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Markov jump processes can be used to model the effective dynamics of observables in applications ranging
from molecular dynamics to finance. In this paper we present a different method which allows the inverse
modeling of Markov jump processes based on incomplete observations in time: We consider the case of a given
time series of the discretely observed jump process. We show how to compute efficiently the maximum
likelihood estimator of its infinitesimal generator and demonstrate in detail that the method allows us to handle
observations nonequidistant in time. The method is based on the work of and Bladt and Sgrensen [J. R. Stat.
Soc. Ser. B (Stat. Methodol.) 67, 395 (2005)] but scales much more favorably than it with the length of the
time series and the dimension and size of the state space of the jump process. We illustrate its performance on
a toy problem as well as on data arising from simulations of biochemical kinetics of a genetic toggle switch.
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I. INTRODUCTION

In many application areas it is of interest to derive a re-
duced model of the effective dynamics of observables by a
finite dimensional Markov process. In this paper we study
the inverse problem of fitting Markov jump processes to dis-
crete time series in situations where the time lags between
consecutive observations are not necessarily equidistant.
Such a situation arises naturally in a number of applications,
e.g., in finance or (bio)chemical kinetics. In the case of equi-
distant time lags, several approaches can be found in the
literature, e.g., [1-5]. In [6], we summarize, compare, and
discuss these approaches in detail. Furthermore, we therein
present an enhanced version of the approach presented in
[1,5]: the enhanced maximum likelihood estimation method
(enhanced MLE method, see [6—8] for different variants)
which drastically increases the efficiency of the method.
However, the discussion in [6] is limited to time series with
equidistant steps in time. In this paper, we discuss the gen-
eralization of the enhanced MLE method for observations
nonequidistant in time.

The likelihood approach is designed for the analysis of
time series generated by first order Markov processes. But
many physical processes exhibit long-term memory effects
and hence it is not clear in advance if the time series under
consideration is Markovian [9-13]. One option to handle the
non-Markovian case within the likelihood framework is
to consider a different process Z(1)=(X(t),X(t+7),...,
X[t+(m—1)7]), >0 where the order m> 1 representing the
memory depth m7 of the original process X(¢) is known or
has to be estimated from the time series. Then the process is
first order Markovian and the associated time series can be
investigated with the MLE method. However, this option is
restricted to the case of equidistant observation times. There
are some recent developments indicating that this restriction
can be overcome, but their application is limited to time
series with extremely short observation time lags [14].

The paper is organized as follows. After introducing some
notation in Sec. II, we revisit the likelihood approach in Sec.
IT A. The main result of this paper—the derivation of the
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enhanced MLE method for observations nonequidistant in
time and the resulting algorithm—is presented in Sec. III.
Finally, in Sec. IV we illustrate the performance of the
method in application to a small toy example and to data
arising from simulations of the biochemical kinetics of a
genetic toggle switch. The paper ends with concluding re-
marks in Sec. V.

II. CONCEPTUAL FRAMEWORK AND NOTATION

Let us first consider a simple introductory example. Imag-
ine an organism with two states: healthy (state 1) and sick
(state 2), i.e., we have d=2 states. Healthy individuals may
stay healthy or get sick; sick ones may stay sick or get
healthy. The rate of getting sick if healthy is «, say, while the
rate of getting healthy if sick is B. In a Markov model this
system is characterized by a 2 X2 rate matrix

)

L= )

B -B

where the entry L;; is the transition rate from state i into state
J, and where the sum of the transition rates in each row is 0.
If we wait for a period ¢ starting in 0, then the transition
probabilities p;;(¢) from state i to state j during this period
are given by the entries of the transition matrix P(r)
=exp(tL). Asymptotically, that is, for 7— o, the process con-
verges to a stationary distribution 7 (corresponding to the
left eigenvector of L associated to eigenvalue 0) with a pro-
portion m,=a/(a+ ) sick and =B/ (a+ B) healthy.

