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We show that the correlation between the frequency of subthreshold pacemaker activity and the response of
an excitable array is resonantly dependent on the intensity of additive spatiotemporal noise. Thereby, the effect
of the underlying network, defining the interactions among excitable units, largely depends on the coupling
strength. Only for intermediate coupling strengths is the small world property able to enhance the stochastic
resonance, whereas for smaller and larger couplings the impact of the transition from diffusive to random
networks is less profound. Thus, the optimal interplay between a localized source of weak rhythmic activity
and the response of the whole array demands a delicate balance between the strength of excitation transfer and
the effectiveness of the network structure to support it.

DOI: 10.1103/PhysRevE.76.066203 PACS number�s�: 05.45.�a, 05.40.�a, 89.75.Hc

I. INTRODUCTION

Noise introduced to nonlinear systems can have a pro-
found effect on their dynamics �1�. Phenomena such as sto-
chastic �2� and coherence �3� resonance have fueled studies
across diverse fields of research for over a decade, and yet
they still inspire even today. One of the most thoroughly
studied features of nonlinear dynamics in this context is ex-
citability, which has been recognized as an important system
property for a broad variety of noise-induced phenomena �4�.
Upon the impact of weak stimuli an excitable system exhib-
its large amplitude deviations from the steady state. Neural
and cardiac cells are two perhaps most prominent examples
of excitable systems �5�. Following initial advances in under-
standing effects of noise on individual dynamical systems,
the scope shifted to coupled arrays �6�, where it has been
discovered that the spatiality may additionally enhance the
phenomena of stochastic �7� and coherence �8� resonance.
Recently, however, the field of research focusing on the ef-
fects of noise in spatially extended systems �9� is growing so
rapidly that we found it impossible to overview here all rel-
evant contributions. Some works published past the date of
the previous referral along with a comprehensive review are
listed in �10� for guidance.

While in the past the majority of scientific research deal-
ing with the dynamics of spatially extended systems was
devoted to the study of regular diffusively coupled networks,
recently the focus has been shifting towards networks with
more complex topologies �11�. Since already a small fraction
of randomly introduced links between distant units largely
decreases the typical path length between two arbitrary sites,
such networks were termed appropriately as “small-world”
networks �12�. Importantly, networks with small-world prop-
erties appear to be excellent for modeling interactions among
units of complex systems. Examples range from social net-

works �13�, scientific-collaboration networks �14�, food webs
�15�, computer networks �16�, and of particular interest for
the present paper, also to neural and excitable networks in
general �17�.

Stochastic �18� and coherence �19� resonance phenomena
were already studied in networks with small-world topology.
In general, it has been reported that the introduction of short-
cut links between randomly chosen units increases the order
of the dynamics, whereby the ordering effect depends largely
on the coupling strength and the fraction of rewired links.
Moreover, pattern formation and spatial order of spiral waves
in media with small-world connections have also been stud-
ied �20�, as were regularization effects of complex topologies
and their ability to suppress spatiotemporal chaos �21� or
induce bursting oscillations �22�.

Presently, we wish to extend the scope of stochastic reso-
nance in small-world networks by studying its emergence in
the presence of subthreshold pacemaker activity. Pacemakers
are isolated cells in the tissue that dictate neighboring cells
the operating rhythm, i.e., pace, and so guide the functioning
of a larger ensemble. Probably the most prominent organ that
has pacemaker cells is the human heart �23�; but also many
arteries and arterioles, for example, exhibit rhythmical con-
tractions that are synchronous over considerable distances
�24�. A well-known network of pacemaker cells are also the
so-called interstitial cells of Cajal �ICC�, which regulate the
contractility of many smooth muscle cells in several organs,
particularly in the gastrointestinal tract �25� and the urethra
�26�. Recently, noncontractile cells closely resembling ICC
were identified also in the wall of portal veins and mesen-
teric arteries �27�. Moreover, it should be noted that pace-
makers are not characteristic only for whole organs or tissue,
but may also be encountered in larger cells like eggs, where
cortical endoplasmic reticulum rich clusters act as pacemaker
sites dedicated to the initiation of global calcium waves,
which then propagate throughout the egg �28�.

