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The composite torsional ultrasonic oscillator, a versatile experimental system, can be used to investigate slip
of a Newtonian fluid at a smooth surface. A rigorous analysis of slip-dependent damping for the oscillator is
presented. Initially, the phenomenon of finite surface slip and the slip length are considered for a half space of
Newtonian fluid in contact with a smooth, oscillating solid surface. Definitions are reconsidered and clarified
in light of inconsistencies in the literature. We point out that, in general oscillating flows, Navier’s slip length
b is a complex number. An intuitive velocity discontinuity parameter of unrestricted phase is used to describe
the effect of slip on measurement of viscous shear damping. The analysis is applied to the composite oscillator,
and preliminary experimental work for a 40 kHz oscillator is presented. The nonslip boundary condition has
been verified for a hydrophobic surface in water to within �60 nm of �b�=0 nm. Experiments were carried
out at shear rate amplitudes between 230 and 6800 s−1, corresponding to linear displacement amplitudes
between 3.2 and 96 nm.
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I. INTRODUCTION

In fluid mechanics, the nonslip boundary condition
�NSBC� states that fluid at the interface between a fluid and
a solid surface is stationary with respect to that surface. Sur-
face slip arises when there is nonzero relative motion be-
tween the interfacial fluid and the solid surface, in which
case the NSBC does not apply. In the vast majority of ex-
periments described historically, the NSBC has been an ad-
equate boundary condition �1,2�. However, finite surface slip
has been the subject of much recent interest and promises to
play a significant role in the current and future development
of micro- and nanofluidic devices �1–6�. Navier �7� first de-
scribed surface slip as early as the 1820s and his mathemati-
cal definition of the “slip length” has been widely used, for
example in recent reviews �1–5� and analyses of slip-
dependent flow �8–11�.

Slip is a well-studied phenomenon in non-Newtonian flu-
ids such as polymer solutions �2,11–13�. For slip of Newton-
ian fluids �Newtonian slip�, theory is well developed �3�, but
interpretation of experiments has been much more controver-
sial. Newtonian slip is important because technologies can
usefully be applied to Newtonian fluids, but also because
understanding of Newtonian slip will provide a more pro-
found understanding of fundamental slip mechanics. The
physical mechanisms governing slip are affected by variables
that include surface chemistry, shear rate, surface structure,
Newtonian viscosity, non-Newtonian behavior at the molecu-
lar scale, and combinations of each of these variables �2�.
Nanoengineered “superhydrophobic” surfaces trap gas be-
tween the fluid and the surface, producing large slip lengths
of the order of �10 �m �14–19�.

Experimentally, Newtonian slip has been investigated us-
ing a variety of methods �1�. The most widely used and
precise technique involves measurement of the drainage

forces between closely spaced surfaces in an atomic force
microscope �AFM� or surface force apparatus �SFA� and ap-
plying an analysis based on Reynolds’ theory of lubrication
�8,20�. Robust, nonzero values of b for Newtonian fluids at
relatively smooth surfaces are typically of the order of 10–
100 nm �21–28�. Experiments have not established firm
quantitative correlations between slip and major experimen-
tal variables, such as the contact angle �1,2�. Recently, it has
emerged with some clarity that, in AFM or SFA experiments,
the NSBC can be expected to hold on smooth hydrophilic
surfaces �23,24,29,30�, while finite slip lengths of order
10–20 nm have been measured on some hydrophobic sur-
faces �23,24�. Additionally, the long-held idea that surface
roughness should inhibit slip �2,31� is now supported by rea-
sonable experimental evidence �2,23,24�.

Shear-mode oscillations can be used to drive fluid flow,
and such systems pose scientific questions that are distinct
from those relating to the study of steady fluid flows. Oscil-
lating piezoelectric components are likely to prove very use-
ful in future applications. Ultrasonic oscillators, well estab-
lished as important tools for investigating thin films and bulk
fluids, can also be used to probe the interfacial forces that are
relevant in the study of slip. Kanazawa and Gordon �32�
analytically coupled a half space of Newtonian fluid to a
piezoelectric quartz crystal microbalance �QCM�, in which a
solid interface oscillates in shear mode, using the NSBC.
Further reports have presented experiments �33–36� and
analysis �33–35,37–39� describing slip of a Newtonian fluid
adjacent to an oscillating surface. A relatively large set of
slip lengths measured using a QCM was obtained by Ellis
and Hayward �33�.

Torsional quartz crystal oscillators operating at kilohertz
frequencies were initially developed and used for viscoelas-
ticity measurements �40� and have been used to measure the
complex and viscoelastic behavior of polymer solutions.
More recent work has investigated dispersions of colloidal
�41–43� and micellar �44� spheres. The shear rates accessible
using torsional oscillators are considered advantageously
high for such rheological measurements �43,44�. A particular
configuration, the composite torsional ultrasonic oscillator,
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was developed and analyzed by Robinson et al. �45� and
Robinson and Smedley �46�, who also derived an equivalent
circuit. Recently, the first experimental results investigating
Newtonian slip at a smooth surface using such a device have
been reported �47�, for oscillations at 40 kHz.

There has been some confusion relating to fundamental
aspects of slip, perhaps best characterized by Neto et al. �1�,
who noted that “dialogue between the QCM community and
other researchers interested in slip has been scarce.” In order
to address this issue, Navier’s definition of the slip length is
used consistently in the current work. An intuitive, consis-
tent, and general methodology for slip measurement at an
oscillating surface is presented. Analytical inconsistencies in
the literature are identified and clarified, especially those
concerning an oscillating interface. The composite torsional
oscillator is introduced, along with a full analysis for mea-
surement of Newtonian slip using this device. Preliminary
experiments are presented to demonstrate how this device is
used to probe interfacial forces in oscillatory flow. We dis-
cuss the interpretation of measurements and the analytical
assumptions on which they are based. Finally, methods of
slip measurement are compared and the advantages of using
the composite torsional oscillator are explained.

