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Methods to search for periodic orbits are usually implemented with the Newton-Raphson type algorithms
that extract the orbits as fixed points. When used to find periodic orbits in flows, however, many such
approaches have focused on using mappings defined on the Poincaré surfaces of section, neglecting compo-
nents perpendicular to the surface of section. We propose a Newton-Raphson based method for Hamiltonian
flows that incorporates these perpendicular components by using the full monodromy matrix. We investigated
and found that inclusion of these components is crucial to yield an efficient process for converging upon
periodic orbits in high dimensional flows. Numerical examples with as many as nine degrees of freedom are
provided to demonstrate the effectiveness of our method.
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I. INTRODUCTION

Periodic orbits are important objects in the study of dy-
namical systems. In conservative systems, the winding num-
bers of periodic orbits in the integrable regime indicate the
transition to chaos �1� as well as the topological structure of
the phase space �2�. Periodic orbits can also provide infor-
mation concerning the quantum mechanical behavior of clas-
sically chaotic systems: Gutzwiller’s trace formula expresses
the energy eigenvalues of chaotic systems in the semiclassi-
cal limit as a sum over all unstable periodic orbits �3�; also,
Heller’s discovery that eigenfunctions of the stadium billiard
system are “scarred” along unstable periodic orbits indicates
that periodic orbits might provide some clues concerning the
eigenfunctions of chaotic systems �4,5�. The present authors
have also discussed the amplitude-free mechanism of quan-
tization of chaos based on the role of periodic orbits �6�. In
dissipative systems, structural properties of strange attractors
such as dimensions, Liapunov exponents, and topological en-
tropy can be determined using unstable periodic orbits �7–9�.
Even the existence of determinism in experimental time se-
ries can be revealed by the presence of periodicity in the
experimental data �10�.

Although both dissipative and conservative systems are
described using ordinary differential equations, the different
character of their periodic orbits gives rise to different tech-
niques for their extraction. Techniques developed for each
can in principle be carried over and applied in the other
category, but there are usually some kinds of limitations in-
volved. In dissipative systems, many fixed points are stable
and a neighboring trajectory gets asymptotically closer to
such a stable fixed point as time proceeds forward. However,
in chaotic conservative systems this strategy cannot be ap-
plied because the periodic orbits are saddle fixed points �11�.
Schmelcher and Diakonos proposed stabilizing all unstable
manifolds of all periodic orbits �12–14�. Their method is
based on a universal set of switching matrices that trans-

forms the original system into one in which all the fixed
points not only becomes stable but have global basins of
convergence. The globally convergent property is important
because the conventional Newton-Raphson method exhibits
exponentially shrinking basins of attraction for unstable fixed
points. However, for two dimensional systems, their method
failed to stabilize parabolic motion, and this limitation car-
ries over to higher dimensions �15�. In high dimensional con-
servative systems there are many unstable periodic orbits
with mixed stability—the motion being parabolic along cer-
tain tangent manifolds and hyperbolic along others—and this
restriction inherent in the stabilization method makes its use-
fulness limited. More importantly, the number of possible
switching matrices one has to check scales as N !2N where N
is the dimension of the system, making it a computationally
expensive method to apply in higher dimensions. Crofts and
Davidchack reduced this number drastically to 2k where k is
the dimension of the unstable subspace along the periodic
orbit �15�. But the scaling is still exponential and in strongly
chaotic regions of phase space with many unstable manifolds
one still has to check through the many different possibili-
ties. The stabilizing approach is hence difficult to apply in
high dimensional conservative systems due to its inability to
extract unstable periodic orbits with parabolic motions, high
computational cost, and also the considerable mathematical
analysis that might be involved.

An alternative approach more popular for conservative
systems is the Newton-Raphson method �16�. One criticism
of the Newton-Raphson method is that in chaotic systems the
basin of attraction of the unstable saddle fixed points shrinks
exponentially, rendering it difficult for the algorithm to suc-
ceed in converging upon the orbits �11,13,14�. More impor-
tantly, however, in the case of flows most studies have fo-
cused on first identifying a Poincaré surface of section upon
which to construct the Jacobian used in the Newton-Raphson
algorithm �11–14,17–19�. More precisely, one utilizes a
Poincaré surface mapping of the form

x� = �Msur�p�x� , �1�

where Msur denotes the mapping induced when the trajectory
intersects once on the Poincaré surface, x and x� denote
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phase points constrained on the surface, and p the number of
times the trajectory intersects the surface. To find a period p
fixed point, one sets x�=x in Eq. �1� and activates the
Newton-Raphson algorithm to search for roots of the result-
ing equation. Although the Poincaré surface is a convenient
tool for certain qualitative analyses, the dynamics of periodic
orbits in flows of more than two dimensions are not neces-
sarily well described by mappings defined on such surfaces
of section. This is because a periodic orbit closes upon itself
in the full phase space and not necessarily on the Poincaré
surface; if the periodic orbit does not intersect near one’s
chosen surface of section, the Newton-Raphson procedure
can fail to converge upon the periodic orbit. A standard way
to treat this is to impose additional constraints in the map-
ping in Eq. �1� demanding that the solution lie on the
Poincaré surface �35�. Such constraints, however, do not
originate naturally from the phase flow of the system but are
imposed externally in accordance with one’s choice of
Poincaré surface. Consequently, a solution is not guaranteed
because a periodic orbit does not necessarily need to satisfy
the one’s choice of Poincaré surface.

To better address the shrinking basin as well as to circum-
vent the Poincaré surface problem, more sophisticated forms
of Newton-Raphson methods called multipoint shooting
methods have been proposed �19,20�. The idea is that by
adopting more points along a periodic orbit, one can have an
increased basin of attraction while at the same time achiev-
ing greater stability in the converging process. Indeed, it
came to be realized that this approach to take more points
along the periodic orbit, if taken to the extreme of abandon-
ing the Poincaré surface altogether and directly seeking for
the periodic orbit as an entire curve in the full phase space,
yields a better approach to the problem. This gives rise to the
so-called variational method approach to finding periodic or-
bits in flows �21�.