In order to formalize this, let {X(¢),#=0} be a continuous-
time homogeneous Markov jump process on a finite state
space S={1,...,d}. The transition matrix of {X(¢),r=0} is
the time-dependent matrix

P(1t) = [Pij(f)]i,j e R, pij(t) = P[X(r) = j|X(0) =]
containing the transition probabilities p;;(¢). If the limit
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. P()-1d
L=lim ———
t—0 t

exists, then the transition matrix can be expressed as the
matrix exponential

P(t) = exp(tL)

and L is called the infinitesimal generator or rate matrix of
the Markov process {X(r),t=0}. A matrix L € R?*? gener-
ates a continuous-time Markov process if and only if all off-
diagonal entries are non-negative and the sum over each row
equals zero, and the set of all generators will be denoted by

6 = {L= (llj)l,j € RdXd:lij = 0 fOI‘ all 17 j,

lii:_Elij . (2.1)
JE
A stationary probability distribution 7= (m,...,m,)7 of a

Markov process X(r) satisfies the global balance equation

([15], Sec. 8.3.2)
0=7"L=L"m, (2.2)

or, written in expanded form,

- milii= E Tl ks
k#i

i=1,....d.

In the following, we denote an incomplete observation of
a Markov jump process X(¢) by

Y={yo=X), ...

and the observation time lags by 7,=#;,,—1;.

Remark 1. Continuous-time Markov jump processes are
quite prevalently used in physics, chemistry, or biology. Ex-
amples are spin system or lattice gas dynamics, master equa-
tions in systems biology (like the system discussed in Sec.
IV B) or polymerization modeling [16—18], or birth-death
models on networks, e.g., in bioinformatics [19,20].

In=X(h to<t; < - <ty

A. Likelihood approach revisited

In the likelihood approach, introduced in [1] and re-
invented by Bladt and Sgrensen in [5], a generator L for a
given time series is determined such that L maximizes the
discrete likelihood function (2.5) for the time series. For the
convenience of the reader, we recall the likelihood function
associated with the case of a complete and incomplete obser-
vation in time of a Markov jump process, respectively.

Suppose that the Markov jump process X(z) has been ob-
served continuously in a certain time interval [0,T]. Let the
random variable R;(T) be the time the process spends in state
i before time T,

T
Mﬂ=JXﬂﬂm%,
0

where the characteristic function x;3[X(s)] is equal to 1 if
X(s)=i and zero otherwise. Moreover, denote by N;(7) the
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number of transitions from state i to state j in the time inter-
val [0,T]. The continuous time likelihood function L, of an
observed trajectory {X,:0=r=T} is given by [5]

d
£ (L) =ITTT 25" expl-1,R(T)] (2.3)

i=1 j#i

and the maximum likelihood estimator (MLE) Z:(Zj),
i,jes, ie., the generator which maximizes the likelihood
function (2.3), takes the form

N;A(T
éz;’i¢j
Tij = : — (2.4)
2 =,
k#i

In the case where the process has only been observed at
discrete time points 0=ry<<t;<---<ty=T the process be-
tween two consecutive observations is hidden and hence the
observables R/(T) and N;(T) are unknown. The discrete like-
lihood function L; of a time series Y={y,=X(t),...,yy
=X(ty)} is given in terms of the transition matrix P(r)
=exp(rL),

N-1 r

‘Cd(L) = H pyk,ka(Tk) = H H [pij(rv)]ci‘j(n)s (25)
k=0

s=1ijes

where 7,e{7,...,7,} is an observed time lag and the entry
c;j(7y) in the frequency matrices C(7,)=[c;(7,)], i,j €S, de-
fined according to

N-1
Cij(Ts) = 2 X{i}[X(tn)]X{j}[X(tn+l)]X{TS}(Atn)’
n=1

provides the number of consecutively observed transitions in
Y from state i to state j in time 7,. Unfortunately, no analyti-
cal maximizer of the discrete likelihood function (2.5) with
respect to the generator is available.

Nevertheless, the discrete likelihood £, can iteratively be
maximized by means of an expectation-maximization algo-
rithm (EM algorithm). The idea is to assume that the hidden
(not observed) process behind the incomplete observations in

Y is given by an initial guess, say ZO. Then averaging over all
possible realizations of Zo conditional on the observation Y
allows us to compute the conditional expected values of
R/(T) and the N;,(T). This step is called the expectation step
(E step). Formally, the E step consists of the computation of
the conditional log-likelihood function
G:L— EZO[ In £.(L)|Y], (2.6)
where L € &. Notice that for algebraical simplicity and with-
out loss of generality the log-likelihood function, In L, is

considered. The crucial observation is now that the maxi-
mizer (M step)
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L, =arg max G(L;L,)
Le®

of the conditional log-likelihood function &(L;L,) satisfies

[21]

Ed(zl) = Ed(zo) .

Hence taking the maximizer as a new guess of the hidden
process, the iteration of the two described steps allows us to
approximate a (local) maximum of the discrete likelihood
function L.