Due to the considerable importance of pacemakers in real-
life systems, some studies were already devoted to their im-
pact on excitable systems �29�, as well as on networks with
small-world topology �30�. To extend the subject, we study
the possibility of stochastic resonance on excitable small-
world networks via a pacemaker. More precisely, we intro-
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duce a subthreshold periodic pacemaker to one excitable unit
of the network and study how different intensities of spa-
tiotemporal noise affect the correlation between the fre-
quency of the pacemaker and the temporal output of the
whole array. We find that there exists an optimal intensity of
noise for which this correlation is maximal, thus indicating
the existence of pacemaker-driven stochastic resonance in
the studied excitable array. Thereby, the excitable units are
modeled by a discrete map recently proposed by Rulkov
�31�, and the couplings between them obey the topology of
networks proposed by Watts and Strogatz �12�. We show that
the ability of network topology to influence the stochastic
resonance depends significantly on the coupling strength,
which indicates that the optimal interplay between a local-
ized source of weak rhythmic activity and the temporal re-
sponse of the whole array demands a delicate balance be-
tween the strength of excitation transfer and the effectiveness
of the network structure to support it. In particular, we dem-
onstrate that, provided the coupling strength is adequately
adjusted, the optimal topology for pacemaker-driven stochas-
tic resonance can be determined by the ratio between the
normalized clustering coefficient and the characteristic path
length �12� of the underlying small-world network.

II. MATHEMATICAL MODEL AND SETUP

We use a two-dimensional excitable map describing neu-
ral dynamics �31� that reproduces all the main features of
more complex models �5�, but allows a numerically efficient
treatment of systems with spatial degrees of freedom. The
map, along with the Gaussian noise and the coupling term,
takes the form

un+1
�i� = �/�1 + un

�i�2
� + vn

�i� + ��n
�i� + �

j

�ij�un
�j� − un

�i�� , �1�

vn+1
�i� = vn

�i� − �un
�i� − � , �2�

where the neuron cell membrane voltage un
�i� and the varia-

tion of ion concentration near the neuron membrane vn
�i� are

considered as dimensionless variables, n is the discrete time
index, subscripts in brackets enumerate coupled units, �2 is
the variance of Gaussian noise satisfying ��n�=0 and
��n

�i��m
�j��=	nm	ij, �ij is the coupling strength between units i

and j, while �, �, and � are system parameters. The main
system parameter is �, while � and � essentially act as time
scaling parameters for the variable vn

�i�. By choosing �=�
=0.001
1, we achieve that vn

�i� changes slowly in compari-
son to un

�i�. For ��2.0 each excitable unit is governed by a
single excitable steady state �u* ,v* � that can be derived
analytically by setting un=un+1 and vn=vn+1 in an individual
map. Thereby, we obtain u* =−1 and v* =−1− �� /2�. By
setting �=1.95, each unit thus occupies the excitable steady
state �u* ,v* �= �−1,−1.995�, which are also the initial con-
ditions we will use in all subsequent calculations. These im-
ply that the whole network remains forever quiescent if �
=0.

The coupling strength �ij depends on the underlying inter-
action network, which we obtain via the procedure described

in �12� by starting from a regular ring with periodic bound-
ary conditions comprising N=300 vertices, each having k
=6 nearest neighbors as shown in Fig. 1�a�. The probability
of rewiring a link is denoted by p and can occupy any value
from the unit interval, whereby p=0 constitutes a regular
graph �the initial configuration does not change� while p=1
results in a random network. For 0� p�1, as exemplified in
Fig. 1�b�, the resulting network may have small-world prop-
erties in that the normalized characteristic path length L be-
tween distant units is small, i.e., comparable with that of a
random network, while the normalized clustering coefficient
C is still large, i.e., comparable with that of a regular nearest-
neighbor graph. According to �12�, the characteristic path
length is defined as the average number of edges in the short-
est path between any two vertices, while the clustering coef-
ficient is the average fraction of all ki�ki−1� /2 allowable
edges that actually exist among vertex i and all its ki neigh-
bors. If vertices �in our case excitable units� i and j are
connected then �ij =� ji=�, but otherwise �ij =� ji=0. Further-
more, �ii=0 and no vertices are allowed to become discon-
nected from the network during the rewiring procedure.