In the variational method, one defines a certain cost func-
tion and a periodic orbit is obtained by seeking a curve that
minimizes the cost function. However, this method requires
one to solve a partial differential equation while at the same
time manipulating an entire curve during the iteration pro-
cess, making it possibly a computationally expensive process
in high dimensions. By comparison, the original Newton-
Raphson approach of using just the closest return does have
certain merits such as ease of implementation and speed of
calculation. Hence, in view of the advantages of doing away
with the Poincaré surface, it would be interesting to see how
the original Newton-Raphson method can be modified in a
way that does not use a Poincaré surface while at the same
time retaining its simplicity and utility.

In this study, we present a method to search for periodic
orbits in Hamiltonian flows with many degrees of freedom
�DOF�. Our method utilizes the full monodromy matrix in
the construction of the Jacobian that is used in the Newton-
Raphson method, without resorting to the Poincaré surface of
section approach. This allows matrix components corre-
sponding to directions perpendicular to the Poincaré surface
to participate in the Newton-Raphson iteration process. In
other words, in contrast to Eq. �1�, we consider a full phase
space mapping of the form

z� = Mfull�z� , �2�

where Mfull is the full phase space map, and z and z� denote
points in phase space not constrained on any Poincaré sur-
face �to be distinguished from x and x� in Eq. �1� which need
to satisfy such constraints�. Our Newton-Raphson algorithm
finds z such that z�=z in Eq. �2�. It is found that the addi-
tional information offered by these perpendicular compo-
nents of the full monodromy matrix improves the conver-
gence performance during the iteration process by allowing
the trial orbit to deform more freely in the full phase space.
We will refer to this aspect of our method as the full phase-
space Newton-Raphson �FPSNR� algorithm to distinguish it
from the standard NR algorithm based on the Poincaré sec-
tion. In addition to the FPSNR algorithm, we realized that
since we do not utilize a Poincaré surface, and also because
the full monodromy matrix forces us to work with the full
dimension of the phase space, we need a slightly different
method of preparing initial conditions so that they can par-
ticipate in the workings of the FPSNR algorithm. Hence we
also present an algorithm that prepares close returns for this
purpose.

In addition to being able to handle many-DOF systems,
two other useful properties of our method are also worth
mentioning. One is that it does not distinguish between types
of periodic orbit, and hence can find periodic orbits regard-
less of their stability characteristics. In the numerical ex-
amples, eigenvalues of the monodromy matrices of the peri-
odic orbits will be shown to justify our claim. The second
property is that application of our method does not require
any a priori knowledge of the structure or symmetries of the
phase space of the system. Although such understandings are
always preferable in the study of any system, the high di-
mensional and sometimes complicated forms of the poten-
tials of realistic molecular systems usually makes it difficult
to do this analytically. In such situations, our method is use-
ful because the periodic orbits can be extracted directly, and
can even be used in studying high dimensional phase space
structure.

The paper is organized as follows. In Sec. II, we present
the technical details of our method. A selection algorithm for
preparing initial close returns is first described, followed by
the full phase-space Newton-Raphson algorithm. In Sec. III
we present examples of our method applied to systems with
three, six, and nine DOF and discuss the results of our nu-
merical calculations in detail. Section IV discusses and con-
cludes the paper. Details concerning certain parameters
which are used in the numerical calculations and sampling
methods are discussed in the Appendixes.

II. METHOD

A. Selection algorithm: Preparing close returns
in the full phase space

In the conventional approach of using a Poincaré surface
of section, close returns �i.e., an initial guess of the periodic
orbit� need to do two things: Intersect the Poincaré surface
and be close to the starting point. When the phase space is
very high dimensional and chaotic, these two conditions can
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be difficult to satisfy simultaneously. First, a surface of sec-
tion is a lower-dimensional plane embedded in the full space,
and there are many ways of orienting the plane with respect
to the full space. When the dimension of the full space is
high and the surface of section a few dimensions smaller
than the full space, a slightly different choice of orientation
for the surface can easily lead to the trajectory not intersect-
ing it. Hence a trajectory might have returned “close” to the
starting point in some sense, but nevertheless disqualified
because the Poincaré surface is not suitably oriented to inter-
sect it. Near misses like these are costly when considered
together with the second condition. When the phase space is
strongly chaotic, a trajectory neighboring to an unstable pe-
riodic orbit may not survive being in its vicinity long enough
to intersect the Poincaré surface as well as return close to the
starting point. These discussions mean that in high dimen-
sional chaotic phase space, the Poincaré surface of section
approach makes it difficult to even prepare close returns.
Besides, as discussed in the Introduction, even when close
returns are successfully prepared, a Newton-Raphson proce-
dure might not be able to converge onto a solution lying on
the Poincaré surface.

Hence we adopt a slightly different way of preparing
close returns. We would like to find as many periodic orbits
as we can in an aimed subspace of the full phase space, such
as a region of a given energy interval. Consider a small but
nonzero volume of phase space surrounding a point lying on
a periodic orbit; a trajectory initiating from a point in this
neighboring region will lie close to the periodic orbit and
return to the vicinity of its starting point just as the periodic
orbit completes one transversal along its trajectory. We cen-
ter a ball with the same dimension as the full phase space at
the starting point and consider the portion of the trajectory
reentering the ball as the close return �Fig. 1�. In the follow-
ing, we will describe in detail the procedure for picking out
starting points with trajectories returning to the ball as well
as determine the precise time at which the closest approach is
made.

