in Sec. II A, also maxi-
mizes the m and is in this sense the optimal precursor.

C. Addressing the dependence on the event size

We are now interested in learning how the predictability
depends on the event size � which is measured in units of the

standard deviation of the time series under study. Thus the
event variable Yn+1 becomes dependent on the event size,

Yn+1��� = �
1 an event of size � or larger

occurred at time n + 1

0 no event of size � or larger

occurred at time n + 1.

. �9�

Via Bayes’ theorem the likelihood ratio can be expressed
in terms of the likelihood L�Yn+1���=1 	xpre� and the total
probability to find events P(Yn+1���=1). Inserting the tech-
nical details of the calculation of the likelihood and the total
probability �see the Appendix � we can see that the likelihood
ratio depends sensitively on the joint PDF
j(x�n−k+1,n� ,Yn+1���=1) of pecursory variable and event.

m„Yn+1���,x�n−k+1,n�… =

�1 − 

−�

�

dx�n−k+1,n�j„x�n−k+1,n�,Yn+1��� = 1…�



−�

�

dx�n−k+1,n�j„x�n−k+1,n�,Yn+1��� = 1…

j„x�n−k+1,n�,Yn+1��� = 1…

��x�n−k+1,n��

�1 −
j„x�n−k+1,n�,Yn+1��� = 1…

��x�n−k+1,n��
� ,

with

j„x�n−k+1,n�,Yn+1��� = 1… = 

M

dxn+1j�x�n−k+1,n�,xn+1� ,

M = 
xn+1:Yn+1 = 1� ,

and

��x�n−k+1,n�� = j„x�n−k+1,n�,Yn+1��� = 1…

+ j„x�n−k+1,n�,Yn+1��� = 0… . �10�

Hence once the precursor is chosen, the dependence on the
event size � enters into the likelihood ratio, via the joint PDF
of event and precursor. Looking at the rather technical for-
mula in Eq. �10�, there are two aspects, which we find re-
markable:

The slope of the ROC plot is fully characterized by the
knowledge of the joint PDF of precursory variable and event.
This implies that in the framework of statistical predictions
all kinds of �long-range� correlations which might be present
in the time series influence the quality of the predictions only
through their influence on the joint PDF.

The definition of the event, e.g., as a threshold crossing or
an increment does change this dependence only insofar as it
enters into the choice of the precursor and it influences also
the set on which the integrals in Eq. �10� are carried out.
Both Yn+1��� and the set M have to be defined according to
the type of events one predicts. When predicting, e.g., incre-
ments xn+1−xn�� via the precursory variable xn, then M

= �a ,b� with a(Yn+1���)=xn+� for the lower border and
b(Yn+1���)=� for the upper border. In order to predict
threshold crossings at xn+1 via xn one uses a(Yn+1���)=�,
b(Yn+1���)=�.

Exploiting Eq. �10� we can hence determine the depen-
dence of the likelihood ratio and the ROC curve on the
events size �, via the dependence of the joint PDF of the
process under study.

D. Constraint for increasing quality of predictions with
increasing event size

In order to study the dependence of the likelihood ratio on
the event size we are going to introduce a constraint which
the likelihood and the total probability to find events have to
fulfill in order to find a better predictability of larger
�smaller� events.

In order to improve the readability of the paper, we will
first introduce the following notations for the aposterior
PDFs, the likelihood and the total probability to find events:

�c�x�n−k+1,n�,�� = �„x�n−k+1,n�	Yn+1��� = 1… , �11�

� f�x�n−k+1,n�,�� = �„x�n−k+1,n�	Yn+1��� = 0… , �12�

L��,x�n−k+1,n�� = L„Yn+1��� = 1	x�n−k+1,n�… , �13�

P��� = P„Yn+1��� = 1… . �14�

We can then ask for the change of the likelihood ratio with
changing event size �.
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�

��
m„Yn+1���,x�n−k+1,n�… � 0. �15�

The derivative of the likelihood ratio is positive �negative,
zero�, if the following sufficient condition c��� is fulfilled.

c��,x�n−k+1,n�� =
�

��
ln L��,x�n−k+1,n��

−
�1 − L��,x�n−k+1,n���

�1 − P����
�

��
ln P��� � 0.