It remains of interest to mathematically introduce the
pacemaker. The latter takes the form of a periodic spike train
defined by

�n
�r� = �g if �n mod t� 
 �t − w�

0 else
, �3�

where t is the oscillation period of the pacemaker, w is the
width and g the amplitude of each pulse, respectively. More-
over, the subscript r denotes a randomly chosen excitable
unit among all the N=300 units constituting the excitable
array, to which the pacemaker is introduced as an additive
term to the variable un

�r�. For our numerical simulations we
choose the parameter values t=1000, w=50, and g=0.0025,
which warrant that without the introduction of noise ��=0�
the pacemaker is subthreshold, meaning it cannot by itself
induce large-amplitude excitations by any of the excitable
units.

For each set of values � , p, and � the temporal output of
each excitable unit given by the variable un

�i� is recorded for
T=300 periods of the pacemaker, and the correlation of each

FIG. 1. Examples of considered network topologies. For clarity
regarding the meaning of parameters k and p only 25 vertices are
displayed in each panel. �a� Regular ring characterized by p=0 with
periodic boundary conditions. Each vertex is connected to its k=6
nearest neighbors. �b� Realization of small-world topology via ran-
dom rewiring of a certain fraction p of links �in this case 6 out of all
150 were rewired, hence p=0.04�.
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series with the frequency of the pacemaker �=2� / t is com-
puted via the Fourier coefficients Q�i� according to �32�

Qsin
�i� =

2

Tt
�
n=1

Tt

un
�i� sin��n� , �4�

Qcos
�i� =

2

Tt
�
n=1

Tt

un
�i� cos��n� , �5�

Q�i� = 	Qsin
�i�2

+ Qcos
�i�2

. �6�

Since the Fourier coefficients are exactly proportional to the
�square of the� spectral power amplification �33�, which is
frequently used as a measure for stochastic resonance, the

signal-to-noise ratio S̃ is computed as the average value of all

Q�i�, i.e., S̃=N−1�i=1
N Q�i�. Importantly, the final signal-to-

noise ratio S presented in the figures below is obtained by

averaging S̃ over 100 different realizations of each network
and randomly chosen values of r �network unit to which the
pacemaker is introduced�. Although in principal the connec-
tivity of the unit to which the pacemaker is introduced could
play an important role, our calculations indicate that the in-
tuitive reasoning, suggesting a pacemaker should be more
effective if introduced to a unit with a higher connectivity,
does not prevail �at least not by small-world networks as
proposed in �12�� because the overall dissipation of connec-
tivity around the mean �in our case k=6� remains fairly small
even if p is close to 1. This is especially so in comparison to
scale-free networks �11�, where the connectivity of the unit
to which the pacemaker is introduced is likely to be found
more important.

III. RESULTS

In what follows, we will systematically analyze effects of
different �, p, and � on the noise-induced temporal dynamics
of the array. First, we consider four space-time plots obtained
for different � by fixed � and p. Results presented in Fig. 2
evidence that the temporal dynamics of each excitable unit
follows the rhythm of the pacemaker optimally only by an
intermediate � �second panel from top�. Smaller � �top
panel� fail to evoke any large-amplitude excitations, while
larger � �bottom two panels� introduce spontaneous excita-
tions that are either no longer in accord with the pacemaker
frequency �third panel from top� or lack visible spatiotempo-
ral order altogether �bottom panel�.

