
Exact time-average distribution for a stationary non-Markovian massive Brownian particle
coupled to two heat baths

D. O. Soares-Pinto*
CICECO, Universidade de Aveiro, 3810-193, Aveiro, Portugal

and Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, CEP 22290-180, Rio de Janeiro, Brazil

W. A. M. Morgado†

Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22452-970 Rio de Janeiro, Brazil
�Received 24 July 2007; revised manuscript received 13 November 2007; published 2 January 2008�

Using a time-averaging technique we obtain exactly the probability distribution for position and velocity of
a Brownian particle under the influence of two heat baths at different temperatures. These baths are expressed
by a white noise term, representing the fast dynamics, and a colored noise term, representing the slow dynam-
ics. Our exact solution scheme accounts for inertial effects that are not present in approaches that assume the
Brownian particle in the overdamped limit. We are also able to obtain the contributions associated with the fast
noise that are usually neglected by other approaches.
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I. INTRODUCTION

The role of time scales is crucial for understanding the
validity of equilibrium techniques to any physical process
since fast degrees of freedom �time scale � f� generally reach
their stationary distribution well within the experiment’s du-
ration but the same cannot be assumed about slow ones �time
scale �s�. For instance, glasses are a very important class of
systems presenting slow dynamics �1�.

The probability distribution for the slow degrees of free-
dom depends on the system’s preparation and also on the
elapsed time interval, i.e., for how long the system has aged
�1�. For the time interval � f � t��s, the system behaves as
driven by an effective external slow field associated with the
slow variables. However, there is no physical reason for the
slow and fast fluctuations distribution to match, so, in gen-
eral, Tslow�Tfast. In this case, the reduced form for the fast
variable’s distribution is an instantaneous equilibrium one
�2�. For longer times t��s, the distributions for all variables
�fast and slow� reach a stationary state. For closed systems
governed by a microscopic Hamiltonian, the stationary state
will be a true equilibrium one. For open systems in contact
with a single thermal reservoir at temperature T, the final
state will also be the equilibrium distribution. However, by
subjecting a system to simultaneous contacts with two �or
more� reservoirs at distinct temperatures, say T1 and T2, it
will reach a stationary state distinct from the Boltzmann-
Gibbs �BG� equilibrium �3�. In consequence, the stationary
state will depend on the properties of system-reservoir inter-
actions and the reservoirs temperatures. Simple models pre-
senting these characteristics, such as Brownian particles
�BPs�, have been used to explore the physics of slow dynam-
ics and glasses �4–13�.

The complete description of BPs is given by its micro-
scopic interactions with a heat bath of lighter particles as

well as the interactions with the external environment. Try-
ing to evaluate the macroscopic behavior starting up from a
microscopic model presents an impossible task. However, for
many physical systems we can often reduce the number of
important variables down to a manageable set, thanks to well
separated time scales �14–16� allowing us to eliminate the
fast variables of the problem. The effect of the eliminated
variables is taken into account by means of a random forcing
term on the equations of motion for the remaining variables
�2,17� and by suitable friction coefficients. The random term
�noise function� represents the effect of the collisions of the
BPs with the heat baths’s particles. In the case these thermal
forces vary on a very short time-scale, their effect can be
represented by uncorrelated collisions �white noise� and the
BP motion can be analyzed in a simple way because its
stochastic dynamics can be treated as a Markovian process.
Finally, its long term behavior is well described by a BG
equilibrium �18�. However, for many realistic Brownian pro-
cesses in dense fluids the short time-scale approximation for
the random forces may not be accurate, since the time inter-
vals of the microscopic collisions might overlap. Instead, we
need to consider that those forces act upon the BP during a
well defined time scale, or colored noise. Also, the presence
of excited large-scale hydrodynamic modes will affect the
BP by long time scale feed-back loops �19,20� that can be
accounted for by a dissipative memory function term in the
Langevin-like equation describing the Brownian motion
�18�. Our present goal is to obtain the long-time stationary
state for a BP system, subjected to contacts with two differ-
ent heat baths at distinct temperatures, that is simple enough
to be treated exactly but sophisticated enough to present the
nontrivial stationary properties discussed above �21,22�.