�16�

Hence one can tell for an arbitrary process, if extreme events
are better predictable, by simply testing if the marginal PDF
of the event and the likelihood of event and precursor fulfill
Eq. �16�.

III. PREDICTIONS OF INCREMENTS IN I.I.D. RANDOM
NUMBERS

In this section we test the condition c�� ,x�n−k+1,n�� as
given in Eq. �16� for increments in Gaussian, power-law, and
exponentially distributed i.i.d. random numbers. We thus
concentrate on extreme events which consist of a sudden
increase �or decrease� of the observed variable within a few
time steps. Examples of this kind of extreme event are the
increases in wind speed in �2,3�, but also stock market
crashes �15,16� which consist of sudden decreases.

We define our extreme event by an increment xn+1−xn
exceeding a given threshold �,

xn+1 − xn � � , �17�

where xn and xn+1 denote the observed values at two con-
secutive time steps and the event size � is again measured in
units of the standard deviation.

Since the first part of the increment xn can be used as a
precursory variable, the definition of the event as an incre-
ment introduces a correlation between the event and the pre-
cursory variable xn. Hence the prediction of increments in
random numbers provides a simple, but not unrealistic ex-
ample which allows us to study the influence of the distribu-
tion of the underlying process on the event-size dependence
of the quality of prediction.

In the examples which we study in this section the joint
PDF of precursory variable and event is known and we can
hence evaluate c�� ,xn� analytically. A mathematical expres-
sion for a filter which selects the PDF of our extreme events
out of the PDFs of the underlying stochastic process can be
obtained through applying the Heaviside function ��xn+1

−xn−�� to the joint PDF. This method is described in more
detail in the Appendix.

Since in most cases the structure of the PDF is not known
analytically, we are also interested in evaluating c�� ,xn� nu-
merically. In this case the approximations of the total prob-
ability and the likelihood are obtained by “binning and
counting” and their numerical derivatives are evaluated via a
Savitzky-Golay filter �17,18�. The numerical evaluation is
done within 107 data points. In order to check the stability of

this procedure, we evaluate c�� ,xn� also on 20 bootstrap
samples which are generated from the original data set.
These bootstrap samples consist of 107 pairs of event and
precursory variable, which were drawn randomly from the
original data set. Thus their PDFs are slightly different in
their first and second moment and they contain different
numbers of events. Evaluating c�� ,xn� on the bootstrap
samples thus shows how sensitive our numerical evaluation
procedure is towards changes in the numbers of events. This
is especially important for large and therefore rare events.

In order to check the results obtained by the evaluation of
c�� ,xn�, we compute also the corresponding ROC curves
analytically and numerically. Note that for both, the numeri-
cal evaluation of the condition and the ROC plots, we used
only event sizes � for which we found at least 1000 events,
so that the observed effects are not due to a lack of statistics
of the large events.

A. Gaussian distributed random numbers

In the first example we assume the sequence of i.i.d. ran-
dom numbers which form our time series to be normal dis-
tributed. As we know from �4�, increments within Gaussian
random numbers are better predictable the more extreme
they are. In this section we will show that their PDFs fulfill
also the condition in Eq. �16�. Applying the filter mechanism
developed in the Appendix we obtain the following expres-
sions for the a posteriori PDFs:

�c�xn,�� =

exp�−
xn

2

2	2�
2�2
	P���

erfc� xn + 	�

	�2
� , �18�

and the likelihood

L��,xn� =
1

2
erfc� xn + 	�

	�2
� . �19�

We recall that the optimal precursor is given by the value of
xn which maximizes the likelihood. We refer to this special
value of the variable xn by xpre and find for the likelihood
according to Eq. �19� xpre=−�. Thus, instead of a finite
alarm volume � here is the upper limit of the interval
�−� ,��. The total probability to find increments of size � is
given by

P��� =
1

2
erfc��/2� . �20�

Hence the condition in Eq. �16� reads

c��,xn� = −� 2




exp�− z2�
erfc�z�

+
1

�


exp�−
�2

4
�

erfc��

2
�

�1 −
1

2
erfc�z��

�1 −
1

2
erfc��

2
�� ,

with z =
xn + 	�

�2	
. �21�
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Figure 1 illustrates this expression and Fig. 2 compares it to
the numerical results. For the ideal precursor xn=xpre=−�
the condition c�� ,xn� is—according to Eq. �21�—zero, since
in this case, the slope of the ROC curve tends to infinity �4�
and does not react to any variation in �. For any finite value
of the precursory variable xn�0 we have to distinguish three

regimes of z= �xn+	�� /�2	, namely, z→� or z→−� and
finally also the case z=0.

