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The modularity of a network quantifies the extent, relative to a null model network, to which vertices cluster
into community groups. We define a null model appropriate for bipartite networks, and use it to define a
bipartite modularity. The bipartite modularity is presented in terms of a modularity matrix B; some key
properties of the eigenspectrum of B are identified and used to describe an algorithm for identifying modules
in bipartite networks. The algorithm is based on the idea that the modules in the two parts of the network are
dependent, with each part mutually being used to induce the vertices for the other part into the modules. We
apply the algorithm to real-world network data, showing that the algorithm successfully identifies the modular
structure of bipartite networks.
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I. INTRODUCTION

Networks have attracted a burst of attention in the last
decade �useful reviews include Refs. �1–4��, with applica-
tions to natural, social, and technological networks. Of great
current interest is the identification of the modular structure
of the network. Detecting modules, or communities, allows
quantitative investigation of relevant subnetworks, which
may have different properties from the aggregate properties
of the network as a whole, e.g., modules in the World Wide
Web are sets of topically related web pages.

Informally, a network module is a subgraph whose verti-
ces are more likely to be connected to one another than to the
vertices outside the subgraph. A variety of approaches �5–13�
have been taken to explore this concept. See Refs. �14,15�
for useful reviews.

In this work we focus on the measure called modularity,
introduced by Newman and Girvan �11�. Modularity reflects
the extent, relative to a null model network, to which edges
are formed within modules instead of between modules. Us-
ing the modularity, we can assess the quality of any assign-
ment of vertices to modules. Further, the module identifica-
tion problem becomes a modularity optimization problem.
However, exact maximization of the modularity is in general
an intractable problem, because the number of ways to par-
tition the set of vertices grows extremely rapidly �16�. In
light of this, a number of effective algorithms have been
introduced to find high modularity partitions of the vertices
�17,18�. The modularity can be also be defined in terms of a
so-called modularity matrix, the eigenspectrum of which has
a fundamental relationship with the modular nature of the
network �19�.

Given the explicit dependence of the modularity upon a
null model, it is clear that the specific choice of a null model
has a profound impact on the modularity. Surprisingly, only
one null model has been so far explored at length: networks
with edges randomly assigned such that the expected degrees
of model-network vertices equal the actual degrees of corre-
sponding real-network vertices �19�. Specific classes of net-

works have additional constraints that could be and, indeed,
should be reflected in the null model.

A significant such class of networks is that of bipartite
networks. The vertices of a bipartite network can be parti-
tioned into two disjoint sets such that no two vertices within
the same set are adjacent. There are thus two distinct kinds of
vertices, providing a natural representation for many affilia-
tion or interaction networks, with one kind of vertex repre-
senting actors and the other representing relations. Examples
of actor-relation pairs include people attending events
�20–22�, court justices making decisions �22�, scientists
jointly publishing articles �23,24�, organizations collaborat-
ing in projects �25,26�, and legislators serving on committees
�27�. Arguably, bipartite networks are the empirically stan-
dard case for social networks and other interaction networks,
with unipartite networks appearing—often implicitly—as
projections.

In the statistical physics community, the usual approach
taken to identify modules in bipartite networks is to first
construct a unipartite projection of one part of the network,
and then identify modules in that projection using methods
for unipartite networks. For example, in the scientist-
publication network mentioned above, a network of scien-
tists is created by linking scientists when they have jointly
published. These unipartite projections can be illuminating,
but intrinsically lose information—indeed, Guimerà et al.
�28� demonstrate that analysis of an unweighted, unipartite
projection can give unreliable or incorrect results.

The principal contribution in this work is a proposed defi-
nition of a modularity for bipartite networks. The approach
taken is based on defining a bipartite modularity matrix B as
an extension of the recent work by Newman �19�. Some key
properties of the eigenspectrum of B are identified and used
to specialize Newman’s matrix-based algorithms to bipartite
networks. An additional algorithm fundamentally based on
the bipartite character of the networks is introduced; we call
the algorithm BRIM, for bipartite, recursively induced mod-
ules.