In our model, it is possible to keep the BPs from reaching
the BG equilibrium by simultaneously subjecting it to the
influence of two thermal baths at different temperatures T1
and T2, one acts as heat source while the other acts as a heat
sink. As for the BPs simultaneously subjected to T1 and T2,
the stationary state will depend on the details of the interac-
tion between the baths and the BPs and the effective tem-
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perature will be an intermediary one between T1 and T2, as
will be shown. Even if temperature gradients are not present,
the stationary distribution for velocities and positions will
differ from the BG measure, reducing to it only when the
temperatures are the same, T1=T2=T. This simple model
has been proposed to describe the behavior of glasses
�4–13,23,24� where one assumes different time scales for
each thermal bath, via their noise properties: the short time
scale white noise reproduces thermal relaxation whereas the
long time scale noise reproduces very slow, correlated, struc-
tural rearrangement of the glass. Additionally, in our ap-
proach we can include the effects related to the finite mass of
the particle in stationary state, as well as other effects asso-
ciated with the slow noise �3� which are often neglected by
other methods based on the overdamped limit calculations
�which corresponds to the limit m→0�. For instance, the BP
adjusts itself to the slow noise function as in Refs. �3,23�,
especially when its mass can be neglected �overdamped
case�, and the position distribution becomes very similar to a
true equilibrium form, given that the slow noise acts as an
external effective potential �3�. However, this simplification
eliminates the contribution of the fast noise for the stationary
distribution �3�. In contrast, our time-averaging scheme will
integrate that small effect for a very long time and exhibit the
missing contribution.

This paper is organized as follows. In Sec. II we describe
the model. In Sec. III we calculate the time-averaging inte-
grals obtaining the displacement and velocity nonvanishing
terms. In Secs. IV and V, we obtain the stationary �or equi-
librium� distribution and discuss our main results.

II. EXACTLY SOLVABLE MODEL

A. Langevin-like equation

Let us consider a massive Brownian particle �BP� moving
under the action of a confining potential V�x�, which is in
contact with two heat baths of distinct temperatures and
time-scales, expressed by the noise functions ��t� and ��t�.
There are some interesting physical systems that present this
kind of multiple time scale phenomena. For instance, in
glasses the short time scale �fast� modes are associated with
thermal vibrations and the long time scale �slow� ones with
structural reorganization of the atomic structure �23�.

The effect of the fast modes on the BP are represented by
the white noise term ��t�, associated with the heat bath at
temperature T1 and the instantaneous friction coefficient �1.
On the other hand, the slow modes contribution are repre-
sented by a colored noise term ��t�, associated with the heat
bath at temperature T2 �in general T2�T1�. These modes
give rise to long-time feed-back loops that are expressed by
the integration of a frictional memory function ��t− t�� over
time.

This is modeled by two coupled stochastic differential
equations

ẋ = v , �1�

mv̇ = −
�V

�x
− �

0

t

dt���t − t��v�t�� − �1v�t� + ��t� + ��t� ,

�2�

where the properties of the terms above are discussed in the
following. We assume V�x�= 1

2kx2 for simplicity.

B. Noise properties

The stochastic process described by Eq. �2� is non-
Markovian due to the noise � being time correlated with a
well defined time scale � and exponential time-correlation
function, or a colored noise �see, for example, Ref. �25��. It
represents the slow dynamics and only at time-scales much
larger than � will � manifest Markovian behavior. The noise
� is a white one and represents the fast dynamics. Both
noises, fast and slow, are Gaussian and can be defined in
terms of their two lowest cumulants. Let us start with the
slow noise properties

���t�� = 0, �3�

���t���t��� =
D2

�
exp�−

	t − t�	
�


 =
�2T2

�
exp�−

	t − t�	
�


 ,

�4�

giving the memory function �26�

��t − t�� =
���t���t���

T2
=

�2

�
exp�−

	t − t�	
�


 , �5�

where � is the characteristic time-scale of the slow noise, T2
its temperature, and �2 a dissipative strength associated with
�. The units are chosen so that Boltzmann’s constant is equal
to one �kB=1�.

The first two cumulants for the fast noise are given below:

���t�� = 0, �6�

���t���t��� = T1�1	�t − t�� , �7�

where T1 is the temperature and �1 is the dissipative coeffi-
cient for the fast noise.

C. Equilibrium distribution

Our goal is to find out the exact stationary solution for Eq.
�2� through the time averaging of


�x,v,t� = 	�x − x�x0,v0,t��	�v − v�x0,v0,t��

as t→�. The functions x�x0 ,v0 , t� and v�x0 ,v0 , t� are the
solutions for a given set of BP’s initial conditions �x0 ,v0� and
for a given realization of the stochastic processes ��t� and
��t� �18�. We need to take the average over these last two
stochastic processes in order to obtain the stationary solution.

Thus, the stationary distribution for the Brownian degrees
of freedom reads �26�
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PSS�x,v� = lim
T→�

1

T
�

0

T

dt�
�x,v,t���,�

= lim
z→0+

z�
0

�

dte−zt�
�x,v,t���,�. �8�

For simplicity, we will assume that the initial conditions are
x0=v0=0, since the terms depending on the initial conditions
tend to zero as t→� �26�.

D. Laplace transformations

The centerpiece of our method is to use Laplace trans-
forms in order to make our problem manageable and the
mathematical reason for doing so is because Eq. �8� itself is
the Laplace transformation of the averaged density. Thus, our
goal is to describe the stationary state probability distribution
PSS�x ,v� in terms of the Laplace transform of the noise func-

tions �̃�z� and �̃�z� �26�.