In the first case we study the behavior of c�� ,xn� for a
fixed value of the precursory variable −	��xn and �→�.
This implies that z→� and we can use the asymptotic ex-
pansion for large arguments of the complementary error
function

erfc�z� �
exp�− z2�

�
z
�1 + �

m=1

�

�− 1�m1 � 3 . . . �2m − 1�
�2z2�m �

��z → � , 	arg z	 �
3


4
� , �22�

which can be found in �19� to obtain

c��,xn� 
 −
xn

	
+

�

2
, − 	� � xn � 0. �23�

This expression is appropriate for xn�−	� since the
asymptotic expansion in Eq. �22� holds only if the argument
of the complementary error function is positive. In this case
c�� ,xn� is larger than zero, if xn is fixed and finite and
−	��xn�−	� /2.

In the second case, we assume ��1 to be fixed, xn
�−	�, and xn→−�. Hence we can use the expansion in Eq.
�22� only to obtain the asymptotic behavior of the depen-
dence on � and not for the dependence on z. An asymptotic
expression of c�� ,xn� hence reads

c��,xn� 

�

2�1 −
1

2
erfc��/2���

erf�z�
�pi

+
�

2 �
− O„exp�− z2�…, xn � − 	� . �24�

Since erf�z� tends to minus unity as z→−� the expression in
Eq. �24� is positive if ��2�
 and if we can assume the
squared exponential term to be sufficiently small. If the later
assumption is not fullfilled one might observe some regions
of intermediate values of −� �xn�−	�, for which c�� ,x�
is negative.

However, the ROC curves in Fig. 3 suggest that the influ-
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FIG. 1. �Color online� The condition c�� ,xn� for the Gaussian
distribution as given by Eq. �21�. The color shaded regions indicate
the intervals �−	� ,−� /2� for which we can, according to Eq. �23�,
expect c�� ,xn� to be positive. If xn�−	�, ��2�
 and terms of
the order of exp�−�xn+	��2� are sufficiently small, the condition is
also positive. If terms of the order of exp�−�xn+	��2� cannot be
neglected one also might find small regions in �−� ,−	�� for which
c�� ,xn��0. However, the influence of these regions is neglectable,
since our alarm interval is defined as �−� ,�� which implies an
averaging over several possible values of the precursory variable.
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FIG. 2. �Color online� Comparison of the numerically evaluated
condition c�� ,xn� for the Gaussian distribution and the expression
given by Eq. �21�. The black curves denote the evaluation of the
analytic result in Eq. �21�, the curves plotted with lines and symbols
represent the numerical results obtained from the original data set,
and the dashed lines represent the results obtained from the corre-
sponding bootstrap samples. The gray �green in the colored plot�
regions indicate the regime −	��xn�−	� /2 for which c�� ,xn� is
positive in the limit �→�. The numerical evaluation of c�� ,xn�
was done by sampling the likelihood and the total probability of
events from 107 random numbers.
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FIG. 3. �Color online� ROC plot for Gaussian-distributed i.i.d.
random variables. The symbols represent ROC curves which where
made via predicting increments in 107 normal i.i.d. random num-
bers. The predictions were made according to the prediction strat-
egy described in Sec. II A. The lines represent the results of evalu-
ating the integrals in Eqs. �6� and �7� for the Gaussian case. Note
that the quality of the prediction increases with increasing event
size.
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ence of these regions is sufficiently small, if the alarm vol-
ume is chosen to be �−� ,��. We can understand this effect,
if we keep in mind that we use the interval �−� ,�� as an
alarm volumen. Hence we can expect that the influence of
the regions, where c�� ,xn� is negative, is suppressed since
we average over many different values of xn and the condi-
tion is positive as xn→−�. �Positive is meant here in the
sense that c�� ,xn� approaches the value zero for xn=−� from
small positive numbers.�

In the third case, for xn=−	� and hence z=0 we find that
c�� ,xn� is positive if ��2� 2



�1− 1

2 erfc�� /2��. In total we
can expect larger increments in Gaussian random numbers to
be easier to predict the larger they are. The ROC curves in
Fig. 3 support these results.