For our particular likelihood function (2.3) the conditional
log-likelihood function G in the E step reduces to

d

G(L;Ly) =2 > {ln(lij)Ezo[Nij(T)|Y] - lijEZO[Ri(T)|Y]}
i=1 j#i

(2.7)

and the maximizer Z:(l}), i,j €S of Eq. (2.7) takes the form
[cf. Eq. (2.4)]

BRNyDIY]
~ o L7
lij: ELO Ri(T)|Y] (2.8)
-2 P ,.Zk, otherwise.

The nontrivial task which remains is to evaluate the con-
ditional expectations b7, [V; AD)|Y] and Ef [R; (T)|Y], respec-
tively. Exploiting the Markov property and the homogeneity
of the Markov jump process, the conditional expectations in
Eq. (2.7) can be expressed as sums [5],

rd

B [RAT)Y]=2 2 cu(r)BE [R(7)[X(r,) =1.X(0) = k],

s=1 k,I=1

rod

EZO[N”(T)|Y] = 2 2 Ckl(Ts)EZO[Nij(Ts)|X(Ts) = Z’X(O) = k]
s=1 k,I=1

(2.9)

Thus the computation of ]EL [N;(T)|Y] and Ez [R/(T)|Y] is
reduced to the computation of EL [R; (7')|X(7') [,X(0)=k]
and Ef [ N(m|X(7)=1,X(0)=k] which is explained in the
next section.

II1I. ENHANCED COMPUTATION OF THE MAXIMUM
LIKELIHOOD ESTIMATOR

In [8], it has been realized that the conditional expecta-
tions E;[N;;(1)[X(r)=1,X(0)=k] and E,[R,(1)|X(r)=1,X(0)
=k] can analytlcally be expressed in terms of the transition
matrix P(tf)=exp(zL). The following identities are proved:

E[R(0)|X(r) = 1,X(0) =k] = ;f Pri($)pi(t—s)ds,
ru(®) )
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t

BN (0]X (1) =1,X(0) = k] = Pr($)p(t = s)ds.

e
kz()
(3.1)

The key observation now is that an eigendecomposition of
the generator L leads to closed form expressions of the inte-
grals in Eq. (3.1). To be more precise, consider the eigende-
composition of a generator L, that is,

L=UD\U™", (3.2)

where the columns of the matrix U consist of all eigenvec-
tors to the corresponding eigenvalues of L in the diagonal
matrix D, =diag(\,,...,\,). Consequently, the expression of

the transition matrix P(¢) simplifies to
P(t) =exp(tL) = U exp(tD,) U™

and we finally end up with a closed form expression of the
integrals in Eq. (3.1), that is,

d
Jpab(s)pcd(t S)dS—E Uap pbz ULq qd pq(t)’

p=1
(3.3)

where the symmetric matrix W(r)=[W,,,(t)], ;s is defined as

te™r if \,=\,
W, (1) =1 e —e™ 3.4
pf) =1zl Ny # Ay (3.4)
)\p_)‘t/

Combining all issues, we finally end up with the enhanced
MLE method for nonequidistant time lags as stated in Fig. 1.

The computational cost of a single iteration step in the
algorithm, given in Fig. 1, is O(rd°) where r is the number of
the different observed time lags and d is the dimension of the
finite state space S. We want to emphasize that the algorithm
in principle works even in the case of pairwise different time
lags, i.e., r=N—1 where N is the number of observations, but
in practice this would lead to unacceptable computational
costs.

IV. NUMERICAL EXAMPLES

In this section we demonstrate the performance of the
enhanced MLE method for nonequidistant observation times
on a test example and for a process arising in the approxi-
mation of a genetic toggle switch. In both examples, we
re-identify a generator L of a Markov jump process from an
associated artificially generated incomplete observation. To
be more precise, we drew from a generator L a continuous
time realization {X(r),0=r=<T} for a prescribed 7>0 and
extracted out of it an incomplete observation Y={y,
=X(ty),...,yy=X(ty)} with respect to a prescribed set of
time lags {7,..., 7.}, r>1, as follows: Suppose #,<T is the
observation time last considered, then the next observation
time #;,, is given by #;,;=1,+7 where 7 is uniformly drawn
from the set of time lags {7, ..., 7,}. We terminate that pro-
cedure if £, >T.
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Input:  Time series Y = {yo = X(t0),...,yn = X(tn)},
the set of observed time lags {71,...,7,},
the tolerance T'OL, initial guess of generator L.
Output: MLE L.
(1) Compute eigendecomposition (I11.2) of Ly,
(2) E-step:
FOR ALL 75 € {7,...,7.} DO
i) Compute the auxiliary matrix W(7s) (111.4).
ii) Compute for 4,1,k =1,...,d the conditional expectations
B; [Ri(r)|X(rs) = 1, X(0) = K,
Bz, [Nij(7)| X (75) = 1, X(0) = k] ;i # j via (111.3),(1I1.1).
END FOR
Compute E; [R;(T)|Y] and Ej [Ni;(T)[Y] via (11.9).
(3) M-Step: Setup the next guess L1 of the generator by
By, N (DY) /By, [R(DIY), i £