The first step is to pick a point in phase space and deter-
mine the usable lifetime, denoted tcut, of the stability matrix
along the trajectory issuing from this point �22–24�:

M��t� =�
�p�t�
�p�0�

�p�t�
�q�0�

�q�t�
�p�0�

�q�t�
�q�0�

� . �3�

When the system is chaotic, machine roundoff errors accu-
mulate in M��t� during the course of integrating the trajec-
tory. Since we use the monodromy matrix in the full phase-
space Newton-Raphson algorithm we need to ensure the
numerical accuracy of M��t�. One criterion would be to
check the determinant of M��t� and stop integration when it
deviates too much from unity. Appendixes A and B discuss
this and the picking of phase points in more detail.

After determining tcut, we pinpoint the time, tclosest, when
the trajectory makes its closest approach to the starting point.
Center a small hyperspherical ball with radius R at the start-
ing point of a trajectory �see Fig. 1�. For the portion of the
trajectory t� tcut, compute the distance D�t� between the
starting point z�0�= �p�0� ,q�0�� and the points along the tra-
jectory z�t�= �p�t� ,q�t�� using the Euclidean norm �36�

D�t� = ��z�t� − z�0��2. �4�

If D�t��R for all t� tcut, the starting point is discarded since
it gives no close return. If D�t��R for some t� tcut, we
determine, for the portion of the trajectory lying inside the
ball, the point where D�t� is a minimum within that segment
and set that t as tclosest. In other words, we determine the time
at which the trajectory makes a closest approach to its start-
ing point �37�. The starting point �p�0� ,q�0�� will be our first
guess of a periodic orbit and tclosest is set to be the period T of
that periodic orbit. The FPSNR algorithm is then applied to
them to get a more accurate periodic orbit. In the course of
applying the FPSNR algorithm, tclosest is held fixed while
�p�0� ,q�0�� is gradually adjusted until a periodic orbit is
obtained. It is possible that one starting point can give rise to
many different tclosest. In the case of unstable trajectories,
different tclosest for the same starting point may lead the
FPSNR algorithm to converge onto different periodic orbits,
so one should apply the FPSNR algorithm to all of the dif-
ferent tclosest in these cases.

To summarize: Pick a point in phase space and determine
the tcut for that point. If the trajectory returns near its starting
point before tcut, determine tclosest for the segment of that
trajectory within the ball. The starting point and correspond-
ing tclosest obtained this way will serve as the initial guesses
for the FPSNR algorithm.

Figure 2 summarizes the selection algorithm in the form
of a flow chart.

B. Full phase-space Newton-Raphson algorithm
using the full monodromy matrix

We now present the full phase-space Newton-Raphson al-
gorithm that locates a periodic orbit using the set of points
and times obtained from the selection algorithm. Let us de-
note tclosest as T because it is the period of the periodic orbit
we are going after. Referring to Fig. 3, we see that if we
integrate the trajectory starting from z for time T, we arrive

Closest approach

Starting point zz(0)

R

Trajectory

FIG. 1. �Color online� Small hyperspherical ball with radius R
centered at the starting point of a trajectory. We want to determine
tclosest, the time of closest approach to the starting point.
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under the full phase space map M at M�z ,T� such that there
is a vector dz pointing from z to M�z ,T�, that is dz
=M�z ,T�−z. Our proposed FPSNR algorithm computes a
correction vector c and add it to z to obtain a new initial
condition znew such that the length of dznew is smaller than
that of dz �see Fig. 3 for the definitions of these vectors�; z is
then repeatedly adjusted until the magnitude of dznew is be-
low some small tolerance length.

In seeking for the fixed points of a mapping F�x�, one is
looking for roots of the equation

G�x� � F�x� − x = 0. �5�

Suppose we have an initial guess x of the solution for Eq. �5�
and wish to compute a next xnew which is a better solution,
the Newton-Raphson iteration prescribes the following itera-
tion scheme

xnew = x + �G��x��−1G�x� , �6�

where G��x� is the Jacobian of G evaluated at x. When find-
ing fixed points on a Poincaré surface, one substitutes the
Poincaré map F�x� into Eq. �6� via Eq. �5� to get

xnew − x = �F��x� − 1�−1�F�x� − x� , �7�

where x and xnew are constrained on the Poincaré surface.
The correction xnew−x thus obtained is then added to x to get
xnew.

As argued in the Introduction, Eq. �7� using the Poincaré
map with points constrained on the surface is too restrictive
and may result in no solution. Instead, we propose using the
full monodromy matrix in Eq. �6� to arrive at the following
iteration scheme:

znew − z = �M��z,T� − 1�−1�M�z,T� − z� , �8�

where M is the full phase space map and M��z ,T� is the full
monodromy matrix calculated along a trajectory starting
from z for time T �both obtained from the selection algo-
rithm�. The key is that in using the full monodromy matrix
M�, znew is no longer constrained on any Poincaré surface.
Whereas a mapping defined on a Poincaré surface can only
indicate the direction to move within the confines of the
surface, the direction provided by M� can allow—with addi-
tional perpendicular components leading out of the surface—
for better adjustments in accordance with the phase flow of
the system and hence approach the periodic orbit more natu-
rally.