B. Symmetrized exponential distributed random variables

The PDF of the symmetrized exponential reads

��x� =
�

2
exp�− �	xn	� =�

�

2
exp�− �xn� , xn � 0

�/2, xn = 0

�

2
exp��xn� , xn � 0,

�25�

with �=0, 	=�2 /�.
Applying the filtering mechanism according to the Appen-

dix we find the joint PDFs of precursory variable and event

j„xn,�Yn+1��� = 1�… =�
�

4
exp�− �2� − 2�xn� , xn � 0

�

4
exp�− �2�� , − � � xn � 0

�

2
�exp��xn� −

1

4
exp��2� + �2xn�� , xn � − � � 0,

� �26�

the aposterior probabilities,

�c�xn,�,�� =�
�

�2 + �2��
exp�− 2�xn� , xn � 0

�

�2 + �2��
, − � � xn � 0

�

�2 + �2��
�2 exp��2� + �xn� − exp�2�2� + 2�xn�� , xn � − � � 0,

� �27�

� f�xn,�,�� =�
�

2
exp�− �xn�

�1 −
1

2
exp�− �xn − �2���

�1 −
1

2
�1 +

�

2
� exp�− �2��� , xn � 0

�

2
exp��xn�

�1 −
1

2
exp�− �xn − �2���

�1 −
1

2
�1 +

�

2
�exp�− �2��� , − � � xn � 0

�

4

exp�2�xn + �2��

�1 −
1

2
�1 +

�

2
�exp�− �2��� ,

xn � − � � 0,

� �28�

the likelihood
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L��,xn,�� =�
1

2
exp�− �2� − �xn� , xn � 0

1

2
exp�− �2� − �xn� , − � � xn � 0

1 −
1

2
exp��2� + �xn� , xn � − � � 0,

�29�

and the total probability to find events of size �,

P��� =�
1

8
exp�− �2�� , xn � 0

�2

4
� exp�− �2�� , − � � xn � 0

3

8
exp�− �2�� , xn � − � � 0.

�30�

If we are not interested in the range of the precursory variable, the total probability to find events is given by

P��� =
1

2
exp�− �2���1 +

�

�2
� . �31�

Hence the condition c�� ,xn ,�� reads

c��,xn,�� =�
− �2�1 −

�1 −
1

2
exp�− �2� − �xn��

�1 −
1

8
exp�− �2��� � , xn � 0

− �2 +
�1 − �2��

�

�1 −
1

2
exp�− �2� − �xn��

�1 −
�2

4
� exp�− �2��� , − � � xn � 0

−
1
�2

exp��xn + �2��� 1

1 −
1

2
exp��2� + �xn�

+
1

1 −
3

8
exp�− �2��� ,

xn � − � .

� �32�

Figure 4 compares the results of the numerical evaluation
of the condition and the analytical expression given by Eq.
�32�. Since most precursors of large increments can be found
among negative values, the numerical evaluation of c�� ,xn��
becomes worse for positive values of xn, since in this limit
the likelihood is not very well sampled from the data. This
leads also to the wide spread of the bootstrap samples in this
region.

Figure 4 shows that in the vicinity of the smallest value of
the data set, the condition c�� ,xn ,�� is zero. As we approach
larger values of �, c�� ,xn ,�� approaches zero in the whole
range of data values. That is why we would expect to see no
influence of the event size on the quality of predictions in the
exponential case.

The ROC curves in Fig. 5 support these results. The nu-
merical ROC curves were made via predicting increments in
107 normal i.i.d. random numbers according to the prediction

strategy described in Sec. II A. The precursor for the ROC
curves is chosen as the maximum of the likelihood according
to Eq. �29�, i.e., xpre=−�, so that the alarm interval is �� ,��.
In summary there is no significant dependence on the event
size for the prediction of increments in a sequence of sym-
metrical exponential distributed random numbers.