- Ek#—i Zikv

(4) Go to Step (1) unless || Lys1 — Li|| < TOL.

i =
otherwise.

FIG. 1. Enhanced MLE method for nonequidistant time lags.

A. Test example

In the first example we demonstrate the performance of
the enhanced MLE method on a small toy example. To this
end we consider a five-state Markov jump process given by
its generator

-6 2 2 1 1
1 -4 0 1 2

L=l 1 0 -4 2 1 |es. (4.1)
2 1 0 -3 0
1 1 1 1 -4

For the reconstruction of L, we extracted from a realization
of total time T=3.7X 10° a time series of N=10" observa-
tions with respect to the set of time lags {r;=0.01,7,
=0.1,73=1}. In Eq. (4.2) we state the estimated generator
resulting from the algorithm (given in Fig. 1) with the pre-
scribed tolerance TOL=107°. One clearly can see that L ap-
proximates the original one very well:

—5.9803 2.0054 1.9863 0.9911  0.9975
1.0002 -4.0018 0.0010 0.9938  2.0068
L=| 09921 00001 -3.9768 1.9938  0.9909
1.9909 0.9951 0.0004 -29871 0.0006
0.9982  1.0051  0.9993  1.0050 -—4.0075
X e®. (4.2)
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FIG. 2. Error of the estimated generator L with respect to the
original generator (4.1), measured in the two norm ||L—L|, as a
function of the length N of the respective time series. Results for the
three different sets of time lags {0.01}, {0.01,0.1}, and {0.01,0.1,1}
and the tolerance TOL=1075.

Next, we address the question of how the length of the
respective time series and the number of different time lags
do affect the outcome of the estimation procedure. To make
things comparable, we generated three different time series
of length N=10% with respect to the time lags sets {0.01},
{0.01,0.1}, and {0.01,0.1,1}, all subsampled from the same
underlying continuous time realization, respectively, and es-
timated for each time series a generator on the basis of the
first N=10°,N=10*... ,N=10% observed states, respectively.
Furthermore, we used for all estimations the same initial

FIG. 3. (a) Log-log contour plot of (In m;),i €S, where =
=(m;),i € S is the stationary distribution of the process in Eq. (4.3)
computed via 7'L=0 [cf. Eq. (2.2)]. (b) Log-log contour plot of
(In 7r;),i € S resulting from the observed distribution 7 of states in
the time series. Result for N=10%.

066702-4



GENERATOR ESTIMATION OF MARKOV JUMP PROCESSES ...

guess ZO. In Fig. 2 we illustrate the dependence of the ap-

proximation error ||[L—L| (measured in the two norm) with
respect to the length N of the respective time series and the
number of different time lags. The graphs reveal that the

error |L—L|| decays exponentially with the length of the un-
derlying time series approximately as N'2. The second ob-
servation is that the estimations based on multiple observa-
tion time lags give better results than the estimation on a
single time lag. The authors are not aware of how to explain
this observation.

B. Application to a genetic toggle switch model

In this example we apply the enhanced MLE method to a
birth-death process which arises as a stochastic model of a
genetic toggle switch consisting of two genes that repress
each other’s expression [22]. Expression of the two different
genes produces two different types of proteins; let us name
them P, and Pp. If we denote the number of molecules of
type P4 by x and of type Pg by y, then the authors in [22]
proposed the following birth-death process on the discrete
state space S=(ZX7)N([0,d,]%[0,d,]),d;,d»>0, given
by its generator acting on a function f:S+—R,

(LA &xy) =cilx+ Ly)flx+1,y) - flx.y)]

+ i[f(x_ 1’)’) _f(-x’y)] + C2(x’y + 1)
7

X[F(x,y + 1) = flr,y)] + fz[f(x,y —1) = fey)],

(4.3)
where
aj .
—— if xe|[0,d
ci(x+1,y)=91+(/K,)" [0.d)
0 it x=dy,
02 .
——— if ye|[0,d
c(x,y+1)=1 1+ /K" y & [0.d)
0 if y=d,

\

for describing the evolution of the numbers x and y of the
respective proteins in the genetic toggle switch. For the bio-
logical interpretation of the involved parameters, see [22].
Moreover, notice that the particular choice of the coefficients
¢, and ¢, on the right and upper boundary can be seen as
reflecting boundary conditions.