II. THEORY

A. Newtonian slip at a smooth, oscillating surface

1. Flow profile for shear-mode oscillations

By definition, the viscosity � is constant and independent
of shear rate throughout a Newtonian fluid. The velocity field
u of an incompressible Newtonian fluid of density � in the
presence of pressure gradient �p and body force F can be
determined by solving the Navier-Stokes equation,

�� �u

�t
+ u · �u� = F − �p + ��2u ,

� · u = 0. �1�

Microfluidic flows have characteristically low Reynolds
numbers, so the convective derivative �u ·�u is insignificant
when compared with the viscous term ��2u. Solutions to the
Navier-Stokes equation are dependent on flow geometry and
boundary conditions.

The relevant solution for the current paper concerns a
smooth surface oscillating in shear mode in contact with a
fluid half space. In the absence of significant body forces or
pressure differentials, the equation of the shear wave induced
in the fluid is

uf�z,t� = uf0�t�exp�−
	2i

�
z� , �2�

where uf is the fluid velocity in the direction of the surface
oscillations, z is the Cartesian direction perpendicular to the
solid surface, and �= �2� /���1/2. The value of uf at the in-
terface is uf0, which depends on the fluid-surface boundary
condition. The time dependence of uf and uf0 is ei�t, where
the frequency of oscillation is � and t is time. This solution
is relevant for ultrasonic oscillators.

2. Navier’s slip length

Boundary slip occurs when the NSBC is contravened, so
that there is finite relative motion between a solid surface
and an adjacent fluid. Navier �7� characterized the slip
boundary condition by defining the slip length b. For flow
adjacent to a planar, impermeable solid surface,

u
0�t� = b� �u
�z,t�
�z

�
z=0

. �3�

Here u
 is the shear velocity relative to and parallel with the
surface and u
0 is the value of u
 at z=0. Navier’s definition
of slip has been widely used over a long period and has a
strong physical basis relating to viscous force at the inter-
face. The fluid shear rate at the interface that appears in Eq.
�3� also determines the viscous force,

�xz�t� = �� �u
�z,t�
�z

�
z=0

. �4�

Slip therefore determines the shear stress at the interface,
which is analogous to friction in character. The coefficient k,
defined as

�xz�t� = ku
0�t� , �5�

is finite only when there is slip. Using Eqs. �3�–�5�, we find

b =
�

k
. �6�

It is noted that the NSBC and boundary slip are, respectively,
analogous to the regimes of “static” and “sliding” solid-solid
friction. Extending the analogy, we might expect a wide va-
riety of material and interfacial properties to determine the
onset and magnitude of solid-liquid friction. If slip length
depends on shear rate, Eq. �3� becomes nonlinear, and rate-
dependent formulations of slip �e.g., �48�� become relevant.
Currently, there is conflicting experimental evidence relating
to possible shear-rate dependence of b �1,2�.

A different physical interpretation of slip length relates b
to the distance into the solid over which the tangent to the
flow profile at the surface must be extrapolated for the ve-
locity to reach zero. In this context, Navier’s slip length has
correctly been described as a fictional distance �2,49� and is
labeled in Fig. 1. The definition of slip length used in some
recent slip studies �33,37–39�, and formalized by Ellis and
Hayward �33� as �their notation� vP�dP�=vB�dP−b�, or

u
�− b1,t� = 0, �7�

is distinct from Navier’s definition in Eq. �3�. Ellis and Hay-
ward’s definition corresponds to extrapolation of the flow
profile a distance b1 �Fig. 1� relative to the surface when slip
occurs. The value of b1 is equal to b only in the case of a
linear velocity flow profile. An often-used schematic diagram
�1,2,9,11,33,37,50�, which uses a linear flow profile to depict
slip length, appears to have been an important factor in the
emergence of Eq. �7�.

3. An intuitive slip parameter

We wish to point out that, when the flow of a Newtonian
fluid is driven by an oscillating surface �as introduced
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above�, the shear rate introduces nonzero phase into the
value of b, which is defined using u
 �Eq. �3��. The existence
of this phase highlights the limitations of direct quantitative
comparison of measurements of b using different experimen-
tal techniques.

When measuring slip at an oscillating surface, it is both
intuitive and useful to use the dimensionless complex param-
eter �= ���ei	�. This parameter, which simply quantifies the
velocity discontinuity between the solid surface and the first
liquid layer, simplifies the algebra describing the effect of
damping on the equivalent circuit of a piezoelectric oscilla-
tor. It is defined by interfacial properties and does not depend
on the flow profile,

�us�t� = uf0�t� . �8�

The velocity of the solid surface is us and the fluid oscillation
is assumed to be dominated by a sinusoidal oscillation of
angular frequency equal to that of the solid surface. Under
this assumption, � is equivalent to parameters introduced by
Ferrante et al. �35� and used elsewhere �34,51� for modeling
of slip at an oscillating surface; to our knowledge, it has not
previously been applied to experimental measurements with
full consideration of phase dependence. More generally, �
can be decomposed into Fourier components, an approach
that has been used when modeling nanobubble-induced slip
�52,53�. The NSBC is consistent with the values ���=1 and
	�=0.