In fact, we can express PSS�x ,v� as a sum of many terms

involving �̃�z� and �̃�z�. Most of these terms will not con-
tribute to the distribution, but we can calculate analytically
the remaining ones, finding the exact expression for
PSS�x ,v�. In order to do that we need to express the Laplace
transforms, of the position and velocity of the BP, as func-

tions of �̃�z� and �̃�z�. In the following we proceed to imple-
ment the strategy just described.

We start by taking the Laplace transformations of Eqs. �1�
and �2� �with Re�z��0�:

�mz +
�2

�z + 1
+ �1 +

k

z
�ṽ�z� = �̃�z� + �̃�z� �9�

and

zx̃�z� = ṽ�z� . �10�

The Laplace transforms for the noise correlations are given
by �33�

��̃�iqi + 
��̃�iqj + 
�� = 
 2�2T2

�i�qi + qj� + 2
��1 − ��iqi + 
���1 − ��iqj + 
���
− �2T2�
 3 + ��i�qi + qj� + 2
� − �2�iqi + 
��iqj + 
�

�1 − ��iqi + 
���1 + ��iqi + 
���1 − ��iqj + 
���1 + ��iqj + 
��� , �11�

��̃�iqi + 
��̃�iqj + 
�� =
2�1T1

i�qi + qj� + 2

, �12�

��̃�iqi + 
��̃�iqi + 
�� = 0. �13�

It can be shown that the second member of the right-hand
side of Eq. �11� does not contribute to the stationary distri-
bution PSS�x ,v� when z→0 in Eq. �8�. The above Eqs.
�11�–�13� will be crucial for calculating PSS�x ,v� via Eq. �8�.

We observe that when �2→0 we recover previous results
�26� since the contribution of the slow noise disappears. Fur-
thermore, we notice that by taking the limit �→0 the colored
noise � becomes a white one, which is reflected in the fact
that its contribution in Eqs. �2� and �9� becomes similar to
the one by �.

Following a strategy similar to the used in Ref. �26�, we
express the Laplace transformation of position and velocity
as functions of the Laplace transformation of the noise func-
tions

ṽ�z� = ��z���̃�z� + �̃�z�� , �14�

x̃�z� = ��z���̃�z� + �̃�z�� , �15�

with

��z� = z��z� =
z��z + 1�

m��z3 +
�

m�
z2 +

�

m�
z +

k

m�

 , �16�

where � and � are given by

� � m + �1� �17�

and

� � �1 + �2 + k� . �18�

For simplicity, we assumed the initial conditions x�t=0�
=0 and v�t=0�=0, since for T→� the terms carrying the
memory of the initial conditions will decay to zero �26�. The
denominator of ��z� and ��z� is of the third order on z, thus,
there are three distinct roots for

z3 +
�

m�
z2 +

�

m�
z +

k

m�
= 0, �19�

namely, z1, z2, and z3:

z1 = −
��� + � − �2�

3m��
, �20�
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z2 = z3
* = −

�2�� − � + �2�
6m��

+ i
�3�� + �2�

6m��
, �21�

where

� � − �2 + 3�m� �22�

and

� �
1

21/3
�3 9��m� − 27km�2 − 2�3 + 3m��3�4�3m� − �2�2 − 18��m�k + 27k2m�2 + 4k�3��1/2. �23�

We define the quantities A, B, C, D, F, and G as

z2 � A + iB, z1 − z2 � C + iD, z1 + z2 � F + iG .

�24�

The terms A, B, C, D, F, and G are important because we
perform residue integrations over their poles �26�. It is im-
portant to compute the expressions for the leading terms in
the expressions �22�–�24� when m�→0, i.e., in the over-
damped limit. Since ��0, in linear order on m� we have

� = �− ���1 −
3�m�

2�2 −
m��3

2�2
�− �2 + 4k�
 . �25�

The function � is already linear in m�. In the leading order in
m�, we obtain

A � −
�

2�
, B �

�− �2 + 4�k

2�
, C � −

�

m�
,

D � −
�− �2 + 4�k

2�
, F � −

�

m�
, G �

�− �2 + 4�k

2�
.

�26�

E. Calculating the stationary distribution

In Appendix A we show the derivation for the following
equation �originally obtained in Ref. �26�� for the stationary
state distribution �8�

PSS�x,v� = lim
z,
→0+

�
l,m=0

� �
−�

+� dQ

2�

dP

2�
eiQx+iPv �− iQ�l

l!