Denoting znew−z as �z and M�z ,T�−z as dz, Eq. �8� can
be rewritten as

�z = �M��z,T� − 1�−1dz . �9�

Equation �9� is a linear equation and seems to be readily
solvable for �z using the standard techniques �25�. However,
as is well known, at least a pair of eigenvalues of the matrix
M� approach unity as the trajectory becomes close to a pe-
riodic orbit, and thereby the matrix M�−1 will turn out to be
singular. A standard treatment to avoid such a singularity
would be to remove the matrix components corresponding to
tangential motion along the orbit. Indeed, methods based on
the Poincaré surface of section actually use this procedure,
that is, accounting for the periodic motion in the transversal
directions only. However, as discussed in the Introduction,
this can lead to failure to arrive at the periodic orbit aimed at.
It is crucial to include the tangential components to deform
and guide a trial trajectory along the right direction to make
it close itself. To compromise these conflicting demands, we
here define the correction vector c as

c � − �	dz	
�z

	�z	
, �10�

where � is a small fraction and 	 · 	 means the magnitude of
the vector. What Eq. �10� means is that we rescale the �z we
obtained from solving Eq. �9� to only a fraction � of the
length of the vector dz and reverse its sign. Inclusion of 	dz	
as a scaling factor is critical in this rescaling procedure. The
calculation of c via Eqs. �9� and �10� constitutes a simple
damped Netwon-Raphson iteration procedure for locating

Start

Generate a point in phase space zz(0).

Accept
z(0) and tclosest

as an initial guess.

End

Compute φ(t) along trajectory starting from zz(0);
determine tcut, where tcut is largest t such that φ(t)<δ.

For t<tcut:
Are there times t such that D(t)<R?

Yes

No

For t such that D(t)<R:
Determine tclosest.

FIG. 2. Flow chart for the selection algorithm. ��t� and � are
described in Appendix B.

zz

c

zznew=zz+c

MM(zznew,T)
dzdz

dzdznew

Current
trajectory

New
trajectory

MM(zz,T)

FIG. 3. �Color online� Closeup schematic diagram of the neigh-
boring region of a starting point z. Under the full phase space map
M, the trajectory moves around phase space and arrives at M�z ,T�
after time T. Adding the vector c to z will result in a dznew with a
smaller magnitude.
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the periodic orbit. The parameter � can further be optimized
to achieve faster convergence. However, we would not un-
dertake this task here but simply chose � heuristically �see
Appendix C�.

After c is obtained, it is added to z to give a new initial
condition:

znew = z + c . �11�

The vector dznew �see Fig. 3� is computed using znew. If its
magnitude is smaller than some tolerance limit �, znew is
accepted as an initial condition of a periodic orbit; otherwise,
the above process is repeated until 	dznew 	 ��. We remark
here that c does not conserve energy and znew in general has
a different energy from z.

It is mathematically true that the full use of the mono-
dromy matrix in Eq. �9� leads to a divergence at the exact
point where the closure of an orbit is rigorously completed.
To avoid this, one may use other numerical techniques such
as the singular value decomposition method to complete the
closure after a sufficiently good convergence has been at-
tained with the use of Eq. �9�. Nevertheless, we did not un-
dertake this additional process in this paper, since the proce-
dure of Eq. �9� already gives a monotonic and very good
convergence to an exact periodic orbit as shown in the next
section. Moreover, once an approximate periodic orbit is
found numerically, one can just make repeated use of the first
circuit for other calculations that require multiple transver-
sals along the same periodic orbit, without integrating the
trajectory beyond the closure point. Therefore, the simple
NR procedure we have proposed above is good enough in
practice, and no further pursuit for the exact periodic orbit
has been attempted.

Figure 4 summarizes the FPSNR algorithm in the form of
a flow chart.

III. NUMERICAL EXAMPLES

This section presents the numerical results of applying our
method to search for periodic orbits in some Hamiltonian
systems. Our presentation is meant to highlight some aspects
of our method. To demonstrate its applicability to high di-
mensional systems, we tested our method on the generalized
Hénon-Heiles systems with six and nine DOF �26,27�. We
also test it on two other systems with three DOF. These sys-
tems and their DOF are summarized in Table I.

We would also like to emphasize that our method is able
to find periodic orbits of any stability characteristics. To il-
lustrate this, we compute the eigenvalues 	 of the mono-
dromy matrix corresponding to each periodic orbit and plot
the eigenvalues schematically on the complex plane to give
an idea of their distribution.

Also, the selection algorithm and the FPSNR algorithm
are very effective in preparing good close returns and suc-
cessfully locating the periodic orbit, respectively. Let us con-
sider some numbers. The first one is Ngrid. This is the number
of grid points used in the selection algorithm �Appendix A�.
The second number is Nguess. This is the number of close
returns obtained from the grid points via the selection algo-
rithm. The third number is Npo. This is the total number of

periodic orbit conditions obtained from the initial guesses
after applying the FPSNR algorithm. The results for Ngrid for
each system are summarized in Table II while those for Nguess
and Npo are summarized in Table III.

The effectiveness of the two algorithms can be measured
by considering two ratios r1 and r2. The first one is defined
as

r1 =
Nguess

Ngrid
. �12�

r1 is a measure of the effectiveness of the selection algorithm
in preparing close returns for use in the FPSNR algorithm. A

TABLE I. Types of systems used in our numerical calculations,
their names, and their DOF.

Type of system Name DOF

Generalized A 3

Hénon-Heiles B 6

C 9

x2y2z2 potential D 3

Start

Read zz and T
obtained from the

selection algorithm.

1. Compute dzz.
2. Compute M'M'(zz,T).

Solve for ∆z :
dzz=(M'M'-II)∆z

Compute cc:
c=- ε |dzz| ∆z /|∆z|

Compute zznew:
znew = zz + cc

Compute dzznew

Is |dzznew|< γ ?

Yes

No

Accept
znew and T.

End

z=zznew

FIG. 4. Flow chart for the full phase-space Newton-Raphson
algorithm. T here is equivalent to tclosest from Fig. 2.
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small r1 indicates that the selection process had been helpful.
The ratio r2 is defined as

r2 =
Npo

Nguess
. �13�

It is the success probability of the FPSNR algorithm in con-
verging onto a periodic orbit. A r2 close to unity indicates
that the FPSNR algorithm has a high success rate. The rela-
tively high values for r2 we obtained in our numerical calcu-
lations show that the FPSNR algorithm is indeed effective in
locating periodic orbits. The values for r1 and r2 for each of
the systems we investigated are also given in Table III.

