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Synchronization cluster analysis is an approach to the detection of underlying structures in data sets of
multivariate time series, starting from a matrix R of bivariate synchronization indices. A previous method
utilized the eigenvectors of R for cluster identification, analogous to several recent attempts at group identifi-
cation using eigenvectors of the correlation matrix. All of these approaches assumed a one-to-one correspon-
dence of dominant eigenvectors and clusters, which has however been shown to be wrong in important cases.
We clarify the usefulness of eigenvalue decomposition for synchronization cluster analysis by translating the
problem into the language of stochastic processes, and derive an enhanced clustering method harnessing recent
insights from the coarse-graining of finite-state Markov processes. We illustrate the operation of our method
using a simulated system of coupled Lorenz oscillators, and we demonstrate its superior performance over the
previous approach. Finally we investigate the question of robustness of the algorithm against small sample
size, which is important with regard to field applications.
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I. INTRODUCTION

Studying the dynamics of complex systems is relevant in
many scientific fields, from meteorology �1� and geophysics
�2� to economics �3� and neuroscience �4,5�. In many cases,
this complex dynamics is to be conceived as arising through
the interaction of subsystems, and it can be observed in the
form of multivariate time series where measurements in dif-
ferent channels are taken from the different parts of the sys-
tem. The degree of interaction of two subsystems can then be
quantified using bivariate measures of signal interdepen-
dence �6–8�. A wide variety of such measures has been pro-
posed, from the classic linear correlation coefficient over
frequency-domain variants such as magnitude squared coher-
ence �9� to general entropy-based measures �10�. A more
specific model of complex dynamics that has found a large
number of applications is that of a set of self-sustained os-
cillators whose coupling leads to a synchronization of their
rhythms �11,12�. Especially the discovery of the phenom-
enon of phase synchronization �13� led to the widespread use
of synchronization indices in time series analysis �14–16�.

However, by applying bivariate measures to multivariate
data sets an N-dimensional time series is described by an
N�N matrix of bivariate indices, which leads to a large
amount of mostly redundant information. Especially if addi-
tional parameters come into play �nonstationarity of the dy-
namics, external control parameters, experimental condi-
tions� the quantity of data can be overwhelming. Then it
becomes necessary to reduce the complexity of the data set
in such a way as to reveal the relevant underlying structures,
that is, to use genuinely multivariate analysis methods that
are able to detect patterns of multichannel interaction.

One way to do so is to trace the observed pairwise corre-
spondences back to a smaller set of direct interactions using,
e.g., partial coherence �6,17�, an approach that has recently
been extended to phase synchronization �18�. Another and
complementary way to achieve such a reduction is cluster
analysis, that is, a separation of the parts of the system into
different groups, such that signal interdependencies within
each group tend to be stronger than in between groups. This
description of the multivariate structure in the form of clus-
ters can eventually be enriched by the specification of a de-
gree of participation of an element in its cluster. The straight-
forward way to obtain clusters by applying a threshold to the
matrix entries has often been used �5,19,20�, but it is very
susceptible to random variation of the indices. As an alterna-
tive, several attempts have recently been made to identify
clusters using eigenvectors of the correlation matrix
�19,21,22�, which were motivated by the application of ran-
dom matrix theory to empirical correlation matrices �3,23�.

In the context of phase synchronization analysis, a first
approach to cluster analysis was based on the derivation of a
specific model of the internal structure of a synchronization
cluster �24,25�. The resulting method made the simplifying
assumption of the presence of only one cluster in the given
data set, and focused on quantifying the degree of involve-
ment of single oscillators in the global dynamics. Going be-
yond that, the participation index method �26� defined a mea-
sure of oscillator involvement based on the eigenvalues and
eigenvectors of the matrix of bivariate synchronization indi-
ces, and attributed oscillators to synchronization clusters
based on this measure.