For an oscillating surface, flow is relative to surface mo-
tion, so

u
�t� = �uf�t� − us�t�� = us�t��� exp�−
	2i

�
z� − 1 . �9�

The magnitude and phase of u
 relative to us are plotted in
Fig. 2, for both slip and nonslip cases. Figure 2�a� shows that
the relative amplitude of oscillation is uniformly nonzero at
the surface when slip is present, but varies significantly near
the interface �z /�
0.25� depending on the values of ��� and
	�. Further from the surface �z /��1�, the relative amplitude
tends toward a stable value close to 1 but dependent on ���.
The relative phase follows a similar trend in Fig. 2�b�, show-

ing strong dependence on the combination of ��� and 	� near
the interface. There is a phase discontinuity at z /��0.1 for
the cases in which ����1. The plane of discontinuous phase
is consistent with a negative slip length �Fig. 3� and could,
for example, be interpreted as the edge of a stagnant bound-
ary layer. Further from the surface �z /��1�, the relative
phase converges toward the NSBC value, which tends to-
ward zero a long way from the interface.

Using this flow profile, the slip length can be directly
related to � �Eqs. �2�, �3�, �8�, and �9��:

� =
1

1 + �	2i/��b
. �10�

Equation �10� is plotted in Fig. 3 using the notation b
= �b�ei	b. Figure 3�a� shows that ��� decreases when 	b is
within 90° of −45°, so that the slip length b is positive. The
phase plot �Fig. 3�b�� demonstrates that 	b=−45° when the
fluid oscillates in phase with the surface �	�=0°�. For the

FIG. 1. Slip lengths b and b1 defined in the text, with the shaded
area representing solid material. Navier’s slip length b �Eq. �3�� is
equal to the variable b1 �Eq. �7�� only when the velocity profile is
linear. The labels x and z denote Cartesian coordinate axes.

(a)

(b)

FIG. 2. Magnitude �a� and phase �b� of u
 /us as a function of the
distance from an oscillating surface for a Newtonian fluid, calcu-
lated using Eq. �9� and plotted for the NSBC as well as various slip
boundary conditions. The NSBC phase is discontinuous at the in-
terface, taking a value of zero at z=0 even though the limit as z /�
approaches zero is 45°.
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NSBC, b=0, so 	b can take any value. The maximum size of
the phase shift 	� is limited by slip length magnitude. The
complicated nature of the flow profile near the interface sup-
ports the use of the parameter �, which does not depend on
the flow other than at the interface itself, in contrast to b.
However, calculation of the shear rate using the flow profile
is still necessary for derivation of � from surface force ex-
periments.

4. Effect of slip on damping force and mechanical impedance

The damping force on an oscillating surface is equal and
opposite to the viscous force in the adjacent Newtonian fluid.
When slip occurs, the damping stress is �Eqs. �2�, �4�, and
�9��

�xz�t� = −
	2i

�
��us�t� . �11�

Analysis of ultrasonic oscillators is greatly simplified by
using the equivalent circuit analogy, in which mechanical
components are replaced by their electronic equivalents. We
now incorporate the damping stress into the analysis of a
mechanical circuit. The stress at the interface �Eq. �11��,
which has components both in phase and out of phase with
the surface velocity, can be written as

�xz�t� = − �R + iX�us�t� . �12�

The impedance of the system is Z=R+ iX, as previously ap-
plied to a torsional oscillator by Bergenholtz et al. �41�, who
used the NSBC. This impedance is dependent on the liquid,
the surface, and the interaction between them. The real part
of the impedance �R� determines the stress opposing, and in
phase with, the surface velocity,

R =
	2����

�
cos�

4
+ 	�� . �13�

This impedance is viscous in nature and dissipative of en-
ergy. In an equivalent circuit, velocity is analogous to current
and R is like a resistance. Energy dissipation is determined
by the quality factor of the oscillation.

The inertial term �X� gives the stress that is in phase with
the acceleration of the surface,

X =
	2����

�
sin�

4
+ 	�� . �14�

An increase in the inertial term is equivalent to the addition
of mass to the surface of the oscillator. In the equivalent
circuit, the time derivative of the current is analogous to
acceleration �modified by a factor of ��, so X is an induc-
tance. A change in X is measured by considering the change
in the period of oscillation. Under the NSBC, R and X are
equal for Newtonian fluid damping. Slip-induced change in
the relative sizes of these terms indicates a finite value of 	�.

5. Conceptual issues

The theory that has been presented implicitly addresses
two conceptual pitfalls that have caused confusion and mis-
interpretation in a range of previous work. The first pitfall
concerns the variant “slip length” b1, defined in Eq. �7�,
which is equal to b only in the limit of a linear flow profile.
This limit is generally not applicable for slip measurements.
The difference between b and b1 is greater than 10% for
typical slip measurements using AFM, SFA, or ultrasonic
oscillation methods. We further note that Ellis and Hay-
ward’s definition has been used inconsistently; both with and
without considering a Taylor expansion �38,39�. Navier’s slip
length b should be used at the present time due to its strong
physical basis and to promote consistency across experimen-
tal studies.

The second conceptual pitfall relates to those experimen-
tal studies of slip at oscillating surfaces which have imposed
a restriction on the phase of the slip �33,37–39�, especially
the assumption that the slip length b is real valued. It is
equivalent to assuming that k or its reciprocal s is real val-
ued, or, more generally, that the damping force is in phase
with the surface velocity �Eq. �6��. Several lines of reasoning
lead us to emphasize that b must be allowed to have nonzero
phase. We have shown that, because the slip length is defined
using the shear rate �Eq. �3��, the z dependence of the fluid
velocity �a complex exponential, Eq. �2�� introduces phase to
the value of b. The usual �NSBC� form of solid-fluid friction
force is viscous �Eq. �11�� and therefore 45° out of phase
with the velocity above an oscillating surface. Figure 3

(a)

(b)

FIG. 3. Magnitude �a� and phase �b� of � relative to b for a
Newtonian fluid, calculated using Eq. �10�. Equations �3� and �9�
can be used to show that 	b takes a value of −45° rather than 135°
when 	�=0. A value of 	b=135° is consistent with a negative
value of b and NSBC phase dependence.
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shows that the phase of b in the limit approaching the NSBC
is nonzero and that both magnitude and phase must be deter-
mined for either b or � to be fully described. Restricting b to
real values is equivalent to restricting � to one degree of
freedom in Eq. �10�. Furthermore, experiments �47� have in-
dicated that a fluid can be expected to oscillate in phase with,
or slightly lag, the surface oscillation. Neither interpretation
is consistent with a real value of b.