A single realization of the jump process generated by L
models the evolution of the numbers of proteins with respect
to a specific initial value (xy,y,). The resulting evolution of
the associated probability density function (PDF) in time is
governed by the master equation: Let p, € RB! be the initial
PDF, then the PDF evolves in time according to

PHYSICAL REVIEW E 76, 066702 (2007)

1)

=LTp(),
P p(1)

p(0)=py, >0, (4.4)
where L denotes the transpose of the generator given in Eq.
(4.3). Its steady state w=(m;), i €S of Eq. (4.4) is called
stationary distribution.

It is well known that in the limit of large protein numbers
the dynamics of the jump process or, more precisely, of the
associated master equation is given by a deterministic model
of the biochemical kinetics in terms of the associated con-
centrations. The authors in [22] also consider this determin-
istic model in order to get a rough understanding of the
switch dynamics. The model consists of two coupled ordi-
nary differential equations,

a X

fz— T
1+(y/K2)n T1

. a Yy
y T

T 1K) 1 “5)

where the parameters are the same as in the stochastic model
Eq. (4.3). For the numerical experiments to be presented,
we used the parameters a;=156, a,=30, n=3, m=1, K,
=K,=1, 7=1/7, and m,=1/3. For this particular choice the
deterministic dynamics (4.5) has two stable stationary points
approximately at (x,y)=(20,0) and (x,y)=(0,8) and one un-
stable point approximately at (x,y)=(6,1). This insight in
the deterministic approximation helps one to understand the
following analysis of the jump process.

For the sake of illustration, the left panel of Fig. 3 shows
(In 77;), i € S instead of the stationary distribution 7= (1), i
€ § of the jump process itself. All states with almost vanish-
ing stationary distribution are depicted by the white region.
Moreover, in order to emphasize the states of interest, we
chose a log-log representation. The color scheme is chosen
such that the darker the color of a region the higher is the
probability of finding the process there. One can clearly see
that the process spends most of its time near the two stable
stationary points approximately at (x,y)=(20,0) and (x,y)
=(0,38).

In order to motivate the relevance of the following nu-
merical experiment, suppose you measure the numbers of
proteins of types P, and Pjp discretely in time; without
knowing the generator, you are interested in fitting a Markov
jump process. Assuming that the hidden process is Markov-
ian, one can apply the enhanced MLE method.

Before we describe our numerical example in detail, no-
tice that the structure of a transition matrix P, i.e., the occu-
pation of the entries in P, does not allow us to infer on the
structure of the underlying generator. For example, the gen-
erator of a dense transition matrix does not have to be dense
too. This means that there is some freedom in the choice of

the structure of the estimated generator L. In this example,
we follow two options. One option—we call it option A—is
to use the structure of the observed transition matrix as a

blueprint for the structure of L. In option B we exploited
knowledge about the hidden process. We know that the num-
ber of a gene’s molecule can only increase or decrease by 1
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0|
105
10
(b) X

10’

FIG. 4. Log-log contour plot of (In 77;),i € S associated with the
estimated generators L, (a) and Ly (b) where 7 is the stationary

distribution of the estimated generators computed via #L=0,
respectively.

in a single reaction while the number of the other one re-

mains constant. Hence it is natural to estimate the entries T,-j
if the states i and j (the numbers) have been observed and are
adjacent in the sense of a single reaction.

For our numerical experiment, we generated a sufficiently
long realization of the birth-death process on the state space
72N ([0,30]%[0,30]) and extracted out of it a time series of
length N=10% with respect to the set of time lags {7
=0.0001, 7,=0.001,7=0.01}. As one can see in Fig. 3, the
relative occupation of the states (b) is consistent with the
exact stationary distribution (a).