But despite the apparent usefulness of eigenvalue decom-
position for the purposes of group identification, beyond
some phenomenological evidence no good reason has been
put forward why an eigenvector of a synchronization matrix
should directly indicate the system elements taking part in a*allefeld@igpp.de
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cluster. Moreover, in a recent survey of the performance of
synchronization cluster analysis in simulation and field data
�27� it has been shown that there are important special
cases—clusters of similar strength that are slightly synchro-
nized to each other—where the assumed one-to-one corre-
spondence of eigenvectors and clusters is completely lost.

In this paper, we provide a better understanding of the
role of eigenvectors in synchronization cluster analysis, and
we present an improved method for detecting synchroniza-
tion clusters, the eigenvector space approach. The organiza-
tion of the paper is as follows: In Sec. II, we briefly recall the
definition of the matrix of bivariate synchronization indices
R as the starting point of the analysis. We motivate its trans-
formation into a stochastic matrix P describing a Markov
chain and detail the properties of that process. Utilizing re-
cent results on the coarse-graining of finite-state Markov pro-
cesses �28–30� we derive our method of synchronization
cluster analysis, and we illustrate its operation using a sys-
tem of coupled Lorenz oscillators. In Sec. III, we compare
the performance of the eigenvector space method with that of
the previous approach, the participation index method �26�,
and we investigate its behavior in the case of small sample
size, which is important with regard to the application to
empirical data.

II. METHOD

A. Measuring synchronization

Synchronization is a generally occurring phenomenon in
the natural sciences, which is defined as the dynamical ad-
justment of the rhythms of different oscillators �11�. Because
an oscillatory dynamics is described by a phase variable �, a
measure of synchronization strength is based on the instan-
taneous phases �im of oscillators i=1, . . . ,N, where the index
m enumerates the values in a sample of size n. The nowadays
commonly used bivariate index of phase synchronization
strength �15,16,18,20,24,26,27� results from the application
of the first empirical moment of a circular random variable
�31� to the distribution of the phase difference of the two
oscillators,

Rij = � 1

n
�
m=1

n

ei��im−�jm�� . �1�

The measure takes on values from the interval �0,1�, repre-
senting the continuum from no synchronization to perfect
synchronization of oscillators i and j; the matrix R is sym-
metric, its diagonal being composed of ones. Special care
must be taken in applying this definition to empirical data,
because the interpretation of R as a synchronization measure
in the strict sense only holds if phase values were obtained
from different self-sustained oscillators.

The determination of the phase values �im generally de-
pends on the kind of system or data to be investigated. For
the analysis of scalar real-valued time series si�t� that are
characterized by a pronounced dominant frequency, the stan-
dard approach utilizes the associated complex-valued ana-

lytic signal zi�t� �32�, within which every harmonic compo-
nent of si�t� is extended to a complex harmonic. The analytic
signal is commonly defined �13� as

zi�t� = si�t� + iHsi�t� , �2�

where Hsi denotes the Hilbert transform of the signal si,

Hsi�t� =
1

�
P.V.�

−�

� si�t��
t − t�

dt�, �3�

and where P.V. denotes the Cauchy principal value of the
integral. The instantaneous phase of the time series is then
defined as

�i�t� = arg zi�t� . �4�

Equivalently, the analytic signal can be obtained using a filter
that removes negative frequency components,

zi�t� = F−1�F�si�t���1 + sgn����	 , �5�

where F denotes the Fourier transform into the domain of
frequencies � and sgn denotes the sign function �33�. This
definition is more useful in practice because it can be
straightforwardly applied to empirical time series, which are
sampled at a finite number n of discrete time points tm, sim
=si�tm�. If several time series �realizations of the same pro-
cess� are available, the obtained phase values can be com-
bined into a single multivariate sample of phases �im, where
the index m=1, . . . ,n now enumerates the complete available
phase data.