Having established that b must be considered complex,
we address specific arguments made in previous studies in
support of a real-valued b. First, there has been a direct as-
sumption �33,38,39� that the value of k �or s� should not be
phase dependent. This assumption has been based on Rodahl
and Kasemo’s argument �54�, which links k to the ratio of
force to velocity for low Reynolds number drag on small
bodies �e.g., Stokes drag�, in which case k is a real constant.
This argument ignores the fact that important factors in the
determination of Stokes drag include the contribution of
pressure surrounding the particle, the requirement for steady
nonoscillatory flow, and use of the NSBC. We note that fric-
tion and drag parameters are usually real because they are
not used to describe oscillatory flow. In conjunction with this
point, we note that the term “coefficient of friction,” which
has frequently been used to describe k in slip studies, is
distinct from the usual parameter of that name, which relates
the shear force to the normal force in the case of solid-solid
sliding friction. Second, an argument for phase restriction
�33� has drawn on the correlation between bond strength and
bond length, which should determine the magnitude and
phase of the slip, respectively. Such an argument does not
explain why the phase should take one particular value, or
why such a correlation between magnitude and phase should
not be experimentally investigated.

A nonzero phase is not significant in previous work relat-
ing to lower-frequency oscillations in AFM or SFA devices
�23�, in which ��100 �m for 39 Hz oscillations in water,
as opposed to �500 nm for a 1 MHz oscillator. Similarly,
periodically patterned microchannels �55� are adequately de-
scribed by a real-valued slip length when the ratio of the flow
velocity to the pattern wavelength does not exceed �1 kHz,
corresponding to patterns of extremely short spatial wave-
length.

B. Slip measurement using the composite torsional ultrasonic
oscillator

1. Theory applied to the torsional oscillator

The previous discussion of slip is now applied to the com-
posite torsional ultrasonic oscillator �Fig. 4�. The damping
torque when the specimen rod is submerged in a Newtonian
fluid was derived by Robinson et al. �46� under the NSBC,
using an equivalent circuit analysis. In that derivation, the
shear damping stress on a flat surface is integrated over the
surface of the specimen rod. Appendix A, in this paper, gives
the same derivation with slip included and Appendix B dis-
cusses an assumption that is used. Similar derivations have
considered damping of other torsional oscillators by vis-
coelastic fluids under the NSBC, yielding similar functional
forms �41,43,56�. For the oscillator of specimen rod radius

a�� described by Fig. 4, the total torque for h �=1 or 2�
immersed flat surfaces is

T�t� = a2�� +
1

2
ha�	2i

�
��us,max�t� , �15�

where the subscript “max” refers to the value at the antinode
of the standing wave, which has wavelength �.

(a)

(b)

FIG. 4. The composite torsional ultrasonic oscillator �45,46�. �a�
shows a piezoelectric X-cut �-quartz rod, which takes dimensions
of height H�48 mm and radius a�5 mm for rods of resonant
frequency 40 kHz used in experiments presented here. Four con-
ducting electrodes, separated from each other by an angle 2�, are
coated on to the rod surface, and a voltage V is applied in order to
excite torsional oscillations. In the composite oscillator 4�b� two
identical piezoelectric rods are joined together with a coresonant
specimen rod. A standing torsional wave of wavelength � is set up
with antinodes located at free ends and joints. Typically the length
of each rod is � /2, as in the figure. The apparatus is held at the
stationary nodes, where the electrode connections are also located.
Viscous fluid damping is measured by raising the test fluid on an
adjustable stage so that the specimen rod is immersed from the free
end along a length of the rod l. The z and r axes of the cylindrical
polar coordinate system used in the text are as shown. The voltages
across the drive �Vd� and gauge �Vg� crystals are measured along
with the resonant period �.
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When a specimen rod is immersed, the resistance and
inductance added to the equivalent circuit are R� and L�,
respectively, so

T�t� = �R� + i�L��
us,max�t�

a
. �16�

Equation �16� is directly analogous to Eq. �12� for this spe-
cific configuration if we substitute notations R=R� and X
=�L�, consistent with the resistive and inductive descrip-
tions of these parameters.

Comparing Eqs. �15� and �16� and introducing a constant
C, we find

R� = a3�� +
1

2
ha�	2�

�
���cos�

4
+ 	��

= C���cos�

4
+ 	�� ,

L� =
C

�
���sin�

4
+ 	�� . �17�

The equivalent circuit reduces to a series LCR circuit �45�.
L� is therefore related to the change in period upon immer-
sion �� and the resonant period �, using

L� = Ltot
��

�
. �18�

The inverse quality factor of the oscillation Q−1 is given by
the total resistance of the composite oscillator Rtot and the
total inductance Ltot:

Q−1 =
Rtot

�Ltot
. �19�

R� is calculated by assuming that Ltot is dominated by the
mechanical inductance �moment of inertia� of the rods �46�,
so that �L��Ltot�

R� = �LtotQ�
−1. �20�

Q�
−1 is the change in Q−1 upon immersion. When piezoelec-

tric elements are incorporated, the equivalent circuit for the
torsional oscillator gives the inverse quality factor,

Q−1 = K�Vd

Vg
� , �21�

where Vd and Vg are voltages applied to the drive and gauge
crystals respectively, and K is a calibrated constant for a
particular oscillator arrangement �45�. The quality factor is
also given by

Q−1 = � �1 − �2

	3�
� , �22�

where � is the resonant period and �1 and �2 are measure-
ments of the period when Vd is double the resonance value
with Vg held constant. By plotting the right-hand side of Eq.
�22� against the ratio Vd /Vg, Eq. �21� can be checked and the
value of K determined. K is independent of specimen rod

damping, but it is dependent on the rigid moment of inertia
of the specimen rod and so changes if mass is added to the
specimen rod.