It is, however, interesting to note that values of � beyond
the one warranting optimal correlation �so far according to
visual inspection� with the pacemaker may still evoke very
ordered periodic fronts that even surpass the regularity of
their predecessors evoked by smaller �, as exemplified in the
third panel from the top in Fig. 2. Indeed, by introducing a
measure for the degree of spatial synchronization

� =
1

Tt
�
n=1

Tt

��un
�i�2� − �un

�i��2� , �7�

where �¯� denote averages over all i=1, . . . ,N coupled
units, one can establish that the most synchronized fronts of
excitation appear by values of � that are often beyond those
warranting largest S �as will be reported below�. Figure 3
features results obtained via Eq. �7�, and it can be observed
nicely that the lowest value of �, characterizing the most
synchronous activity of all coupled units ��=0 if the syn-
chronization would be perfect�, is obtained by �=0.017,
which substantially exceeds �=0.008 warranting the best
correlation of excitation fronts with the pacemaker depicted
in the second panel from the top of Fig. 2. This phenomenon
is due to the fact that larger intensities of noise � may over-
rule the pacemaker activity and induce spontaneous excita-
tions irrespective of the locally imposed deterministic
rhythm. The remarkable order of periodic fronts evoked even

FIG. 2. Space-time plots obtained by �=0.004 �top panel�, �
=0.008 �second panel from top�, �=0.016 �third panel from top�,
and �=0.07 �bottom panel�. The pacemaker has been introduced to
the network unit r=150, but results remain qualitatively the same if
the pacemaker is introduced elsewhere on the network. Vertical
ticks on the line inserted between the middle two panels denote
consecutive pacemaker pulses for easier comparisons. Other param-
eter values are �=0.004 and p=0.1, while already mentioned pa-
rameters that are held constant throughout this work are �=1.95,
�=�=0.001, t=1000, w=50, g=0.0025, and k=6. In all panels the
color profile is linear, white depicting −1.6 and black depicting 0.0
values of un

�i� �in the top panel this scale is divided by a factor of 10
to enable the color coding of small-amplitude deviations from the
excitable steady states�.
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by these larger � must be attributed to the characteristic
noise-robust excursion time inherent to all excitable systems
�34�, which introduces an eigenfrequency of spatial excita-
tory events that prevails despite the presence of pacemaker
activity. For even larger values of �, however, also the ex-
cursion phase of excitable dynamics becomes blurred, even-
tually leading to the collapse of ordered periodic fronts, as
depicted in the bottom panel of Fig. 2, and consequently, to
an increase of � as shown in Fig. 3. This phenomenon has
already been studied quite extensively and is the underpin-
ning for so-called persistent noise-induced spatial periodicity
as well as spatial coherence resonance in excitable media
�35�. The interested reader is referred to these works for
further heuristic as well as some analytical arguments sup-
porting our above reasoning. Presently though, we wish to
focus on the correlation between the subthreshold signal and
the system’s response as the measure for the constructive
effect of different intensities of noise, whereby then results
presented in Fig. 2 exemplify a stochastic resonance phe-
nomenon that is driven by a subthreshold pacemaker.

To establish the pacemaker-driven stochastic resonance
more precisely, we consider the dependence of S on p and �
by three different �. Results presented in Fig. 4 show several

interesting features. First, it is evident that there indeed exists
an intermediate value of � by which S is maximal for each
particular value of p and �, thus confirming the existence of
pacemaker-driven stochastic resonance in the studied system.
Second, it appears that an appropriate degree of small-world
topology p is able to enhance the stochastic resonance �in-
crease the maximal peak of S� only for an intermediate value
of � �middle panel�, while for smaller �left panel� and larger
�right panel� � the effect of topology is limited to shifting the
peak value of S with respect to � but does not noticeably
effect the maximal peak height. At �=0.005 the optimal
small-world topology appears to be characterized by p
=0.09, as will be confirmed also below via results presented
in Fig. 5. Finally, perhaps the subtlest observation is that the
shift of the maximal S with respect to � changes direction
when p→1 by small and large �, as can be inferred from
comparing results in the left and right panel of Fig. 4. In
particular, for small � larger � are required for the maximal
S as p→1, while for large � the effect of different topologies
is exactly opposite.