B. Cluster analysis via Markov coarse-graining

In the participation index method �26�, the use of eigen-
vectors of R for synchronization cluster analysis was moti-
vated by the investigation of the spectral properties of corre-
lation matrices in random matrix theory �23�. Another
context where eigenvalue decomposition turns up naturally is
the computation of matrix powers, which becomes as simple
as possible using the spectral representation of the matrix.

Powers of R have a well-defined meaning in the special
case of a binary-valued matrix �Rij � �0,1	�, as it is obtained
for instance by thresholding: The matrix entries of Ra count
the number of possible paths from one element to another
within a steps, i.e., they specify the degree to which these
elements are connected via indirect links of synchrony. By
analogy, we interpret �Ra�ij also in the general case as quan-
tifying the degree of common entanglement of two elements
i and j within the same web of synchronization relations. In
the following we will call this quantity the a-step synchroni-
zation strength of two oscillators because it reduces to the
original bivariate synchronization strength Rij in the case a
=1.

This synchronization strength over a steps is relevant for
synchronization cluster analysis, because in a system where
synchronization clusters are present it is possible that the
degree of direct bivariate synchrony of two elements is not
very strong, but they are both entangled into the same web of
links of synchrony. These indirect links, which make the two
elements members of the same synchronization cluster, be-
come visible in Ra.
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Moreover, with increasing power a the patterns of syn-
chrony within a cluster �the matrix columns� become more
similar, approaching the form of one of the dominant eigen-
vectors. If there are different clusters in the system, a suitable
a can be chosen such that each cluster exhibits a different
pattern, representing the web of synchronization relations it
is comprised of. These patterns constitute signatures by
which elements can be attributed to clusters. The cluster sig-
natures are related to the dominant eigenvectors of R; by
transition to larger a they become even more dominant, lead-
ing to an effective simplification of the matrix.

For the identification of the members of a cluster only the
patterns of synchrony are relevant, while the absolute size of
elements of different columns diverges with a, so that some
sort of normalization is called for. Different normalization
schemes might be used for this purpose. However, using the
L1-norm the procedure can be simplified, because for the
normalized version of the synchronization matrix, given by

Pij =
Rij

�
i�

Ri�j

, �6�

it holds that powers of P are automatically normalized, too.
Moreover, the L1-normalized matrix P is a column-stochastic
matrix, that is, it can be interpreted as the matrix of i← j
transition probabilities describing a Markov chain, whose
states correspond to the elements of the original system. Via
this connection, the tools of stochastic theory and especially
recent work on the coarse-graining of finite-state Markov
processes �28–30� can be utilized for the purposes of syn-
chronization cluster analysis.

The Markov process defined in this way possesses some
specific properties �34�: It is aperiodic because of the non-
zero diagonal entries of the matrix, and it is in general irre-
ducible because the values of empirical Rij for i� j will also
almost never be exactly zero. For a finite-state process, these
two properties amount to ergodicity, which implies that any
distribution over states converges to a unique invariant dis-
tribution p�0�, corresponding to the eigenvector of P for the
unique largest eigenvalue 1. This distribution can be com-
puted from R as

pi
�0� =

�
j

Rij

�
i�

�
j

Ri�j

, �7�

where the vector components of p�0� are denoted by pi
�0�.

With the matrix R also the stationary flow given by

Pijpj
�0� =

Rij

�
i�

�
j�

Ri�j�

�8�

is symmetric, i.e., the process fulfills the condition of de-
tailed balance Pijpj

�0�= Pjipi
�0�, which makes eigenvalues and

eigenvectors of P real-valued �28�.