We now consider comparison of a base case �subscript 0�
in which the NSBC holds ��=1, 	�=0�, with a case in
which slip is present �subscript 1�. In practice, it is difficult
to determine whether there is slip in the base case, so � can
be used to measure the relative amplitude and phase of slip
between the two cases investigated. C remains constant be-
tween measurements as long as a, �, �, �, and � are con-
stant, so using Eqs. �17�, �18�, and �20�, we define �Q−1 and
�� as

�Q−1 =
Q�1

−1

Q�0
−1 =

R�1

R�0
= 	2���cos�

4
+ 	�� �23�

and

�� =
��1

��0
=

L�1

L�0
= 	2���sin�

4
+ 	�� . �24�

Rearranging Eqs. �23� and �24�, � is calculated directly from
measurement:

��� =	��Q−1�2

2
+

����2

2
�25�

and

	� = arctan� ��

�Q−1� −


4
. �26�

Equations �25� and �26� are plotted in Fig. 5. Figure 5�a�
shows that ��� increases with both �Q−1 and ��, indicating
that, if mass is decoupled from the surface, the amplitude of
fluid oscillation will decrease unless more power is applied.
Figure 5�b� shows that, to retain the NSBC value of phase
�	�=0�, �Q−1 must decrease if �� decreases. Therefore, an
oscillation generating relatively low power will tend to pro-
duce a value of 	��0 �fluid oscillation leading� unless there
is some decoupling of mass from the surface, and therefore
reduced inertia. Similarly, if more power is generated, the
fluid will lag unless balanced by greater inertia. Considered
together, Figs. 5�a� and 5�b� show that a nonzero measure-
ment of either �Q−1 or �� necessarily indicates a departure
from ���=1, or 	�=0, or both.

2. Viscoelasticity

The introduction of a slip length is mathematically
equivalent to considering a viscoelastic fluid. By inspection
of Eq. �11�, and remembering that ��	�, we find that, in-
stead of using �, we can introduce a complex viscosity �� to
replace the Newtonian viscosity � such that �	�=	��. Due
to coupling to the decaying wave in the fluid, we have �
�	���	G� / i, where G�=G�+ iG� is the complex shear
modulus. We find that the storage modulus G� and the loss
modulus G� are given by combinations of the inertial and
dissipative terms in the oscillation �41�,

�G� = �R2 − X2� �27�

and
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�G� = 2RX . �28�

It is therefore misleading to use the viscoelastic description
of “storage” and “loss” moduli for the current situation. It is
also misleading to describe a Newtonian fluid as viscoelastic
until there is experimental evidence for viscoelastic behavior
rather than some other cause of slip. Some previous QCM
work based on fully phase-dependent equivalent circuit
analyses �36,57,58� has considered slip in conjunction with a
viscoelastic fluid and layering, thereby confusing possible
Newtonian slip with other effects; for further effects of lay-
ering see Sec. IV. Such an approach may be motivated by
layering of a QCM electrode substrate, which is not present
when using a torsional oscillator. One previous investigation
�34� has noted the equivalence of viscoelasticity and slip in
interpretation of slip measurements.

III. EXPERIMENT

A. Experimental details

To demonstrate investigation of slip using a torsional os-
cillator, preliminary experiments have been carried out using
a 40 kHz oscillator, as described by Fig. 4. The fused quartz

specimen rod was uniformly ground using Al2O3 grits to
remove surface features of magnitude greater than 5 �m,
and polished using cerium oxide powder. Polishing debris
was removed by sonication in acetone, isopropanol, 10% ni-
tric acid, and ethanol. Any remaining organic material was
removed using “piranha” solution �70 vol % sulphuric acid,
30 vol % hydrogen peroxide�. The rod was then thoroughly
washed in deionized water �0.2 �m filtered, 18.2 M� cm�
and lightly flame-polished to minimize surface roughness.
The “slip” case was configured by coating the specimen rod
with a hydrophobic fluoropolymer surfactant �RS Compo-
nents�, evenly dispensed from an aerosol can. The base case
was retrieved by dissolving the surfactant in isopropanol
prior to recleaning the rod using piranha solution and wash-
ing with deionized water and ethanol.

A previously optically polished, flame-polished piece of
fused quartz has rms roughness less than 1 nm and peak-to-
trough roughness less than 3 nm, as measured over several
widely distributed areas of size 5 �m2 using AFM. Previ-
ously �47�, scanning electron microscopy �SEM� revealed
peak-to-trough roughness of 2–4 �m on rods left unpol-
ished following grinding using Al2O3, with no significant
alteration of the texture following the addition of the surfac-
tant. However, a flame-polished surface coated with the sur-
factant has additional texture characterized by features of
spacing less than 5 �m with rms roughness 24 nm and peak-
to-trough roughness below 300 nm, observed using optical
microscopy and AFM. The advanced static contact angle of
deionized water on fused quartz is 44±2 °. The advanced
contact angle on the same surface coated with the surfactant
is 118±1 °. The texture of the coating causes some hyster-
esis, and the receded contact angle is 113±1 °. Contact
angles were measured using the sessile drop method �CAM
200, KSV Instruments�.