�− iP�m

m!
�

−�

+�

�
f=1

l
dqf

2�
�
h=1

m
dph

2�

�
z

z − � �
f=1

l

iqf + �
h=1

m

iph + �l + m�
���
f=1

l

x̃�iqf + 
��
h=1

m

ṽ�iph + 
�� . �27�

In order to compute PSS we need to replace Eqs.
�11�–�15�, into Eq. �27�. The integrations paths for the vari-
ables �qf , ph� can be chosen to be identical to the one shown
in Fig. 1: the integrations in Eq. �27� will correspond to a
series of residue integrations over �only some� of the mul-
tiple poles of its integrand. These poles correspond to the
ones associated with the noise functions �11�–�15� and the
ones given by Eq. �16� and the function I�z�

I�z� =
z

z − � �
f=1

l

iqf + �
h=1

m

iph + �l + m�
� . �28�

In special, the function I�z� is crucial for our computa-
tions but its role only becomes clear near the end of the

calculations. As a matter of fact, the pole of I�z� is located
outside of the integration path for all �qf , ph�, as in Fig. 1.
The really important poles are associated with the roots of
the denominators of ��z� and ��z�, z1, z2, and z3 above �the
z poles�, and the ones from the denominators of the Laplace
transforms for the noise variances �the noise poles�, Eqs. �11�
and �12�, that are locate on the inside of the path of Fig. 1.
After replacing the rather complicated forms for the noise
Laplace transforms into Eq. �27�, the computing of PSS�x ,v�
becomes a task of doing the residue integrations around the
relevant poles and collecting the nonvanishing terms.

The effect on I�z� due to the residue integration of Eq.
�27� over its relevant poles is rather interesting. The integra-
tions over the noisepoles for �qf , ph� that are present in I�z�
imply that the value the denominator of I�z� will take has a
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nonzero real part, even if only one of such an integration has
been done. In that case, when taking the limit z→0, we
obtain limz→0I�z�=0. However, whenever an integration over
any one of the �qf , ph� variables at a noise pole is done, it has
the effect of reducing a sum of the form i�q+ p�+2
, i�q
+q��+2
 or i�p+ p��+2
 to zero in the denominator of I�z�.
It means that the other member of the pair may be integrated
around any of its poles without contributing to the denomi-
nator of I�z�, making that integral a possible nonzero contri-
bution to PSS�x ,v�, when the limit z→0 is taken. Thus, we

notice that only the residue integrations that eliminate the
�qf , ph� variables from the denominator of I�z�, two of them
at a time, will reduce I�z� to

limz→0 I�z� = limz→0
z

z
= 1.

Only in this case, I�z�=1, the corresponding term will con-
tribute to the stationary state distribution �26�.

It is straightforward to show that cross terms that couple x̃
and ṽ ��� type� do not contribute, while other terms cou-
pling x̃ and x̃ ��� type� or ṽ and ṽ ��� type� will give
nonzero contributions. As a consequence, the stationary
probabilities for positions and velocities are independent
PSS�x ,v�= PSS�x�PSS�v�. In the following, we evaluate some
typical integrals and deduce the stationary distribution.

III. TIME-AVERAGING

A. Inertial case

In this section, we evaluate the terms that generate the
stationary state distribution PSS�x ,v� by analyzing the dis-
tinct contributions grouped into Eq. �27�. So, let us start
by studying a pair-integration contribution from a
��-correlation integral �for a position-position correlation
this is a �q ,q�� pair, such as mentioned in the last section�:

�
−�

+� dqi

2�

dqj

2�

z

z − i�qi + qj − 2i
� − i�
��iqi + 
���iqj + 
����̃�iqi + 
��̃�iqj + 
�� + ��̃�iqi + 
��̃�iqj + 
��� =

z

z − i�
W�, �29�

where we integrate over the contributing poles �only�, and i�=� f=1,�i,j
l iqf +�h=1

m iph+ �l+m−2�
 represents the summation
over the p’s and q’s that are not integrated over in the denominator of I�z�. The W� factor is given below �see Appendix B�:

W� =
�1T1

2m2

2z1AB + �BDG − BCF� + �ADF + ACG�AB�C2 + D2��F2 + G2�
+

−
��1T1 + �2T2�

2m2�2

2AB�A2 + B2� − z1�BDG − BCF� + z1�ADF + ACG�
z1AB�A2 + B2��C2 + D2��F2 + G2�

. �30�

The terms depending on �1T1 ��2T2� result from the integration over the poles of the ��̃�̃�� ���̃�̃���, and the effect of the
integration over qi and qj on Eq. �29� corresponds to the appearance of a W� factor and the reduction of the denominator of
I�z� from �z− i�qi+qj −2i
�− i�� to �z− i��. Similarly, a typical pair-integration contribution from a ��-correlation integral
�velocity-velocity correlation→ �p , p�� pair� reads

�
−�

+� dpi

2�

dpj

2�

z

z − i�pi + pj − 2i
� − i�
��ipi + 
���ipj + 
����̃�ipi + 
��̃�ipj + 
�� + ��̃�ipi + 
��̃�ipj + 
��� =

z

z − i�
W�, �31�

where the W� factor is

W� =
��1T1 + �2T2�

2m2�2

2z1AB + �BDG − BCF� + �ADF + ACG�
AB�C2 + D2��F2 + G2�

−
�1T1

2m2

2z1
3AB + �A3 − 3AB2��CG + DF� + �B3 − 3A2B��CF − DG�

AB�C2 + D2��F2 + G2�
. �32�

• i(ε-z3) • i(ε-z2)

• -Σnqn-i z

• i(ε+z2) • i(ε+z3)

Re(q)

Im(q)

• i(ε-z1)

• i(ε+z1)

• -qi+2iε

FIG. 1. Integration path for the q or p variables.
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It is straightforward to show that the integrals of the type
��-correlation �for a �q , p� pair� over the correct poles will
not contribute to PSS�x ,v�. It means that the information
about the position distribution �q’s� does not get mixed up
with the information about the velocity distribution �p’s�. In
other words, the distributions are independent �PSS�x ,v�
= PSS�x�PSS�v�� as mentioned before.