For the Markov process, the a-step synchronization
strength considered above translates into transitions between
states over a period of � time steps. To compute the corre-
sponding transition matrix P� the eigenvalue decomposition
of P is used. If �k with k=0, . . . ,N−1 denote the eigenvalues
of P, and the right and left eigenvectors pk and Ak are scaled
such that the orthonormality relation

Akpl = 	kl �9�

is fulfilled, the spectral representation of P is given by

P = �
k

�kpkAk, �10�

and consequently

P� = �
k

�k
�pkAk. �11�

We assume that eigenvalues are sorted such that �0=1

 
�1
� 
�2
� ¯ � 
�N−1
. The scaling ambiguity left by the
orthonormality relation is resolved by choosing

pik = pi
�0�Aki �12�

�where pik and Aki denote the vector components of pk and
Ak, respectively�, which leads to the normalization equations

�
i

pik
2

pi
�0� = 1 and �

i

pi
�0�Aki

2 = 1, �13�

with the special solutions pi0= pi
�0� and A0i=1. Additionally, a

generalized orthonormality relation

�
i

pikpil

pi
�0� = 	kl �14�

follows for the right eigenvectors.
The convergence of every initial distribution to the sta-

tionary distribution p�0� corresponds to the fact that because
of nonvanishing synchronies the whole system ultimately
forms one single cluster. This perspective belongs to a time
scale �→�, at which all eigenvalues �k

� go to 0 except for
the largest one, �0

� =1. In the other extreme of a time scale
�=0, P� becomes the identity matrix, all of its columns are
different, and the system disintegrates into as many clusters
as there are elements. For the purposes of cluster analysis,
intermediate time scales are of interest on which many but
not all of the eigenvalues are practically zero. If we want to
identify q clusters, we expect to find that many different
cluster signatures, and that means we must consider P� at a
time scale where eigenvalues �k

� may be significantly differ-
ent from zero only for the range k=0, . . . ,q−1.

This is achieved by determining � such that 
�q
��0. Us-
ing a parameter �
1 chosen to represent the quantity that is
considered to be practically zero �e.g., �=0.01�, from 
�q
�
=� we calculate the appropriate time scale for a clustering
into q clusters as
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��q� =
ln �

ln
�q

. �15�

The vanishing of the smaller eigenvalues at a given time
scale describes the loss of internal differentiation of the clus-
ters, the removal of the structural features encoded in the
corresponding weaker eigenvectors. On the other hand, the
differentiation of clusters from each other via the dominant
eigenvectors will be clearer the larger the remaining eigen-
values are, especially �q−1

� . This provides a criterion for se-
lecting the number of clusters q: the clustering will be better
the larger 
�q−1
��q� is. Equivalently, we select q based on the
timescale separation factor

F�q� =
��q − 1�

��q�
=

ln
�q

ln
�q−1


, �16�

which is independent of the particular choice of �, and in-
variant under rescaling of the time axis. This criterion gives
a ranking of the different possible choices �from 1 to N−1�.
The fact that �0=1 and therefore F�1�=� implies a limita-
tion of this approach, since the choice q=1 is always char-
acterized as absolutely optimal. Therefore, the first
meaningful—and usually best—choice is the second entry in
the q ranking list.

To determine which elements belong to the same cluster,
we need a measure d of the dissimilarity of cluster signa-
tures, that is, of the column vectors of P�. Since these vectors
belong to the space of the right eigenvectors of P, the appro-
priate dissimilarity metric is based on the norm correspond-
ing to the normalization equation for the right eigenvectors
�Eq. �13�, left-hand side�,

�p� = �
i

pik
2

pi
�0� . �17�

The resulting column vector dissimilarity

d2�j, j�� = �
i

1

pi
�0� 
�P��ij − �P��ij�


2 �18�

has the convenient property that the dimensionality of the
space within which the clustering must be performed can be
reduced, because the expression obtained by inserting the
spectral representation for the matrix entries of P�,