Lastly, we think that it is of interest to show the extent to
which 	dz	 can be reduced using the FPSNR algorithm. As a
measure of the size of 	dz	 of a periodic orbit, we compare it
with the perimeter of the periodic orbit itself. The perimeter
of the periodic orbit P is computed by summing up the Eu-
clidean distances between consecutive points along the peri-
odic orbit; that is,

P = 

i=1

n

��z�i + 1� − z�i��2, �14�

where z�i� is the point on the periodic orbit at the ith time
step, and the periodic orbit makes its closest approach to its
starting point at the nth time step. We measure the size of
	dz	 of each periodic orbit using �, defined as

� �
	dz	
P

. �15�

The � for the periodic orbits presented are calculated and
presented in the tables.

In the following, we will present and discuss the numeri-
cal results for the systems we investigated.

A. Generalized Hénon-Heiles systems

We first applied our method to generalized Hénon-Heiles
systems �26,27�. The Hamiltonian is given by

HN�p1, . . . ,pN,x1, . . . ,xN� =
1

2

i=1

N

pi
2 +

1

2

i=1

N

xi
2

+ 


i=1

N−1 �xi
2xi+1 −

xi+1
3

3
� ,

�16�

where 
=0.111 803 is a nonlinearity parameter and N is the
DOF of the system. Low-dimensional Hénon-Heiles systems
have been popular subjects in the study of quantum and
semiclassical mechanics �28,29�, partly because they offer an
interesting mixture of regular and chaotic motions. Recently,
higher-dimensional versions have been used as models in
several multidimensional semiclassical quantization studies
�26,27�. We have chosen to investigate this popular system
using the same value for the nonlinearity parameter.

We applied our method to the cases of N=3, 6, and 9. In
the following, we first discuss in detail the case for N=3.

TABLE II. Summary of how the grid is taken for the systems investigated. The region of phase space in
which the grid is laid out is given in the second column. Spacing refers to the distance between grid points.
Ngrid is the total number of grid points.

System Grid Spacing Ngrid

A 3� px , py , pz�0,
3�x ,y ,z�0

Along all axes:
0.3

116=1 771 561

B x1= ¯ =x6=0,
��1 , . . . ,4�0,

2��5�0

Angular spacing:
�

10

94�20=131 220

C x1= ¯ =x9=0,
��1 , . . . ,7�0,

2��8�0

Angular spacing:
�

6

57�12=937 500

D 2� px , py , pz�−2, Along px, py, pz axes:
0.4

113�113=1 771 561

2�x ,y ,z�0 Along x, y, z axes:
0.2

TABLE III. Summary of algorithm parameters and some nu-
merical results for the systems investigated. R is the radius of the
ball employed in the selection algorithm �Fig. 1�. Nguess is the num-
ber of initial guesses obtained from Ngrid �Table II�. � is the scaling
factor for the correction vector given in Eq. �10�. � is the compari-
son tolerance length used in the FPSNR algorithm �Fig. 4�. Npo is
the number of periodic orbits obtained by the FPSNR algorithm
from Nguess. r1 and r2 are defined by Eqs. �12� and �13�, respec-
tively. The Npo for system C is in parentheses because we applied
the FPSNR algorithm to only four of the Nguess initial guesses.

System R Nguess � � Npo r1 r2

A 0.4 108 019 0.05 0.0025 20 459 0.061 0 0.189

B 0.5 55 0.025 0.001 44 0.000 419 0.8

C 0.5 938 0.1 0.0001 �4� 0.001 00

D 0.4 728 0.05 0.01 619 0.000 411 0.850
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This system is high dimensional enough to be nontrivial but
also low dimensional enough for us to give a comprehensive
presentation of the myriad of orbit topologies and the stabil-
ity characteristics of the periodic orbits found using our
method. We then go on to the cases of N=6 and 9 DOF to
demonstrate the effectiveness of our method in higher-
dimensional situations.

1. N=3

Our first example is for the case of N=3. Let us relabel
the configuration coordinates x1, x2, and x3 as x, y, and z,
respectively. We first describe the calculation of Ngrid, Nguess,
and Npo. The grid is laid out in the region of phase space
given in Table II. Along the direction of each axis the dis-
tance between consecutive grid points is 0.3, giving Ngrid
=116=1 771 561. Letting R=0.4 and considering only the
first closest approach, the selection algorithm returns Nguess
=108 019 initial guesses. Using �=0.05 and �=0.0025 in the
FPSNR algorithm, one finally obtains Npo=20 459 periodic
orbits. The values of these results are also summarized in
Tables II and III.

In the following, ten periodic orbits labeled A1 to A10 are
selected for discussion. Figure 5 shows for A1 to A6 the
trajectories of the orbits in configuration space together with
schematic plots of the eigenvalues of their monodromy ma-
trix on the complex plane. Those of A7 to A10 are shown in
Fig. 6. Table IV also gives the energy, perimeter, and � of
each periodic orbit.

We first discuss the stability characteristics of the periodic
orbits. A1 to A6 are stable while A7 to A10 are unstable. A1,
A4, and A6 have three complex conjugate pairs of eigenval-
ues on the unit circle; A2 and A5 have two such pairs on the
unit circle and the last pair splits from unity along the real
axis; A3 has only one complex conjugate pair on the unit
circle and the remaining four form a four-tuple near unity.
Hence, even if there exist unit eigenvalues in the mono-
dromy matrix, our simple damped NR iteration scheme can
still successfully converge onto the periodic orbit.