Schematically, we can represent the integral in Eq. �27� by

lim
z→0

� �
j=1

2n

dpj�
l=1

2m

dql
z

z − i� �
ij

all p pairs

��̃i�̃ j� �
kl

all q pairs

��̃k�̃l�

→ � all

terms

W�

n W�
m ,

where �̃ represents the noise functions’ Laplace transforms.
The number of terms above remains to be evaluated.

First we notice that we can factor out the W�
n contribu-

tions from the W�
m contributions. By doing so, we only need

to calculate the number of ways of integrating all �q ,q��
pairs �and similarly for the �p , p�� pairs�. Furthermore, aver-

aging over a power 2t of �̃’s and �̃’s yields a number of
terms analogous to the number of ways of distributing 2t
balls into t boxes that have room for two balls each. The
factor above is given by

u2t =
�2t�!
2tt!

.

Let us replace that into the equation for PSS�x�. The factored
out contribution for the position distribution reads

PSS�x� → �
l=0

� �
−�

+� dQ

2�
eiQx �− iQ�2l

�2l�!
�2l�!
2ll!

W�
l ⇒ PSS�x�

=
1

�2�W�

e−x2/2W�. �33�

Similarly, it is straightforward to show that

PSS�v� =
1

�2�W�

e−v2/2W�. �34�

B. Stationary distribution

The Eqs. �33� and �34� combine to

PSS�x,v� = PSS�x�PSS�v�

=
1

2��W�W�

exp
−
1

2
� x2

W�

+
v2

W�

� . �35�

The distribution on Eq. �35� is complete, normalized and
exact. It represents the stationary state for extremely long
times and includes more information than similar models in
the massless �overdamped� limit. Since W��W�, a renor-
malization of the mass and of the temperature will occur.
Indeed, recent works have suggested other mechanisms for
deviations from Boltzmann statistics �27–29�. In fact, a
massless BP is bound to move as the instantaneous force

directs it, but an inertial one can accumulate kinetic energy
and its velocity deviates from the ratio between the external
force and the friction coefficient, creating an opportunity for
a feed-back mechanism �incipiently present in the non-
Markovian colored noise � time scale �� to modify the sta-
tionary distribution away from the Boltzmann equilibrium
form �26,30–32� even at T1=T2 �26,30�. Taking the limit m
→0 at T1=T2 restores the Boltzmann equilibrium form, de-
spite ��0, due to the crucial role of inertia in the mechanism
above.

IV. OVERDAMPED LIMIT

The Eq. �30� defining the W� term �see Appendix B for a
complete derivation� gives the dependence of the stationary
position distribution on all parameters of the system in its
most general form. This distribution is a generalization of the
expression obtained in Ref. �26� and, similarly to that case, it
differs from the Boltzmann form due to the non-Markovian
character of the colored noise, but tends to it when we take
�→0 and T1=T2. The nontrivial forms of Eqs. �30� and �32�
indicate that a renormalization of the mass �or the rigidity k�
takes place due to the non-Markovian character of �
�26,31,32�.

In the overdamped limit m→0, the term W� simplifies
considerably and reads

lim
m→0

W� =
T1�k + �1T1 + �2T2

��1 + �2 + k��k
. �36�

The quantity kW� behaves as the exact effective tempera-
ture Teff for the system in the overdamped limit. We observe
that both the slow and the fast noise contribute to Teff. It can
be seen that Teff=kW� has an intermediate value between T1
and T2:

min�T1,T2� � kW� � max�T1,T2� .

Comparing Eq. �36� with other approaches, we noticed
that in Ref. �3� the authors show the steps to obtain the
stationary distribution for a similar model in the over
damped limit. In their case, they make approximations in
such a way that both the slow field � and the dissipative
memory term, proportional to �2 ��1 in their notation�, be-
have as if they were effective external additive terms for the
potential V�x�. In consequence, the frictional coefficient �1

��0 in their notation� will not contribute to the equilibrium
distribution since that is a function of the effective external
terms only. The system is supposed to quickly adjust to that
potential, giving rise to an instantaneous equilibrium distri-
bution.