�P��ij = �
k

�k
�pikAkj , �19�

simplifies to

d2�j, j�� = �
k


�k
2��Akj − Akj��
2 �20�

using the generalized orthonormality of the right eigenvec-
tors, Eq. �14�. Since for appropriately chosen �=��q� contri-
butions for larger k vanish starting from k=q,
and because A0i=1 for all i, it is sufficient to let the sum run
over the range 1 , . . . ,q−1. The dissimilarity d can therefore
be interpreted as the Euclidean distance within a
�q−1�-dimensional left eigenvector space, where each ele-
ment j is associated with a position vector

o��j� = �
�k
�Akj�, k = 1, . . . ,q − 1. �21�

To actually perform the clustering, we can in principle use
any algorithm that is designed to minimize the sum of
within-cluster variances. Our implementation derives from
the observation that clusters in eigenvector space form a
q-simplex �29,30�. A first rough estimate of the cluster loca-
tions can therefore be obtained by searching for the extreme
points of the data cloud, employing a subalgorithm described
in Ref. �30�: Determine the point farthest from the center of
the cloud, then the point farthest from the first one; then
iteratively the point farthest from the hyperplane spanned by
all the previously identified points, until q points are found.
Using the result of this procedure as initialization, the stan-
dard k-means algorithm �35� that normally tends to get stuck
in local minima converges in almost all cases quickly onto
the correct solution.

In summary, the algorithmic steps �36� of the eigenvector
space method introduced in this paper are: �1� Calculate the
matrix of bivariate synchronization indices Rij, Eq. �1�. �2�
Convert the synchronization matrix R into a transition matrix
P, Eq. �6�. �3� Compute the eigenvalues �k and left eigen-
vectors Ak of P. �4� Select the number of clusters q, q
1,
with the largest time-scale separation factor F�q�, Eq. �16�.
�5� Determine the positions o��j�, Eq. �21�, in eigenvector
space for �=��q�, Eq. �15�. �6� Search for q extreme points
of the data cloud. �7� Use these as initialization for k-means
clustering.

C. Illustration of the eigenvector space method

In order to illustrate the operation of the method, we ap-
ply it to multivariate time series data obtained from simu-
lated nonlinear oscillators, coupled in such a way as to be
able to observe synchronization clusters of different size as
well as unsynchronized elements. The system consists of N
=9 Lorenz oscillators that are coupled diffusively via their
z-components,

ẋj = 10�yj − xj� ,

ẏ j = 28xj − yj − xjzj ,

ż j = −
8

3
zj + xjyj + �ij�zi − zj� . �22�

The coupling coefficients �ij were chosen from �0,1	 to
implement the coupling configuration depicted in Fig. 1�a�,
such that oscillators number 2–4 are unidirectionally driven
by number 1, oscillators number 7 and 8 driven by number 9,
and numbers 5 and 6 are uncoupled. These differential equa-
tions were numerically integrated using a step size of �t
=0.01, starting from randomly chosen initial conditions. Af-
ter discarding an initial transient of 104 data points, further
4�104 samples entered data processing. Instantaneous
phases � jm of oscillators j at time points tm= �m−1��t were
determined from the z-components using the analytic signal
approach after removal of the temporal mean, and bivariate
synchronization strengths Rij were computed.
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The outcomes of the eigenvector space method applied to
the resultant matrix of bivariate indices are presented in Fig.
1. Figure 1�b� shows the spectrum of eigenvalues �k of the
transition matrix P with the corresponding time scales ��q�
and time-scale separation factors F�q�. A gap in the eigen-
value spectrum between indices k=3 and 4 translates into a
maximum time-scale separation factor for q=4, which rec-
ommends a search for four clusters in the eigenvector space
for time scale �=3.5. This three-dimensional space is de-
picted in Fig. 1�c�, where the expected grouping into four
clusters can be clearly recognized in the arrangement of el-
ements j with positions o��j�. These four clusters that corre-
spond to the two groups of driven oscillators and the two
uncoupled oscillators �each of which forms a single-element
cluster� are easily identified by the k-means algorithm. The
results shown here were obtained using �=0.01; alternative
choices of 0.1 and 0.001 yielded the same clustering.

III. PERFORMANCE

To assess the performance of the eigenvector space
method introduced in this paper, we compare it with the pre-
vious approach to synchronization cluster analysis based on
spectral decomposition. For reference, we briefly recollect
the important details.