C. Pareto distributed random variables

We investigate the Pareto distribution as an example for
power-law distributions. The PDF of the Pareto distribution
is defined as �20�

��x� = kxmin
k x−�k+1� �33�

for x� �xmin , � � with the exponent k�3, the lower endpoint

xmin�0, and variance 	=
xmin

k−1
� k

k−2 . Filtering for increments
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of size � we find the following conditional PDFs of the
increments:

�c�xn,�,xmin,k� =
kxmin

2k

xn
k+1�xn +

xmin

k + 1
� k

k − 2
��k

P��,k�
,

�34�

� f�xn,�,xmin,k� =
kxmin

k

xn
k+1

�1 − � xmin

xn +
xmin

k + 1
� k

k − 2
��

k

�
1 − P��,k�

,

�35�

L��,xn,xmin,k� = � xmin

xn +
xmin

k + 1
� k

k − 2
��

k

. �36�

Within the range �xmin , � � the likelihood has no well defined
maximum. However, since the likelihood is a monotonously
decreasing function, we use the lower endpoint xmin as a
precursor. The total probability to find events of size � is
given by

P��,k� =
1

2
2F1�k,2k,2k + 1,−

�

�k + 1�
� k

k − 2
� , �37�

where 2F1�a ,b ,c ,x� denotes the hypergeometric function
p2Fq�a ,b ,c ,x� with p=2, q=1.

Using

�P��,k�
��

=
k

�� 1

�1 +
�

k + 1
� k

k − 2
�k − 2P��,k�� , �38�

and inserting the expressions �36� and �34� for the compo-
nents of c�� ,xn ,xmin ,k� we can obtain an explicit analytic
expression for the condition. In Fig. 6 we evaluate this ex-
pression using Mathematica and compare it with the results
of an empirical evaluation on the data set of 107 i.i.d. random
numbers.

Figure 6 displays that the value of c�� ,xn ,xmin ,k� depends
sensitively on the choice of the precursor. For the ideal pre-
cursor xpre=xmin all values of c�� ,k ,xmin� are negative.
Hence one should in this case expect smaller events to be
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FIG. 4. �Color online� The numerically and analytically evalu-
ated condition for the symmetrized exponential. The black line is
the result of the analytical evaluation according to Eq. �32�, the
curves plotted with lines and symbols represent the numerical re-
sults obtained from the original data set, and the dashed lines rep-
resent the results obtained from the corresponding bootstrap
samples. Note that for small values of xn the condition c�� ,xn ,�� is
for all values of � close to zero.
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FIG. 5. �Color online� The ROC curves for symmetrically ex-
ponentially distributed i.i.d. random numbers show no significant
dependence on the event size. The ROC curves where made via
predicting increments in 107 normal i.i.d. random numbers and the
predictions were made according to the prediction strategy de-
scribed in Sec. II A. The black line indicates the analytically evalu-
ated ROC curve for �=0.
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FIG. 6. �Color online� The condition c�� ,xn ,xmin ,k� for the
power-law distribution with lower endpoint xmin=0.01 are plotted
for constant values of the precursory variable xn. The symbols rep-
resent the results of the numerical evaluation of c�� ,xn ,xmin ,k�, the
gray �colored� lines denote the analytic results, and the black lines
denote the result for the corresponding bootstrap samples and the
optimal precursor. For the “ideal” precursor xn=xmin=0.01 all val-
ues of c�� ,k ,0.01� are negative. Hence one should expect smaller
events to be better predictable. However, this effect is sensitive of
the choice of the precursor.
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better predictable. The corresponding ROC curves in Figs. 7
and 8 verify this statement of c�� ,xn ,xmin ,k�.

In summary we find that larger events in Pareto distrib-
uted i.i.d. random numbers are harder to predict the larger
they are. This is an admittedly unfortunate result, since ex-
tremely large events occur much more frequently in power-
law distributed processes than in Gaussian distributed pro-
cesses. Hence, their prediction would be highly desirable.

IV. INCREMENTS IN FREE JET DATA

In this section, we apply the method of statistical infer-
ence to predict acceleration increments in free jet data.
Therefore we use a data set of 1.25�107 samples of the
local velocity measured in the turbulent region of a round
free jet �21�. The data were sampled by a hot-wire measure-
ment in the central region of an air into air free jet. One can
then calculate the PDF of velocity increments an,k=vn+k−vn,
where vn and vn+k are the velocities measured at time step n
and n+k. The Taylor hypothesis allows one to relate the time
resolution to a spatial resolution �21�. One observes that for
large values of k the PDF of increments is essentially indis-
tinguishable from a Gaussian, whereas for small k, the PDF
develops approximately exponential wings �22–24�. Figure 9
illustrates this effect using the data set under study. Thus the
incremental data sets an,k provide us with the opportunity to
test the results for statistical predictions within Gaussian and
exponential distributed i.i.d. random numbers on a data set,
which exhibits correlated structures.