We next discuss the unstable periodic orbits. A7 is a pe-
riodic orbit with a mixture of both stable and unstable mo-
tions: it has one pair of real, positive eigenvalues indicating
hyperbolic motion, and a second pair lying on the unit circle
indicating elliptic motion. A8 has two pairs of eigenvalues
lying on the real axis and the last pair splitting from unity
along the unit circle. Lastly, A9 and A10 are so-called loxo-
dromic periodic orbits, with four of their eigenvalues form-
ing a four-tuple. Hence, the FPSNR algorithm is also capable
of locating unstable periodic orbits of any stability character-
istic.

Lastly, we present the values of � �and indirectly, 	dz	� for
A1 to A10 to show that they are small and hence justify that
they can reasonably be considered as accurate periodic or-
bits. The � for each of the periodic orbits is listed in Table
IV, and we can see that 	dz	 is small compared to the perim-
eter of the entire trajectory. Alternatively, one can obtain a
rough value of 	dz	 by multiplying � to P and then compare
its magnitude to the scales given on the axes of the trajectory
plots to get a rough idea of their relative size. Either way, we
see that the FPSNR algorithm is indeed capable of reducing

	dz	 to the extent that A1 to A10 can be considered as peri-
odic orbits.

2. High-dimensional cases N=6,9

As the number of grid points scales exponentially with
dimension, when dealing with high dimensional systems it is
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sometimes necessary to focus the selection algorithm on just
those grid points falling within the energy range one is inter-
ested in studying. For the six and nine degrees of freedom
system, the grid is laid out using hyperspherical coordinates
and only grid points within a certain energy shell is subjected
to the selection algorithm. Details concerning how the grid is
taken using these coordinates are described in Appendix A.

Table II summarizes the number of grid points obtained.
Table III summarizes the parameters used in the selection
and FPSNR algorithms as well as the Ngrid and Npo obtained.

We first discuss an important role played by the selection
algorithm in dealing with higher-dimensional systems. We
chose to lay out the grid in relatively high-energy regions of
phase space, and many of the trajectories dissociate to infin-
ity. Hence, on one hand, the number of phase points is very
large for many DOF systems because of the dimensionality
of the phase space involved; on the other hand, the actual
number of close returns is only a very small fraction of all
the phase points. The small values of 0.000 419 and 0.001 of
r1 that we obtained for N=6 and 9 indicate that the selection
algorithm performs an important role of preselection in help-
ing to locate periodic orbits in high-dimensional systems.
Without weeding out the bad candidates, it would be very
difficult to rely solely on the FPSNR algorithm alone to lo-
cate the periodic orbits in these systems.

In the following, we will present some of the periodic
orbits we found for these two systems. Five periodic orbits
B1 to B5 from system B are presented in Figs. 7 and 8. Four
orbits C1 to C4 from system C are presented in Figs. 9 and
10. The energies, perimeters, and � of these periodic orbits
are also given in Table V.

B1 to B3 are quasistable periodic orbits. We see from B3
that even for a six-DOF system our method can locate long
and complex periodic orbits. Unstable periodic orbits can
also be found, such as B4 and B5. Roughly the same situa-
tion occurs in system C, where in the high-energy regime
most of the periodic orbits we obtained are unstable, short
ones such as C1 to C3; nevertheless, it is still possible to get
relatively long and complex—yet still unstable—ones such
as C4.

Even though our NR algorithm is not optimized, it is ca-
pable of very quickly and effectively reducing the 	dz	 for
high-dimensional periodic orbits, as indicated by the small �
listed in Table V for all the periodic orbits. To give a further
idea of the convergence process, Fig. 11 shows the graph of
how the 	dz	 of the sequence of trajectories leading to the
periodic orbit C2 decreases with each application of the
FPSNR algorithm. We began with an initial guess trajectory
whose 	dz	 is approximately 0.45 and this 	dz	 was reduced to
less than 0.0001 with less than 300 repetitions of the algo-
rithm.

B. Strongly chaotic system: x2y2z2 potential

We have demonstrated that our method is applicable to
the Hénon-Heiles type systems with many DOF. In this sub-
section, we will apply it to a strongly unstable system to
show that our method can find periodic orbits even in strong
chaos. We chose the following three-DOF system

H�px,py,pz,x,y,z� =
1

2
�px

2 + py
2 + pz

2� +
1

2
x2y2z2. �17�

This system is strongly chaotic. In finding periodic orbits in
strong chaos, a key role is played once again by the selection
algorithm in preparing good initial guesses. In such systems,
trajectories that get a chance to return to near their starting

TABLE IV. Numerical data for periodic orbits A1 to A10 of the
three-DOF generalized Hénon-Heiles system. P is the perimeter of
the periodic orbit. � is defined in Eq. �15�.

System A

Name of periodic orbit Energy P �

A1 0.89 8.40 1�10−5

A2 1.40 10.55 9�10−6

A3 2.30 243.12 4�10−7

A4 4.86 701.37 1�10−7

A5 7.86 183.27 6�10−6

A6 8.99 854.20 1�10−7

A7 4.44 206.66 1�10−5

A8 9.55 446.00 6�10−7

A9 8.99 720.33 1�10−7

A10 6.04 416.84 2�10−7
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points are very rare, and it is important to first locate these
with the selection algorithm before applying the FPSNR al-
gorithm. This can be discerned by the smallness of the ratio
Npo /Ngrid0.0003 we obtained �Table III�. If one were to
blindly select points from phase space and subject them
straight away to the FPSNR algorithm, the chance of locat-
ing any periodic orbit would be extremely small.

We have selected three periodic orbits, labeled D1 to D3,
to present in Fig. 12. Since this system exhibits scaling in-
variance, we leave out the scales on the axes in the trajectory
plots. �See �32� for quantization of chaos making use of the
scale invariance of the Hamiltonian.� The energy, perimeter,
and � for each periodic orbit are given in Table VI.