The participation index method �26� is based on the ei-
genvalue decomposition of the symmetric synchronization
matrix R itself, into eigenvalues �k and L2-normalized eigen-
vectors vk. Each of the eigenvectors that belong to an eigen-
value �k
1 is identified with a cluster, and a system element
j is attributed to that cluster k in which it participates most
strongly, as determined via the participation index

� jk = �kv jk
2 , �23�

where v jk are the eigenvector components of vk. The method
performs quite well in many configurations, but it encounters
problems when confronted with clusters of similar strength
that are slightly synchronized to each other, which was dem-
onstrated in Ref. �27� using a simulation.

Here we employ a refined version of that simulation to
compare the two methods. We consider a system of N=32
oscillators forming two clusters, and check whether the
methods are able to detect this structure from the bivariate
synchronization matrix R for different degrees of intercluster
synchrony �int. The cluster sizes are controlled via a param-
eter r, such that the first cluster comprises elements j
=1, . . . ,r, the second �r+1� , . . . ,N.

To be able to time-efficiently perform a large number of
simulation runs and to have precise control over the structure
of the generated synchronization matrices, we do not imple-
ment the system via a set of differential equations. Instead,
our model is parametrized in terms of the population value of
the bivariate synchronization index, Eq. �1�,

�ij = 

exp�i��i − � j���
 �24�

�where 
¯� denotes the expectation value�, which is the first
theoretical moment of the circular phase difference distribu-
tion �31�. For i , j within the same cluster �ij is fixed at a
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FIG. 1. Application of the eigenvector space method to a system
of nine partially coupled Lorenz oscillators. �a� Coupling configu-
ration: The left-hand group of four oscillators is driven by number
1, the right-hand group of three is driven by number 9, the remain-
ing two are uncoupled. �b� Eigenvalues �k, time scales ��q�, and
time-scale separation factors F�q�. The maximal separation factor
F�4� indicates the presence of four clusters. �c� Positions attributed
to oscillators in three-dimensional eigenvector space �o1 ,o2 ,o3�.
The clustering by the k-means algorithm results in a cluster com-
posed of oscillators number 1–4 ���, two single-element clusters
consisting in oscillators number 5 ��� and number 6 ���, respec-
tively, and a cluster composed of oscillators number 7–9 ���.
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value of �1=�2=0.8. For intercluster synchronization rela-
tions it is set to �int, which is varied from 0 up to 0.8 such
that the two-cluster structure almost vanishes.

To be able to properly account for the effect of random
variations of Rij around �ij due to finite sample size n we
generated samples of phase values, using an extension of the
single-cluster model introduced in Ref. �24�: The common
behavior of oscillators within each of the two clusters is de-
scribed by cluster phases �1 and �2. The phase differences
between the members of each cluster and the respective clus-
ter phase

�� j = �� j − �1 for j = 1, . . . ,r ,

� j − �2 for j = �r + 1�, . . . ,N ,
� �25�

as well as the phase difference of the two cluster phases,

�� = �2 − �1, �26�

are assumed to be mutually independent random variables,
distributed according to wrapped normal distributions �31�
with circular moments �1C, �2C, and �CC, respectively. Since
the summation of independent circular random variables re-
sults in the multiplication of their first moments �24�, for the
relation of model parameters and distribution moments
holds,

�1 = �1C
2 ,

�2 = �2C
2 ,

�int = �1C�CC�2C. �27�

For the performance comparison of the two methods, n
=200 realizations of this model of the multivariate distribu-
tion of phases � j were generated for each setting of the pa-
rameters, and synchronization indices Rij were calculated via
Eq. �1�.