We are now interested in predicting increments of the
acceleration an+j,k−an,k�� in the incremental data sets an,k
=vn+k−vn. In the following we concentrate on the incremen-
tal data set an,10, which has an asymptotically exponential
PDF and the data set an,144, which has an asymptotically
Gaussian PDF. Furthermore we focus on increments between
relatively large time steps, i.e., j=285, so that the short-range
persistence of the process does not prevent large events from
occurring. As in the previous sections we are hence exploit-
ing the statistical properties of the time series to make pre-
dictions, rather than the dynamical properties.

We can now use the evaluation algorithm which was
tested on the previous examples to evaluate the condition for
these data sets. The results are shown in Fig. 10. We find that
at least for larger values of � the main features of c�xn ,�� for
the exponential and the Gaussian case as described in Secs.
III A and III B are also present in the free jet data. For larger
values of �, c�an,k ,�� is either larger than zero in the Gauss-
ian case �k=144� or equal to zero in the exponential case
�k=10� in the region of interesting precursory variables, i.e.,
small values of an,k.

However, the presence of the exponential and the Gauss-
ian distributions is more prominent in the corresponding
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FIG. 7. �Color online� ROC plot for the power-law distribution
with k=3 and xmin=0.01. The symbols show the numerical results
and the lines indicate the analytically calculated ROC curves. The
ROC curves were made via predicting increments in 107 Pareto
distributed i.i.d. random numbers. The predictions were made ac-
cording to the prediction strategy described in Sec. II A. Note that
we tested only event sizes �, for which we found at least 1000
events, so that the effects we observe are not due to a lack of
statistics of the large events. The ROC curves display that in Pareto
distributed i.i.d. random numbers with the lower endpoint xmin

=0.01 smaller events are better predictable and that large events are
very hard to predict.
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ROC curves. For the free jet data set, the predictions were
made with an algorithm similar to the one described in Sec.
II A. Instead of a specific precursory structure, which corre-
sponds to the maximum of the likelihood, we use here a
threshold of the likelihood as a precursor. In this setting we
give an alarm for an extreme event, whenever the likelihood
that an extreme event follows an observation is larger than a
given threshold value.

In the exponential case �k=10� shown in Fig. 11�a� the
ROC curves for different event size � almost coincide, al-
though the range of � is larger ��� �0,6.71�� than in the
Gaussian case shown in Fig. 11�b�. For k=144 the ROC
curves are further apart, which corresponds to the results of
Secs. III A and III B.

This example of the free jet data set shows that the spe-
cific dependence of the ROC curve on the event size can also
in the case of correlated data sets be characterized by the
PDF of the underlying process.

V. CONCLUSIONS

We study the size dependence of the quality of predictions
for increments in a time series which consists of sequences
of i.i.d. random numbers and in acceleration increments mea-

sured in a free jet flow. Using the first part of the increment
xn as a precursory variable we predict large increments xn+1
−xn via statistical considerations. In order to measure the
quality of the predictions we use ROC curves. Furthermore
we introduce a quantitative criterion which can determine
whether larger or smaller events are better predictable. This
criterion is tested for a time series of Gaussian, exponential,
and Pareto i.i.d. random variables and for the increments of
the acceleration in the free jet flow. The results obtained
from the criterion comply nicely with the corresponding
ROC curves. Note that for both, the numerical evaluation of
the condition and the ROC plots, we used only event sizes �
for which we found at least 1000 events, so that the observed
effects are not due to a lack of statistics of the large events.

In the sequence of Gaussian i.i.d. random numbers, we
find that large increments are better predictable the larger
they are. In the Pareto distributed time series we observe that
in slowly decaying power laws larger events are harder to
predict the larger they are. We find no significant dependence
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the Gaussian case shown in �b�. For k=144 the ROC curves are
further apart, which corresponds to the results for Gaussian ROC
curves �see Sec. III A�.
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on the event size for the sequence of exponentially i.i.d. ran-
dom numbers.