A large proportion of the periodic orbits we obtained are
confined to planes in configuration space. This is because the
strongly unstable nature of the system makes it difficult for
any trajectory to come back to its starting point once it be-
gins to perform three-dimensional motion. Nevertheless, we
still succeeded in locating many periodic orbits which are

three-dimensional curves. D1 to D3 are examples of such
orbits. Also, the monodromy matrix eigenvalues of these pe-
riodic orbits indicate that they are very unstable, and the fact
that we can find them demonstrates that our method is effec-
tive in handling even strongly chaotic systems.

IV. DISCUSSION AND CONCLUSION

As mentioned at the beginning of Sec. III, the ratios r1
and r2 provide measures for the effectiveness of the selection
and FPSNR algorithms, respectively. Strictly speaking, r1
and r2 may not be the most stringent way to assess the per-
formance of our method, but we think that it gives a rough
idea of how well the selection and FPSNR algorithm works
in practice. The small r1 we obtained for all the systems
investigated—especially in strongly chaotic situations such
as those of B, C, and D—shows that the selection algorithm
plays an important role in directing and focussing the
FPSNR algorithm on only those important points in phase
space.

The low number of r2 we obtained for system A demands
some explanation. In this system, many of the initial guesses
give rise to trajectories lying in the region of phase space
where there are channels of dissociation. In the course of
adjusting such a trajectory using the convergence algorithm,
the trajectory might fall into one of these dissociation chan-
nels and escape to infinity. As a caveat when using the
FPSNR algorithm, one should always monitor the mono-
dromy matrix of the trajectory during the NR iteration pro-
cess so as to be aware whenever such dissociation cases
occur.
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To conclude, we proposed a full phase-space Newton-
Raphson algorithm and a selection algorithm to search for
periodic orbits in multidimensional Hamiltonian flows. By
abandoning the Poincaré surface of section and incorporating
non-Poincaré surface components from the full monodromy
matrix into the NR algorithm, we are able to adapt the NR
algorithm’s iteration process to the natural phase flow of the
system. This increases the success probability of our FPSNR
algorithm in locating periodic orbits compared to Poincaré
surface-based methods because we do not have to deal with
additional artificial constraints imposed by the Poincaré sur-
face on the iteration process. Moreover, since it is just a
simple Newton-Raphson algorithm, our method is computa-
tionally low cost and hence genuinely implementable in high
dimensional systems. Also, our method can successfully con-
verge onto a periodic orbit regardless of its stability charac-
teristics. In our numerical examples, we demonstrated that
the method is applicable to high dimensional flows with as
many as nine degrees of freedom.
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APPENDIX A: USING GRIDS IN THE
SELECTION ALGORITHM

In the selection algorithm, points are taken by laying a
grid in phase space. The spacings between points on the grid

TABLE V. Values of energy, perimeter, and � for periodic orbits
B1 to B5 and C1 to C4 of the six- and nine-DOF generalized
Hénon-Heiles systems.

Systems B and C

Name of periodic orbit Energy P �

B1 14.84 35.73 3�10−5

B2 9.86 206.72 5�10−6

B3 9.88 564.41 2�10−6

B4 15.23 35.06 3�10−5

B5 11.90 30.82 3�10−5

C1 9.78 28.17 4�10−6

C2 11.30 30.20 3�10−6

C3 10.98 29.77 3�10−6

C4 9.89 727.57 1�10−7
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can be controlled to manipulate the average volume of phase
space occupied by each grid point, thus allowing one to set
the size of the ball radius R �Fig. 1�. Although employing an
extensive grid in the full phase space may seem like a com-
putationally costly exercise especially in high dimensions,
one can adapt the grid to specific aspects of the system one is
interested in and not necessarily have to check every grid
point. The main advantage of using a grid is in the control
over the grid point spacings so as to avoid unnecessary re-
peated sampling of points which are too close together.

When the phase space is low dimensional, such as in the
case of systems A and D, we laid out an extensive Cartesian
grid. For system B and C, however, because the phase space
is large, it is computationally expensive to compute Nguess for
a grid that covers extensive portions of phase space. Hence
we focus our selection on points within a certain energy

shell. In our calculations, we simplify matters by fixing the
configuration coordinates and making a grid on the surface
of a hypersphere in momentum space defined by



i=1

N
pi

2

2
= EKE, �A1�

where N is the DOF of the system and EKE is the kinetic
energy of the grid point. To lay out the grid defined by
Eq. �A1�, we make use of the hyperspherical coordinates.
For an N dimensional Euclidean space with coordinates
�p1 , . . . , pN�, the hyperspherical coordinates �� ,1 , . . . ,N−1�
are defined as

p1 = � cos�1� ,

p2 = � sin�1�cos�2� ,

p3 = � sin�1�sin�2�cos�3� ,

]

pN−1 = � sin�1� ¯ sin�N−2�cos�N−1� ,

pN = � sin�1� ¯ sin�N−2�sin�N−1� , �A2�

where � is the radius of the hypersphere:



i=1

N

pi
2 = �2. �A3�

The last angle N−1 has a range from 0 to 2� while the rest
of the angles have a range from 0 to �. This range covers the
whole sphere. The radius of the hypersphere � is related to
EKE by

� = �2EKE. �A4�

In our calculations for system B where N=6, we took
EKE=15. There are five hyperspherical angles 1 to 5. For
1 to 4, along each angular coordinate 9 points are taken
across the range of 0 to � with angular spacing of � /10
between points. For the last angle 5, 20 points are taken
with the same angular spacing across the range of 0 to 2�.
This gives Ngrid=94�20=131 220. The procedure is similar
for system C. EKE=10 and the angular spacing between
points along all the angular coordinates is � /6. This gives
Ngrid=57�12=937 500. The configuration coordinates for
both cases are taken to be at the origin of configuration

TABLE VI. Values of energy, perimeter, and � for periodic
orbits D1 to D3 of the x2y2z2 system.