Prior to each immersion run, the specimen rod was
washed in deionized water and dried in air. For the base case,
the uncoated rod was also rinsed with ethanol prior to drying.
Deionized water was used as the test fluid in all experiments.
The oscillator was contained in an insulated bell jar standing
on a plate maintained at 303±1 K and situated on a large
mechanically damped pad usually used for a transmission
electron microscope.

B. Measurement and calibration

Measurements from recent work are presented alongside
previously reported experiments �47� in Table I and ex-
plained in this section. The data points for �Q−1 and �� are
each the result of several immersion events in each of the
base and slip cases. The specimen rod was immersed by
slowly raising a filled vessel to the rod. A value of Q�

−1 or ��

for any particular immersion run is the difference between
the dry value and the value when the water was in contact
with the node of the standing wave, adjusted to account for
any background drift. The fluid meniscus was aligned with
the vertical midpoint of a rubber O ring that was fitted half-
way along the specimen rod. The O ring, which fixes the
position of the node, was located at a point where surface
motion is zero or minimized, and is considered rigid during

(a)

(b)

FIG. 5. Magnitude �a� and phase �b� of � for a Newtonian fluid,
calculated using Eqs. �25� and �26�. Each line is plotted at a con-
stant value of either �Q−1 or ��, with the other measured quantity
taking the value determined by the x axis. In Eq. �25� and �a�, the
two measured variables are equivalent.
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calibration. Each immersion was carried out after the oscil-
lator had been left for at least 90 min, so that instrumental
drift per second was below 5e−5 for Vd /Vg and below 1e−13 s
for �, as measured over 10 min intervals.

The standard error of the mean measurement was com-
bined with error ascribed to drift to give the total experimen-
tal error in Q�

−1 and �� in each case. The uncertainty is domi-
nated by variation between different immersion events,
probably due to the extreme thermal and mechanical sensi-
tivity of the instrument. The lesser contribution due to instru-
mental drift is accounted for by assuming that the mean drift
correction is a random error. Earlier experiments �47� have
established that uncertainty due to surface tension effects and
location of the node is small relative to the standard error in
the mean value, because very little damping occurs at or near
the node.

In order to calculate Q�
−1 from the measured voltages, the

half-width of the oscillation was measured directly following
each immersion. Equations �21� and �22� were then used to
calculate a precise value of K. It has been shown �47� that a
plot having gradient K is typically linear �R2�0.9999 for all
fits� and independent of temperature, the immersion level,
and the presence of surfactant. The two former variables are
held constant during immersions, but the slip case experi-
ments were calibrated separately from the base case in the
most recent experiments. The value of K is slightly lower for
the slip case, as expected from first-principles analysis �46�
in which K is inversely proportional to the oscillator’s mo-
ment of inertia. The maximum error in K, conservatively
estimated as the difference between the slip case and the base
case, is not significant in comparison with the experimental
error of �. K changes when the torsional oscillator is me-
chanically altered, but was constant for each individual shear
rate presented in Fig. 6.

For the NSBC, it is expected that Q�
−1=2�� /� �46�. This

relation was followed to within 5% for the majority of im-
mersions. Even accounting for the possibility of slip, immer-
sion events with greater than 10% deviation clearly indicate
a significant instability in the oscillation, and such data were
discarded.

Experiments have been performed at shear-rate ampli-
tudes ��̇r�� between 230 and 6840 s−1, corresponding to lin-
ear displacement amplitudes of 3.2 and 96 nm at the antin-
ode. The linear amplitude of the oscillation is equal to

	2���̇r�� /�. The shear rate at the surface of the rod is calcu-
lated as described by Robinson et al. �45�. For this calcula-
tion, rod diameters and masses were measured using a mi-
crometer screw gauge and a Mettler AE 200 mass balance,
respectively. For each strain rate, the intrinsic gauge capaci-
tance Cm was measured to better than ±10% by finding the
gradient of straight line plots �R2�0.999� of the fractional
change in resonant period as a function of total gauge capaci-
tance �45�. The transformer ratio linking the electronic and
mechanical parts of the equivalent circuit was calculated us-
ing K. The alternative calculation �from first principles� in-
corporates large error relating to the electrode separation
angle 2� �Fig. 4, �46��. The final uncertainty in shear-rate
amplitude is �15%. However, the uncertainty in each value
relative to the others depends only on Vg, which is precise to
better than 1%.

C. Results

The results for the five experiments in Table I are plotted
as slip parameters in Fig. 6. Figures 6�a� and 6�b� appear
similar because, for all five data points, the mean values of
��Q−1−1� and ���−1� have the same sign. All data lie
within the experimental uncertainty of the NSBC. For the
three data points from Ref. �47�, the consistency of the mean
values �����1, 	��0� previously led to the conclusion that
finite slip had likely been observed. Although the newer re-
sults are not directly comparable due to differences in sur-
face preparation, the mean values are now scattered around
���=1, 	�=0, suggesting that the NSBC is observed with a
high degree of accuracy. The most recent experiments have
covered a greater range of strain rates and afforded greater
precision due to improved stability of the oscillation and
better thermal and mechanical isolation. The corresponding
mean values of �b� are now less than 30 nm, and the upper
limits bounded by experimental uncertainty are less than 60
nm. For each data point, the lower error bar of �b� is at zero
because the NSBC falls within experimental uncertainty. Be-
cause of the phase discontinuity at the NSBC �Fig. 3�, any
value of 	b is possible for near-NSBC combinations of the
measured variables.

Previously, QCM measurements �33� have obtained val-
ues of b of similar precision, although in that case finite slip
lengths of magnitudes between 10 and 80 nm were observed

TABLE I. Details of experiments previously presented ��47�, labeled A� and new experiments �labeled
B�.