On the other hand, in the present method we calculate the
averages rather differently. As we have seen, we first inte-
grate over the noise average of the exact distribution �8� for
an infinitely long time and then obtain the time average of
them. By doing this, the neglected effect of �1 becomes ap-
parent and shows in our solution. So, in order to recover the
results suggested in Sec. 4.1 of Ref. �3� �derived in Appendix
A� all we need to do is take �1=0 in Eq. �36�. In our nota-
tion, the results on Ref. �3� read �where we assume V�x�
= kx2

2 so our models coincide�
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W� =
T1�k + �2T2

��2 + k��k
,

which is identical to ours when we take �1=0 in Eq. �36�.
When T1=T2=T we recover the Boltzmann equilibrium

with distribution

W� =
T

k
⇒ PSS�x� =� k

2�T
e−kx2/2T. �37�

For the velocity distribution, in the overdamped limit it
assumes a simple form. As is the case of W�, the expression
for W� in Eq. �32� expresses the dependence of the velocity
distribution on all parameters of the model. However, by
taking m→0 in Eq. �32� gives asymptotically

lim
m→0

W�

→
m��1T1 + m��2T2 + �1

2T1�2 + �1T1�2�2 + �1T1�3k

m��1� + m����1 + �2 + k��
.

�38�

The form above leads to two possible limiting results, in the
overdamped limit, depending on which of the two cases �1
�0 or �1=0 holds. In other words, it depends on whether the
BP is coupled to the fast heat bath or not.

When �1�0, taking the leading order on m on Eq. �38�
yields

lim
m→0

W� →
T1

m
. �39�

We notice that only the fast noise T1 contributes signifi-
cantly to the velocity distribution. The BP’s instantaneous
kinetic energy is driven by the fast noise �T1 ,�1� and ignores
the slow one in the overdamped limit.

The normalized velocity distribution reads in that ap-
proximation order

W� =
T1

m
⇒ PSS�v� =� m

2�T1
e−mv2/2T1. �40�

When �1=0, by taking m→0 we observe that the leading
term on Eq. �38� tends instead to

lim
m→0

W� →
�2T2

m��2 + k��
, �41�

proportional to T2. In fact, that should be expected since this
has been investigated earlier and exact results are known
�26�. It can be easily seen that in the limit of a free particle
k→0, the effective temperature is exactly T2. The Boltzmann
form for the distribution above can also be recovered by
taking the limit �→0 �slow noise becomes white�. We see
that our general result contains previous exact and approxi-
mate results.

V. CONCLUSIONS

A better understanding of slow dynamics and associated
models may require powerful numerical methods, and com-

puters, as one tries to simulate the �extremely� long-time
relaxation that often occurs for interesting systems such as
glasses. In this context, simpler models may be very useful
for obtaining some good qualitative understanding of the
long time limit without presenting the numerical difficulties
the more realistic ones do, with the possibility of obtaining
exact results. These are always interesting in that they take
into account all the physical effects present in a given model,
independently of any approximation. In other words, exact
treatments contain all the available information about a
model. Some of it being inaccessible through approximate
methods.

In that spirit, BP models have been proposed as a means
to study some of the phenomena associated with the compe-
tition between fast thermal fluctuations and slow structural
relaxation in glasses �3,23,24�. A white noise �fast� is asso-
ciated with the thermal fluctuations that happen in short time
scales. A colored noise function �slow� is associated with the
long time relaxation �structural�.

For these simple models, a typical approach is to consider
the overdamped regime, which is equivalent to the case
when the BP has zero mass �m→0+�. When responding to
external forces acting on it the BP’s velocity assumes the
ratio between the sum of all external forces and a friction
coefficient. These models can be used to study the emer-
gence of a nonequilibrium stationary state as the probability
distribution tends to the stationary form as t→�.

In the present work, we develop an exact method for time
averaging the distribution for x and v for a BP submitted to a
fast white noise and a slow non-Markovian one at different
temperatures. The essence of our method is the use of time
averages of the distributions for x and v which leads us natu-
rally to the use of Laplace transformations in order to “open”
the problem. In a straightforward way, we represent the time-
averaged distribution as a sum of integrals that can be easily
analyzed, and computed exactly. The distribution thus ob-
tained can be compared to the ones in the literature. By being
exact, our method allows us to obtain information about the
effects due to the finite mass of the BP showing, for instance,
that the fast noise term plays a role on the stationary distri-
bution of positions that is usually neglected in other meth-
ods.
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APPENDIX A

The Laplace transformation of Eq. �27� is shown below
�26�. We will give a step by step derivation for the expres-
sion of PSS�x ,v� as a function of the Laplace transforms of
the position and velocity for the Brownian particle.

Let us start with the basic definition
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PSS�x,v� = lim
z→0+

z�
0

�

e−zt�	�x − x�t��	�v − v�t���dt .