System D

Name of periodic orbit Energy P �

D1 0.73 22.08 4�10−4

D2 1.77 27.34 4�10−4

D3 6.32 109.15 9�10−5
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space. The grid region, grid spacing, and Ngrid for the two
systems are summarized in Table II.

APPENDIX B: DETERMINATION OF tcut

In the selection algorithm we need to determine tcut, the
longest time an integrator can provide accurate calculation
for the stability matrix along a trajectory. We used the sixth
order symplectic integrator in our calculations �30,31�. When
the system exhibits chaotic behavior, machine roundoff er-
rors very quickly accumulate during the integration of the
stability matrix and significantly affect its accuracy. As the
correction vector c of Eq. �10� in the FPSNR algorithm is
computed using the stability matrix, in order to be sure that
the direction of c before rescaling is reliable, one must en-
sure the numerical accuracy of M��t� when the trajectory
makes its closest approach to its starting point.

One common practice for checking the numerical accu-
racy of M��t� is to take its determinant and make sure that it
is unity. Here we describe a more stringent criterion based on
the symplectic property of the stability matrix. In Hamil-
tonian systems, the stability matrix M��t� satisfies the sym-
plectic condition �33,34�:

M��t�JM�T�t� = J, t � 0, �B1�

where

J = � 0 I

− I 0
� , �B2�

and M�T�t� means the transpose of M��t�. Any violation of
Eq. �B1� signals that significant roundoff errors have been
accumulated in the course of the calculation. As a measure of
whether Eq. �B1� is satisfied, we define as ��t� the largest
matrix element of the matrix

abs�M��t�JM�T�t� − J� , �B3�

where abs�·� means to take the absolute value of every ele-
ment of the matrix in the parentheses. If ��t� is zero, then the
symplectic condition is satisfied perfectly; deviation of ��t�
from zero is a measure of the extent of deviation of M��t�
from the symplectic constraint, and hence of the amount of
accumulated roundoff errors.

To determine tcut for each point, integrate the trajectory
and its stability matrix over time and monitor ��t�. When
��t��� where � is a small constant, the symplectic condi-
tion is considered as violated and the rest of the trajectory is
discarded. The largest t for which ��t��� will be the tcut for
that point.

APPENDIX C: PARAMETERS

1. �

The parameter � in Appendix B is used to set an upper
limit on the ��t� of a trajectory in order to determine its tcut.
For all our numerical calculations, � is set at 10−10. When the
trajectories are strongly unstable �such as in system D or in
the high-energy regimes of systems B and C�, ��t� becomes

greater than 10−10 very quickly. Consequently, if R is chosen
too small in these cases, the selection algorithm may return
very little or even no initial guesses at all.

2. R

The parameter R is used in the selection algorithm in Sec.
II A to define the radius of a ball around the starting point of
a trajectory �Fig. 1�. There is no simple formula for deter-
mining the appropriate R for use in any arbitrary system.
First, without specifying the units the numerical value of R
by itself has no intrinsic meaning since only the size of R
relative to the volume of phase space under consideration
can give an indication of whether the ball is big or small. A
good choice of R comes from having some acquaintance
with the system. A rough guide to choosing R would be to
consider the phase space volume covered by one’s grid and
estimating the length of one side of the volume; R should
then be roughly from 1

10 to 1
20 of the length of the side.

Alternatively, one can use the spacing between the grid
points as a guide, provided one’s grid is not too sparse com-
pared to the total volume of phase space one wishes to cover.

For the systems we investigated in this paper, we found
that a length of around 3.0 along each dimension usually
encompasses a reasonably large volume of phase space, with
many trajectories within that volume having energies high
enough to dissociate. We learned from experience that a
good choice of R for these cases is between 0.1 and 0.5. With
R smaller than 0.1, one might miss the unstable periodic
orbits; with R greater than 0.5, the selection algorithm may
return many choices which are not good candidates for lo-
cating periodic orbits, hence consuming computational time
unnecessarily.

3. �, �, and the step limit

The parameters �, � are used in the FPSNR algorithm in
Sec. II B. � is used to scale the length of the correction vector
relative to the magnitude of the vector dz �cf. Eq. �10��. � is
the tolerance length against which 	dznew	 is compared in
order to decide whether to repeat or abort the FPSNR algo-
rithm. We found that a good value for � is 0.05 for most of
the systems we investigated. � should be set at a value such
that the error due to 	dz	 will not incur significant errors in
the quantities �such as the action integral� computed using
the periodic orbit.

There is another important parameter not explicitly dis-
cussed in the text, which we shall call the step limit. It is the
number of repetitions the FPSNR algorithm attempts to ap-
ply the correction vector before discarding a guess as a bad
periodic orbit candidate. If one is applying the FPSNR algo-
rithm to a large number of initial guesses, a practical choice
of step limit would be between 200 and 300. If one is focus-
sing on only a few selected initial guesses, then the step limit
can be set much higher. In the case of applying the FPSNR
algorithm to a large number of initial guesses, one way to cut
down on the computational time spent on the FPSNR algo-
rithm will be to reduce the size of 	dz	 in several stages. If �
is set straightaway to a small number and one makes the step
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limit large, the FPSNR algorithm may spend too much time
on some initial guesses which might turn out to be failures. A
better strategy would be to first set � at an intermediate value
and use a smaller step limit. After this first stage of reduc-

tion, � is lowered and the FPSNR algorithm is applied again.
This way, bad candidates can be eliminated at earlier stages
of the convergence process and much computation time can
be saved.
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