Experiment ��̇r�� Linear amplitude K �Q−1 ��

�103 s−1� �nm� �10−5�

A-1 0.43±0.06 6.1±0.9 0.93 0.99±0.01 0.95±0.05

A-2 1.4±0.2 19±3 0.87 0.99±0.01 0.94±0.07

A-3 3.6±0.5 51±7 0.36 0.99±0.02 0.96±0.10

B-1 0.23±0.03 3.2±0.5 �Base� 3.60 1.00±0.01 1.02±0.03

�Slip� 3.59

B-2 6.8±1.0 96±14 �Base� 3.57 1.00±0.04 1.00±0.01

�Slip� 3.57
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on bare as well as a range of hydrophobic surfaces. As dis-
cussed previously, the analysis used to derive these values
contains inconsistencies. When considering other results in
the literature, we emphasize that comparisons are drawn
from data sets taken from measurements of very different
flows �see Sec. IV� and that the current data are observed
over a well-defined, wide range of shear rates. It is therefore
remarkable that the data are consistent with emerging trends

from high-precision AFM studies. Namely, slip at a hydro-
phobic smooth surface occurs on scales below b=50 nm, if
at all; and surface roughness such as that observed for the
slip case in the current work may play a part in suppressing
any slip at a hydrophobic surface.

IV. DISCUSSION

A. Interpretation of slip measurements

In order to discuss the interpretation of experimental slip
measurements, we first clarify the terminology used in the
discussion. Lauga et al.’s definitions �2� of “indirect” mea-
surement, “apparent” slip, and “effective” slip are used, al-
though we extend the definition of effective slip to include
temporal as well as spatial averaging. “True” slip is an often
used term not defined by Lauga et al. �2�. We define it here
as the case when the mean tangential velocity component of
a fluid is different from that of a solid surface immediately in
contact with it.

Experimental methods are predominantly indirect at
present. Even the most “direct” optical methods of slip mea-
surement have been labeled indirect �23�, in the sense that
the velocity of tracers rather than the fluid itself is measured.
In the case of the oscillator, the measured damping force is
not necessarily consistent with the idealized analysis pre-
sented in Sec. II. In any surface force measurement, the flow
profile is inferred rather than explicitly determined. Under
these conditions, the slip parameters b and � only describe
the slip dynamics in full when rate-independent, true slip
occurs and the fluid is entirely Newtonian.

Caution is required when analytically linking postulated
mechanisms to apparent or effective slip measurements. For
example, it often appears convenient to assume the presence
of layering at or near the slip interface
�34–36,38,39,46,50,58�. Typically, layers of unknown thick-
ness and interfacial properties only introduce more modeling
parameters. As discussed previously, introduced viscoelastic-
ity is indistinguishable from slip. In two studies employing �
�34,35�, multiple viscoelastic layers with multiple boundary
conditions were modeled and several parameters were fitted.
The resulting magnitudes of � �ranging from �1.8 to �5�
were larger than is reasonable for a Newtonian fluid. At
present, mechanisms of apparent slip are poorly character-
ized, so empirical measurement of slip parameters remains
the most important step. Newtonian fluids should be consid-
ered Newtonian right up to the interface to avoid introducing
error.

B. Comparison with other experimental techniques

The SFA and AFM techniques are currently the most well
developed and widely employed methods of measuring sur-
face slip, and can reach resolution of better than ±5 nm for b
�23,24�. Optical methods such as the fluorescent recovery
after photobleaching �25� and particle image velocimetry
�PIV� �59� techniques allow resolution of ±100 nm, limited
by diffraction and tracer particle size. Recently, a nano-PIV
system has reportedly resolved true slip lengths of less than
100 nm with uncertainty less than ±20 nm �27�. Several

(a)

(b)

(c)

FIG. 6. Magnitude �a� and phase �b� of � and magnitude of b �c�
for the experiments in Table I. Values of �b� have been updated
slightly ��20 nm difference in all values� from those presented in
Ref. �47�, so that drift is consistently handled. Error bars for the
calculated shear rates are omitted for clarity.
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groups have measured slip using capillary techniques �1,2�,
but accuracy has been limited by capillary fabrication issues,
the difficulty of controlling surface chemistry within a cap-
illary, and �in some cases� the effects of electro-osmotic flow.
A recently developed technique derives slip from measure-
ment of thermal motion of confined colloidal particles �28�.
A slip length of 18±5 nm has been reported at near-zero
shear rate. Torsional oscillator experiments presented in the
current work confirmed the NSBC to within ±0.03 for ���
and ±1.5° for 	�, and to within 60 nm of �b�=0. We stress
that there are no significant limitations on the precision of
the oscillator other than control of atmospheric conditions,
vibration, and electrical noise. Further, the technique offers
advantages and points of difference when compared with
other techniques.

A particular advantage of the torsional oscillator is char-
acterization of the experimental shear rate. The shear-rate
amplitude is easily varied by adjusting the applied gauge
voltage and can at least cover the range 102−104 s−1. A ma-
jor reason for use of torsional oscillators in rheological ex-
periments is the large and difficult-to-reproduce range of ac-
cessible shear rates �43,44�. In contrast, the variable velocity
distribution across a QCM causes analytical complications
�34�. In the AFM and SFA techniques �20�, the shear rate
varies with respect to surface separation and distance from
an axis passing through the centers of the approaching
curved surfaces. The shear rate is maximized away from this
axis, and also depends on the approach or withdrawal rate of
the two spheres �30�.