The clustering results are presented in Fig. 2 for the par-
ticipation index and the eigenvector space method �using �
=0.01�. The quantity shown is the relative frequency �over
100 instances of the matrix R� of the failure to identify cor-
rectly the two clusters built into the model. Figure 2�a�
shows that the participation index method fails systemati-
cally within a region located symmetrically around r=N /2
=16 �clusters of equal size�. The region becomes wider for
increasing �int but is already present for very small values of
the intercluster synchronization strength. In contrast, the ei-
genvector space approach �b� is able to perfectly reconstruct
the two clusters for all values of r up to very strong inter-
cluster synchronization. It fails to correctly recover the struc-
ture underlying the simulation data only in that region where
intercluster synchronization indices attain values comparable
to those within clusters, i.e., only where there are no longer
two different clusters actually present. These results demon-
strate that the eigenvector space method is a clear improve-
ment over the previous approach.

For real-world applications, a time series analysis method
must be able to work with a limited amount of data. In the
case of synchronization cluster analysis, a small sample size
attenuates the observed contrast between synchronization re-
lations of different strength, making it harder to discern clus-
ters. Using the two-cluster model described above, in a fur-

FIG. 2. Comparative performance of the participation index �a�
and the eigenvector space method �b�. The methods are tested on a
system of N=32 elements, divided into two clusters containing r
and N−r elements, respectively. The intercluster synchronization
strength �int is varied from 0 up to the value of intracluster synchro-
nization 0.8. Synchronization matrices are generated based on
samples of size n=200. The quantity shown is the relative fre-
quency �over 100 trials� with which the respective algorithm failed
to recover exactly the given two-cluster structure; it is visualized in
gray scale, covering the range from 0 �white� to 1 �black�. Com-
parison shows that in a large area along r=16 where the participa-
tion index method fails, the eigenvector space method introduced in
this paper performs perfectly.

FIG. 3. Performance of the eigenvector space method depending
on the sample size n, investigated using the two-cluster system of
Fig. 2 for different values of the intercluster synchronization
strength �int. The quantity shown here is the proportion of values of
the parameter r �controlling cluster sizes� at which the two-cluster
structure failed to be recovered, visualized on a gray scale from 0
�white� to 1 �black�. The plot shows that the ability of the eigen-
vector space method to correctly identify clusters up to high values
of �int breaks down only for very small sample sizes n.
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ther simulation we investigated the effect of the sample size
n on the performance of the eigenvector space method. Pa-
rameters �int and r were varied as before, and synchroniza-
tion matrices were generated for n=10, . . . ,200 �in steps of
10�. For each value of �int and n, as a test quantity the pro-
portion of r values for which the algorithm did not correctly
identify the two clusters was calculated. The result shown in
Fig. 3 demonstrates that the performance of the eigenvector
space method degrades only very slowly with decreasing
sample size. The method seems to be able to provide a mean-
ingful clustering down to a data volume of about n=30 in-
dependent samples, making it quite robust against small
sample size.

IV. CONCLUSION

We introduced a method for the identification of clusters
of synchronized oscillators from multivariate time series. By
translating the matrix of bivariate synchronization indices R
into a stochastic matrix P describing a finite-state Markov
process, we were able to utilize recent work on the coarse-
graining of Markov chains via the eigenvalue decomposition
of P. Our method estimates the number of clusters present in

the data based on the spectrum of eigenvalues, and it repre-
sents the synchronization relations of oscillators by assigning
to them positions in a low-dimensional space of eigenvec-
tors, thereby facilitating the identification of synchronization
clusters. We showed that our approach does not suffer from
the systematic errors made by a previous approach to syn-
chronization cluster analysis based on eigenvalue decompo-
sition, the participation index method. Finally, we demon-
strated that the eigenvector space method is able to correctly
identify clusters even given only a small amount of data.
This robustness against small sample size makes it a prom-
ising candidate for field applications, where data availability
is often an issue. Concluding we want to remark that though
the method was described and assessed in this paper within
the context of phase synchronization analysis, our approach
might also give useful results when applied to other bivariate
measures of signal interdependence.
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