In order to provide a better quantitative view of the results
presented in Fig. 4, we plot S separately in dependence on p
�by a given ��, and in dependence on � �by a given p�, for
the three considered �. Figure 5 features results that
strengthen the decisive role of � in that a resonance depen-
dence of S on p, as well as the best-pronounced increase of S
by the optimal �, can be observed by an intermediate value
of the coupling strength equaling �=0.005. In the latter case
S by the optimal p=0.09 is two times larger than the plateau
by smaller p, while for smaller and larger � the effect of
different topologies is mostly cosmetic, as can be inferred
from the top panel of Fig. 5. Similarly, results presented in
the bottom panel of Fig. 5 evidence that the impact of � is
best expressed by �=0.005, although also by smaller and
larger values of � the stochastic resonance is clearly visible
due to the existence of an intermediate value of � by which
S is maximal.

Before explaining the features of results presented in Figs.
4 and 5, we study the dependence of S on � more precisely.
Figure 6 shows results obtained by the optimal small-world
topology characterized by p=0.09. Evidently, there exists an
optimal value of the coupling strength, equaling �=0.005, by

FIG. 3. Degree of spatial synchronization � in dependence on �.
All other parameters have the same values as in Fig. 2.

FIG. 4. Color-coded signal-to-noise ratios S in dependence on p and � by �=0.002 �left panel�, �=0.005 �middle panel�, and �
=0.012 �right panel�. In all panels the color profile is linear, white depicting smallest and black depicting largest values of S. The specific
intervals of S are 0.0–0.011 �left panel�, 0.0–0.024 �middle panel�, and 0.0–0.012 �right panel�. All other parameters have the same values
as in Fig. 2.
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which the peak value of S is obtained by the smallest stan-
dard deviation of noise. Due to the fact that, in comparison to
other values of �, the smallest � warrants the resonant peak
of S by �=0.005, this signal-to-noise ratio also represents the
maximal overall peak in the whole range of � and � covered
in Fig. 6, as can be inferred nicely from the inset depicting a
resonancelike dependence of the maximally attainable S �re-

sulting out of all � considered in the main panel of Fig. 6� in
dependence on �. In view of all so far presented results, we
conclude that � plays a key role in determining the ability of
the network structure to enhance the noise-induced outreach
of the localized subthreshold pacemaker. In particular, only �
bounded to a rather sharp interval of values seems to warrant
the optimal balance between the strength �speed� of excita-
tion transfer and the effectiveness of the network structure to
support this transmission across all coupled units.

In order to explain the presented results, we first make use
of the established reasoning suggesting that small � essen-
tially return the dynamics as would be obtained if all units
were detached from each other, and on the other hand, large
� make the whole array act as a single unit. In both cases it
is clear that the network structure plays only a side role at
most, thus explaining, at least in principal, the rather sharp
interval of � inside which interesting results in dependence
on p can be observed. This reasoning also explains why for
small � larger � are required for the maximal S as p→1,
while for large � the effect of different p is exactly opposite.
In particular, while for large � additional long-range cou-
plings effectively disperse the pacemaker emitted excitations
throughout the array, resulting in smaller optimal � as p
increases, by small � the long-range couplings act destructive
since they further diminish the already very weak �due to
small �� excitation transfer from the pacemaker to nearest
neighbors, hence requiring ever larger � for the maximal S as
p increases. Note that by small � the units cannot benefit
from long-range connections since the coupling strength is
so small that a coherent input from several nearest neighbors
is required to excite a quiescent unit, and thus individual
couplings, although potentially bridging the physical dis-
tance between them, simply cannot be exploited effectively.