The generated time series visits 225 states of 900 possible

states, hence we had to estimate a generator Le® on the

state space S={1,...,225}. In the following, ZA denotes the
estimated generator resulting from the estimation option A

and ZB via option B. For both estimation options we used the
tolerance TOL=1072. Figure 4 shows (In 77;),i € S resulting

from the stationary distribution associated with ZA (a) and

with Ly (b). From the viewpoint of stationarity, one can see
that both estimated generators are good approximations of
the original one [compare Fig. 3 (a)]. In order to make things
more precise, we compare in the following the estimated
generators with the original generators of Eq. (4.3) restricted
on the set of observed states. Formally, we consider the re-

stricted generator L € &, S={1,...,225} defined according
to

PHYSICAL REVIEW E 76, 066702 (2007)

FIG. 5. (Color online) The real parts of the first 30 largest ei-
genvalues of the estimated generators compared to the eigenvalues
of the restricted generator L, Eq. (4.6). (a) Real parts of eigenvalues
of L,. (b) Real parts of eigenvalues of L.

/ if i # j were visited by the time series,

ij»

Z. = T
A % lis if i = j were visited by the time series.

(4.6)

Now we compare the spectral properties of the estimated
generators with those of the restricted generator from Eq.
(4.6) in more detail. In Fig. 5 (a) we depict the real parts of

the 30 largest eigenvalues of L, and Ly with those of the

restricted generator L, respectively. Although the enhanced
MLE method is not designed to approximate spectral prop-
erties, notice that the real parts of considered eigenvalues of

L are well reconstructed by both estimation options. Another
important quantity in time series analysis is the autocorrela-
tion function (ACF) of a process which reflects the speed of
memory loss of the process. For a Markov jump process, it is
easy to see that the ACF reduces to [4]

d
E(X,. X)) = 2 e™ 2 ijmUyUy], (4.7)

k=1 ijes

where L=U diag(\;,...,\,))U"! is the eigendecomposition
of the generator L of the Markov jump process and 7= (1),
i € § its stationary distribution. The graphs of the normalized

ACFs associated with ZA and ZB together with the ACF of

066702-6



GENERATOR ESTIMATION OF MARKOV JUMP PROCESSES ...

0.8¢

0.65 \\

0.4r \\

0.2r *

—L
- .LB
0.8f 1
0.61
0.4¢
0.2f
O L
0 0.02 0.04 0.06 0.08
(b) T

FIG. 6. (Color online) The graphs of the ACFs associated with

L, (a) and Ly (b) compared to the ACF of the restricted generator L,
respectively.

the restricted generator L are given in Fig. 6. As one can see,

the ACFs associated with ZA and ZB are consistent with the
ACEF of the restricted process which shows that besides the
eigenvalues even the eigenvectors of the restricted generator

L are well reproduced by both estimated generators, respec-
tively. The almost identical reproduction of the ACF of L by

ZB shows that the incorporation of theoretical knowledge of
the hidden process leads to slightly better results.

V. SUMMARY AND DISCUSSION

A generalization of the enhanced MLE method for the
estimation of a generator based on a time series with non-

PHYSICAL REVIEW E 76, 066702 (2007)

equidistant observation time lags has been presented. Its per-
formance has been validated numerically for a test case and
an application to biochemical kinetics data has been given.
In particular, the latter example has shown that the enhanced
MLE method is applicable to processes in larger state spaces.
As illustrated in Sec. IV B, the method can be devised to
respect specific sparsity patterns of the generators to be esti-
mated; furthermore, it can also be specified for the estima-
tion of generators of reversible Markov jump processes (in
analogy to the approach presented in [6]).

Several remarks have to be made regarding possible pit-
falls of the presented approach. First, the enhanced MLE
method relies on the decomposability of the generator that
appears in the course of the iteration. There is no reason to
expect that each single one has a complex diagonalization;
however, in none of our quite extensive numerical experi-
ments the situation of a nondecomposable generator ap-
peared. If this would happen one would be able to fall back
on the original “not-enhanced” algorithm (just for this step of
the iteration). Second, the eigendecomposition for nonsym-
metrical matrices could be a numerical problem (it may even
be ill-conditioned, see [23], for example). However, an ap-
propriate numerical solver should indicate this by a warning
message. This case also never appeared in our numerical
experiments. Third, since the enhanced MLE method is an
EM algorithm, it can only be assured that it converges to a
local maximum of the discrete likelihood function; global
convergence is not guaranteed. The dependence of the result
on the initial guess has not been addressed here and will be
the subject of further investigations. Fourth, the scaling of
the computational effort with the dimension or size of the
state space makes application to very large state spaces in-
feasible. One can circumvent this problem whenever one
knows in advance that the generator to be estimated has a
certain sparsity pattern. If this is not the case the present
authors are not aware of any cure to this “curse of dimen-
sion.”
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