We write the 	 functions above in the integral representation

�	�x − x�t��	�v − v�t���

= �
−�

+� dQ

2�
eiQx�

−�

+� dP

2�
eiPv

��
l=0

�
�− iQ�l

l! �
m=0

�
�− iP�m

m!
�xl�t�vm�t��

and obtain �after using the 	 functions to express identically
the averages over the noise as functions at distinct times�:

PSS�x,v� = lim
z→0+

z�
0

�

dte−zt�
−�

+� dQ

2�
eiQx�

−�

+� dP

2�
eiPv�

l=0

�
�− iQ�l

l!

��
m=0

�
�− iP�m

m!
�

0

�

�
f=1

l

dtlf	�t − tlf�

��
0

�

�
h=1

m

dtmh	�t − tmb���
f=1

l

x�tlf��
h=1

m

v�tmh�� .

Next, we express all delta functions above as integrals on
the complex plane, displaced from the complex axis by a
factor of 
 �that vanishes faster than z�. That factor will guar-
antee the convergence of the Laplace transforms for posi-
tions and velocities in the following:

PSS�x,v� = lim
z,
→0+

z�
0

�

dte−zt�
−�

+� dQ

2�
eiQx�

−�

+� dP

2�
eiPv�

l=0

�
�− iQ�l

l! �
m=0

�
�− iP�m

m!

��
−�

+�

�
f=1

l
dqf

2�
�
h=1

m
dph

2�
�

0

�

�
f=1

l

dtlf�
0

�

�
h=1

m

dtmhe�f=1
l �t−tlf��iqf+
�+�h=1

m �t−tmh��iph+
���
f=1

l

x�tlf��
h=1

m

v�tmh�� .

We need to integrate over all �tlf , tmh�, obtaining the averages over the Laplace transforms of the position and velocity

PSS�x,v� = lim
z,
→0+

�
−�

+� dQ

2�
eiQx�

−�

+� dP

2�
eiPv�

l=0

�
�− iQ�l

l! �
m=0

�
�− iP�m

m!
�

−�

+�

�
f=1

l
dqf

2�
�
h=1

m
dph

2�

��
0

�

dtze−t�z−�f=1
l �iqf+
�−�h=1

m �iph+
����
f=1

l

x̃�iqf + 
��
h=1

m

ṽ�iph + 
�� .

Finally, we integrate over t and obtain Eq. �27�:

PSS�x,v� = lim
z,
→0+

�
l,m=0

� �
−�

+� dQ

2�

dP

2�
eiQx+iPv �− iQ�l

l!

�− iP�m

m!
�

−�

+�

�
f=1

l
dqf

2�
�
h=1

m
dph

2�

�
z

z − � �
f=1

l

iqf + �
h=1

m

iph + �l + m�
���
f=1

l

x̃�iqf + 
��
h=1

m

ṽ�iph + 
�� . �A1�

APPENDIX B

A typical calculation of the stationary state distribution of displacements terms is shown below for the W� term from Eq.
�29�. The first integral in Eq. �29� reads

�
−�

+� dqi

2�

dqj

2�

z

z − i�qi + qj − 2i
 + ��
��iqi + 
���iqj + 
���̃�iqi + 
��̃�iqj + 
��

= �
−�

+� dqi

2�

dqj

2�

z

z − i�qi + qj − 2i
 + ��
1 + ��iqi + 
�

�qi − i�
 − z1���qi − i�
 − z2���qi − i�
 − z3��

�
1 + ��iqi + 
�

�qj − i�
 − z1���qj − i�
 − z2���qj − i�
 − z3��
�1T1m−2�−2

�− i��qj − �− qi + 2i
��
.

To continue the calculation, the integrations over the poles must be done in a way that allows us to obtain, after all integrations
have been done �as explained in Sec. III A�, limz→0I�z�=1. When integrating over the poles of qj’s it is possible to see �Fig.
1�, that it will work only for qj =−qi+2i
. Thus,
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⇒�
−�

+� dqi

2�

dqj

2�

z

z − i�qi + qj − 2i
 + ��
��iqi + 
���iqj + 
���̃�iqi + 
��̃�iqj + 
��

=
�1T1

m2�2

z

z − i�
�

−�

+� dqi

2�

1 − �2�iqi + 
�2

�qi − i�
 − z1���qi − i�
 − z2���qi − i�
 − z3���qi − i�
 + z1���qi − i�
 + z2���qi − i�
 + z3��
.