Finally, we study specific properties of small-world to-
pologies by different values of p to explain the occurrence of
the optimal network structure if the coupling strength is ad-
equately adjusted, as exemplified in the middle panel of Fig.
4 and the top panel of Fig. 5. For this purpose, we employ
classical measures such as the normalized characteristic path
length L and the normalized clustering coefficient C �12�, as
defined in Sec. II. While L is often the more appraised quan-
tity �echoing in the name “small-world” describing such net-
works�, the clustering coefficient is presently also crucial
since it quantifies to what extent local interactions are intact
or broken. In particular, C=1 means that the cliquishness of
nearest neighbors is perfect, while C=0 means that the
neighbors connected to a given unit of the network are dis-
connected from one another. Since the effectiveness of the
pacemaker to enforce its rhythm to other units in the network
relies both on effective nearest-neighbor interactions �which
must be warranted also by an appropriate value of � as de-
scribed above� as well as on the ability to reach physically
distant units to which excitations might die out via the dif-
fusive route, we propose the ratio between the normalized
clustering coefficient and the characteristic path length R
=C /L as the crucial quantity defining the optimal properties
of a network to facilitate the spreading of localized
pacemaker-emitted rhythmic activity. The higher the value of
R, the better the network structure is adapted to enforce the
pacemaker activity on other network units. A high value of R

FIG. 5. Signal-to-noise ratios S in dependence on p by �
=0.008 �top panel�, and in dependence on � by p=0.09 �bottom
panel� for �=0.002 �triangles�, �=0.005 �squares�, and �=0.012
�circles�. All other parameters have the same values as in Fig. 2, and
lines are solely guides to the eye.

FIG. 6. Signal-to-noise ratios S in dependence on � and several
� by p=0.09. The inset shows the maximally attainable S �peaks in
the main panel� in dependence on �. All other parameters have the
same values as in Fig. 2, and lines in the main panel are solely
guides to the eye.
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suggests that the nearest-neighbor interactions are largely in-
tact, while at the same time considerable benefits in terms of
excitation propagation may be expected from long-range
connections. On the other hand, a low value of R indicates
either that nearest-neighbor interactions are largely broken or
that long-range connections are sparse, whereby any of these
two properties would act detrimental on the ability of a pace-
maker to enforce its rhythm on other excitable units in the
network. Results for the presently employed network �N
=300, k=6� are shown in Fig. 7. Indeed, the peak value of R
is obtained by the same value of the small-world connectiv-
ity, equaling p=0.09, that also warrants the largest overall S
in the middle panel of Fig. 4 and the top panel of Fig. 5. This
final result confirms our reasoning and introduces a compact

measure for assessing the ability of a network topology to
promote the spreading of localized rhythmic activity across
coupled units; provided, of course, � lies within the above-
described narrow interval of suitable values. Although pres-
ently the analysis was performed for a subthreshold pace-
maker in the presence of spatiotemporal noise, the ratio R
should prove useful also in case the pacemaker is of
supthreshold type.

IV. SUMMARY

We study the impact of subthreshold pacemaker activity
on the temporal dynamic of noisy excitable small-world net-
works. We find that there exists an optimal intensity of spa-
tiotemporal noise by which the correlation between the pace-
maker frequency and the temporal output of the whole array
is maximal. The pacemaker-driven stochastic resonance can
be observed irrespective of p and �, although several features
of the phenomenon depend extensively on the latter two pa-
rameters. In particular, for intermediate coupling strengths
there exists an optimal small-world topology, warranting the
largest peak value of the signal-to-noise ratio, which is de-
termined by the ratio between the normalized clustering co-
efficient and the characteristic path length of the network.
For coupling strengths outside this rather narrow interval the
effect of different network topologies is gentler and con-
forms to the established reasoning implying that for small �
the excitable units effectively act as detached, while for large
� the network acts as a single excitable element. Due to the
rather significant importance of pacemakers in several differ-
ent organs, tissue, and certain types of cells, as emphasized
already in the Introduction, we hope our study will also find
applicability in real-life motivated problems and foster the
understanding of biological processes that rely on an effec-
tive pacemaker for their proper functioning.
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