While the condition can be easily evaluated analytically, it
is not that easy to compute numerically from observed data,
since the calculation implies evaluating the derivatives of
numerically obtained distributions. Using Savitzky-Golay
filters improved the results, but especially in the limit of
larger events, where the distributions are difficult to sample,
one cannot trust the results of the numerically evaluated cri-
terion. However, it is still possible to apply the criterion by
fitting a PDF to the distribution of the underlying process
and then evaluate the criterion analytically.

Although the size dependence of the quality of predictions
was observed in different contexts and for different measures
of predictability, in this contribution only ROC curves were
used. In order to exclude the possibility that the effect is
specific to the ROC curve, future works should also include
other measures of predictability.

Reviewing the results for the Gaussian case and the
slowly decaying power law from a philosophic point of view
one can conclude that nature allows us to predict large events
from the most frequently occurring distribution easily. How-
ever, in Gaussian distributions very large events are rare and
therefore less likely to cause damage. Whereas in the less
frequently occurring distributions with heavy power-law
tails, large events are especially hard to predict. Therefore
one can assume that rare large impact events of processes
with power-law distributions will remain unpredictable, al-
though their prediction would be highly desirable.
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APPENDIX: OBTAINING THE ANALYTIC EXPRESSION
FOR THE LIKELIHOOD, THE JOINT AND THE
APOSTERIOR PDFS FOR INCREMENTS IN

STOCHASTICAL PROCESSES

An analytic expression for a filter which selects the PDF
of our extreme increments xn+1−xn�d out of the PDFs of

the underlying stochastic process can be obtained through
the Heaviside function ��xn+1−xn−d�. �Note that d is not
scaled by the standard deviation, i.e., d=	�.� This filter is
then applied to the joint PDF
j�x0 ,x1 , . . . ,xn−k+1 ,xn−k+2 , . . . ,xn� of a stochastic process or to
be more precise to the likelihood
L�xn+1 	x0 ,x1 , . . . ,xn−k+1 ,xn−k+2 , . . . ,xn� that the n+1 step fol-
lows the previously obtained values. If we condition only on
the last k values, we neglect the dependence on the past. The
likelihood that an event Y�d�=1 follows in the n+1th step
can then be obtained by multiplication with ��xn+1−xn−d�.

L„Yn+1�d� = 1	x�n−k+1,n�… = ��xn+k − xn − d�L�xn+1	x�k,n�� ,

�A1�

where x�n−k+1,n�= �xn−k+1 ,xn−k+2 , . . . ,xn� as defined in Sec.
II A. If the resulting expression is nonzero, the condition of
the extreme event �17� is fulfilled and for xn+1 and xn the
following relation holds:

xn+1 = xn + d + � �� � R,� � 0� . �A2�

Hence it is possible to express the likelihood in terms of xn,
which is a part of the precursory structure. We can use the
integral representation of the Heaviside function with appro-
priate substitutions to obtain

L�Yn+1�d� = 1	x�n−k+1,n�� = 

0

�

L„xn + d + �	x�n−k+1,n�…d� .

�A3�

Hence the joint PDF, the aposterior PDF, and the total
probability to find increments are given by

j„x�n−k+1,n�,Yn+1�d� = 1… = j„x�n−k+1,n�… · L„Yn+1�d�

= 1	x�n−k+1,n�… , �A4�

�„x�n−k+1,n�	Yn+1�d� = 1… =
j„x�n−k+1,n�,Yn+1�d� = 1…

P„Y�d� = 1…
,

�A5�

P„Y�d� = 1… = 

−�

�

dxn−k+1

−�

�

dxn−k+2 . . . 

−�

�

dxnj„x�0,n−k�x�n−k+1,n�,Yn+1�d�… = 1. �A6�

Whether we can access a given stochastical process analyti-
cally or not depends on the question of whether the integrals
in Eq. �A6� can be solved or not.

If we are interested in the prediction of threshold cross-

ings instead of increments, we can interpret � as the size of
the threshold and set xn=0 in order to obtain the correspond-
ing expressions for the likelihood, the joint PDF, the aposte-
rior PDF, and the total probability.
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