The same holds for the integration over the qi’s poles. So, the nonzero contribution comes only from the poles
qi= i�
−z��, �=1,2 ,3, in the upper part of Fig. 1:

�
−�

+� dqi

2�

dqj

2�

z

z − i�qi + qj − 2i
 + ��
��iqi + 
���iqj + 
���̃�iqi + 
��̃�iqj + 
��

=
�1T1

m2�2

z

z − i�

 �2z1

2 − 1

z1	z1 − z2	2	z1 + z2	2
−

�2�z2�z1 − z2�*�z1 + z2�* − z2
*�z1 − z2��z1 + z2��

4i Re�z2�Im�z2�	z1 − z2	2	z1 + z2	2

+
�z2

*�z1 − z2�*�z1 + z2�* − z2�z1 − z2��z1 + z2��
4i Re�z2�Im�z2�	z2	2	z1 − z2	2	z1 + z2	2 �

Finally, using the definitions of Eq. �24�, we get for the first part of Eq. �29�

�
−�

+� dqi

2�

dqj

2�

z

z − i�qi + qj − 2i
 + ��
��iqi + 
���iqj + 
���̃�iqi + 
��̃�iqj + 
��

=
z

z − i�
�1T1

2m2

2z1AB + �BDG − BCF� + �ADF + ACG�
AB�C2 + D2��F2 + G2�

−
�1T1

2m2�2

2AB�A2 + B2� − z1�BDG − BCF� + z1�ADF + ACG�
z1AB�A2 + B2��C2 + D2��F2 + G2� � .

For the second part of Eq. �29�, the second term on the right-hand side of Eq. �11� does not contribute since it is
straightforward to show that it leads to a null contribution. Thus, we shall compute the contribution from the first part of Eq.
�29� keeping only the right-hand side of Eq. �11�. It yields

�
−�

+� dqi

2�

dqj

2�

z

z − i�qi + qj − 2i
 + ��
��iqi + 
���iqj + 
���̃�iqi + 
��̃�iqj + 
��

= �
−�

+� dqi

2�

dqj

2�

z

z − i�qi + qj − 2i
 + ��
1 + ��iqi + 
�

�qi − i�
 − z1���qi − i�
 − z2���qi − i�
 − z3��

�
1 + ��iqi + 
�

�qj − i�
 − z1���qj − i�
 − z2���qj − i�
 − z3��
�2T2m−2�−2

�− i��qj − �− qi + 2i
���1 − ��iqi + 
���1 − ��iqj + 
��
. �B1�

The only contributing integrations will be the ones over the poles qj =−qi+2i
 �see Fig. 1�. So

⇒�
−�

+� dqi

2�

dqj

2�

z

z − i�qi + qj − 2i
 + ��
��iqi + 
���iqj + 
���̃�iqi + 
��̃�iqj + 
��

=
�2T2

m2�2

z

z − i�
�

−�

+� dqi

2�

1

�qi − i�
 − z1���qi − i�
 − z2���qi − i�
 − z3��
1

�qi − i�
 + z1���qi + i�
 − z2���qi + i�
 − z3��
.

Again, the contribution came from the poles qi= i�
−z��, �=1,2 ,3. So,

�
−�

+� dqi

2�

dqj

2�

z

z − i�qi + qj − 2i
 + ��
��iqi + 
���iqj + 
���̃�iqi + 
��̃�iqj + 
��

=
�2T2

2m2�2

z

z − i�

 − 1

z1	z1 − z2	2	z1 + z2	2
+

�z2
*�z1 − z2�*�z1 + z2�* − z2�z1 − z2��z1 + z2��

4i Re�z2�Im�z2�	z2	2	z1 − z2	2	z1 + z2	2 � .

Using the definitions in Eq. �24� we obtain

�
−�

+� dqi

2�

dqj

2�

z

z − i�qi + qj − 2i
 + ��
��iqi + 
���iqj + 
���̃�iqi + 
��̃�iqj + 
��

= −
�2T2

2m2�2

2AB�A2 + B2� − z1�BDG − BCF� + z1�ADF + ACG�
z1AB�A2 + B2��C2 + D2��F2 + G2�

. �B2�
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Combining Eqs. �B1� and �B2� we obtain the result for
W� in Eq. �30�. An analogous calculation can be done for the
velocity integrals and obtain W�, e.g., Eq. �32�.

APPENDIX C

The stationary distribution of x is obtained in Cugliandolo
and Kurchan �3�. We review their main steps below. Let us
define

P�x� =� dhP�x/h�P�h� , �C1�

where

P�h� =
e−�*�F�h�+�h2/2��2/����

� dhe−�*�F�h�+�h2/2��2/����

�C2�

and

P�x/h� =
e−��V�x�+��2/���x2/2�−hx�

� dxe−��V�x�+��2/���x2/2�−hx�

. �C3�

The denominator above defines Z�h� and F�h�
�−�−1 ln Z�h�. For V�x�=k x2

2 , we have

Z�h� =� 2�

��k +
�2

�

 e�h2/2�k+�2/��;

F�h� = −
h2

2�k +
�2

�

 − �−1C �C4�

and the denominator of Eq. �C2� becomes

� dhe−�*�−h2/2�k+�2/��−�−1C+h2/2��2/���

= e�*C/��2�
�2

�
�k +

�2

�



�*k
. �C5�

Thus, Eq. �C1� becomes

P�x� =� �*�k�k� + �2�
2���*k� + ��2�

e−�*�k�k�+�2�x2/2��*k�+��2�

�C6�

When the temperatures are equal, then �*=�=1 /T and

P�x� =� k

2�T
e−kx2/2T. �C7�
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