The second major advantage of the torsional oscillator is
versatility. Surface treatments can easily be applied to the
specimen rod, while either remote from the oscillator or at-
tached to it. If the specimen rod is detached, the response of
the oscillator is easily recalibrated. Electronic voltage and
period measurements are captured near-instantaneously, so
time-dependent trends can be measured. The oscillator is per-
fectly suited to measurement of in situ changes of surface
chemistry or other parameters, and experimental precision
would be significantly enhanced for such experiments. The
oscillator can readily be used at variable temperatures and
even variable pressures. Although it is best suited to differ-
ential measurements �similarly to optical techniques�, the
zero-slip response can be determined by careful calibration
of all the parameters described in the original equivalent cir-
cuit analysis �45,46�. In contrast, use of QCMs and other
torsional oscillator designs �41,43,56� for slip measurement
presents difficulties with regard to surface modification and
incorporation of piezoelectric equations into an equivalent
circuit analysis.

An important distinction between damping-oscillation
methods and other techniques is that the shear damping force
is measured. The SFA and AFM methods measure drainage
forces caused by pressure in the flow around curved surfaces;
viscous forces are not significant. Another difference is that,
when using the torsional oscillator, slip occurs over a rela-
tively large fluid-solid interface, so measurement of
molecular-scale effects is limited by surface homogeneity.
However, measurement of effective slip will give more ac-
curacy and precision than a value derived from a small sys-
tem. It is not true that measurements of effective slip must

take place on a scale L�b in order to have a measurable
impact �2�, because any fundamental slip mechanism should
be consistent over the whole interface. Regardless, we note
that the linear displacement amplitude for the torsional oscil-
lator is of comparable magnitude to the slip length, so
molecular-scale interactions are certainly probed using this
device.

V. CONCLUSION

In this paper, we have drawn particular attention to the
occurrence of slip at an oscillating interface. The ultrasonic
composite torsional oscillator is a versatile instrument for
measurement of viscous damping forces, and therefore slip.
In order to fully characterize this device for slip measure-
ments, we have revisited fundamental aspects of the slip
analysis. The analysis has then been applied at a generalized
oscillating surface, followed by the surface of the oscillator’s
specimen rod in particular. Preliminary experiments at shear
rates between 230 and 6800 s−1 have probed slip at a hydro-
phobic surface of rms roughness 24 nm, obtaining resolution
better than ±0.03 for ��� and ±1.5° for 	� and within 60 nm
of �b�=0.

Navier’s slip parameter, while retaining the units of
length, is best suited to interpretation as a surface force ef-
fect. Measurement of surface forces has played an important
role in developing the understanding of slip to date, while
applications are likely to utilize the lubricating effect at a
slipping surface. The actual velocity discontinuity at an os-
cillating interface, as encapsulated by the parameter � for
oscillating surfaces, is being directly observed with increas-
ing precision using optical methods. The link between a ve-
locity discontinuity and a surface force necessarily utilizes
the spatial gradient of an analytical flow profile, unless both
types of experiment can be performed on the same system.

Ongoing experiments will aim to significantly develop the
stock of published slip measurements at oscillating surfaces.
Particular experimental topics will be the influence of shear
rate, hydrophobicity, and surface texture, while the develop-
ment and in situ characterization of surfaces or fluids with
switchable properties will also be a priority.

ACKNOWLEDGMENT

Thanks are due to Dr. Shen Chong for assistance with
setting up the apparatus described here and used previously
�47�.

APPENDIX A: DERIVATION OF SLIP-ADJUSTED
TORQUE APPLIED TO A SPECIMEN ROD

In this section, the damping torque on a composite tor-
sional ultrasonic oscillator rod, as illustrated in Fig. 4, is
calculated. We follow Robinson and Smedley �46� and incor-
porate the case in which there is finite slip, as introduced in
Sec. II. Using the cylindrical polar coordinate system defined
in Fig. 4, the velocity in the azimuthal ��� direction is given
by
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u��r,z,t� = us,max�t�cos�2z

�
� , �A1�

where the subscript “max” refers to the value at r=a and at
the antinode of the standing wave, which has wavelength �.

There is a velocity gradient in the fluid in both the r and z
directions. Viscous forces in the fluid exert azimuthal shear
stresses on the rod, which dampen the torsional oscillation.
Forces due to the z gradient are neglected �Appendix B�. The
total damping torque is derived by integrating the tangential
stress �Eq. �11�� along the immersed, curved length of the
rod l. It is assumed that the fluid surface coincides with a
node and the free end is an antinode, so that sin�2l /��=1.
The torque is

Trod�t� = �
0

l

��r�t�2a2dz

=
2	2i

�
a2��us,max�t��

0

l

cos�2z

�
�dz

=
	2i

�
a2���us,max�t� . �A2�

The torque on the oscillating flat end of a rod is derived
similarly. The surface velocity at radius r from the cylindri-
cal axis is given by

u��r,z = 0,t� =
r

a
us,max�t� , �A3�

and the torque is then integrated over the surface of the free
end, so that

Tend�t� = �
0

a

��z�t�2r2dr =
2	2i

�a
��us,max�t��

0

a

r3dr

=
	2i

�

a3

2
��us,max�t� . �A4�

Neglecting edge effects between the flat end and the curved
surfaces, the total torque for h immersed flat surfaces is

T�t� = a2�� +
1

2
ha�	2i

�
��us,max�t� . �A5�

APPENDIX B: VISCOUS GRADIENT IN THE z
DIRECTION

The velocity flow field around the torsional rod has gra-
dients in both the r �radial� and z �axial� directions. The
azimuthal stress due to these gradients are given by

��r = �� �u��r,z,t�
�r

�
r=a

�
− 	2i

�
u��a,z,t� �B1�

and

��z�t� = �� �u��r,z,t�
�z

�
r=a

�
2

�
u��a,z,t� . �B2�

For a 40 kHz torsional oscillator in water, the ratio of radial
to axial stresses is �104.
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