In parallel, Guimerà et al. �28� have independently inves-
tigated modularity in bipartite networks. They proceed by
first identifying the two parts of the network as actors and
teams, and then formulating a bipartite modularity in which
modules consist of groups of actors that are closely intercon-*michael.barber@arcs.ac.at
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nected based on joint participation in many teams. The re-
sulting modularity is thus focused on identifying modules in
only one part of the network at a time. Interesting, Guimerà
et al. point out the possibilities of classifying both partite sets
of the network simultaneously and of customizing spectral
methods for bipartite networks, which is essentially the ap-
proach taken in the present work.

As of this writing, we are aware of no other attempts to
define modularity for bipartite networks. However, bipartite
networks, or “two mode networks,” have undergone several
related studies in the sociology community using other meth-
ods �see, e.g., Refs. �21,22�, and references cited therein�.

The structure of the paper is as follows: in Sec. II we
define a modularity matrix and measure for bipartite net-
works. We discuss using the bipartite modularity matrix to
identify modules in Sec. III, and apply the algorithm therein
devised to two real-world networks in Sec. IV. Finally, we
conclude in Sec. V with an assessment of the present inves-
tigation and an outlook for future work.

II. BIPARTITE MODULARITY

In this section, we develop a modularity matrix for bipar-
tite networks. Structurally and notationally, the development
parallels the discussion of the modularity matrix by Newman
�19�.

Consider a network with n vertices and m edges defined
by an adjacency matrix A. Each vertex i is assigned to a
community group or module, denoted by gi. The modularity
Q for such an assignment reflects the extent, relative to a null
model, to which edges are formed within modules instead of
between modules. Formally, the modularity is defined as

Q =
1

2m
�
i,j

�Aij − Pij���gi,gj� , �1�

where the Aij are the adjacency matrix elements and the Pij
are probabilities in the null model that an edge exists be-
tween vertices i and j.

The modularity can be given an equivalent definition in
matrix form. First, the n community indices gi with values
taken from �1,2 , . . . ,c� are replaced by an n�c index matrix
S= �s1 �s2�¯ �sc�, where c is the number of modules. All ele-
ments of S take on either a 0 or 1 value, so that column si is
an index vector showing membership in module i; a value of
1 in position j of si indicates that vertex j belongs to module
i. Given that each vertex is assigned to exactly one module,
each row of S has a single unit value and the index vectors
are thus orthogonal.

Further, a modularity matrix B is defined with elements

Bij = Aij − Pij . �2�

Using S and B, the modularity becomes

Q =
1

2m
Tr STBS . �3�

The eigenspectrum of B has a fundamental relationship with
the modular nature of the network, as Newman �19� has ex-
plored.

From Eqs. �1�–�3�, it is apparent that the choice of null
model has a profound impact on the modularity. Thus, for
example, a Bernoulli random graph with constant Pij = p for
all i and j is a poor representation of most real-world net-
works, so would be an inappropriate choice of null model.
Instead, the usual choice of null model �19� assigns edges at
random with the expected degrees of model vertices con-
strained to match the degrees in the actual network.

In much the same fashion, bipartite networks have spe-
cific constraints that should be reflected in the null model.
The vertices of a bipartite network can be partitioned into
two disjoint sets such that no two vertices within the same
set are adjacent. An equivalent, but more visual, definition is
that the vertices in a bipartite graph can be assigned one of
two colors, say red and blue, with no neighboring vertices
bearing the same color. In the remainder of this section, we
will define a null model with the above requirement that the
expected degrees match the degrees in the real network,
along with the additional constraint that each edge links a red
vertex and a blue vertex.

Let p be the number of red vertices and q be the number
of blue vertices; this implies n= p+q. Without loss of gener-
ality, assume that the vertices are indexed so that red vertices
are labeled 1 ,2 , . . . , p and the blue vertices are labeled p
+1, p+2, . . . , p+q. The adjacency matrix then has a block
off-diagonal form of

A = 	 Op�p Ãp�q

�ÃT�q�p Oq�q

 , �4�

where Oi�j is the all-zero matrix with i rows and j columns.
Require the same block structure for P that is exhibited by A,
giving

P = 	 Op�p P̃p�q

�P̃T�q�p Oq�q

 . �5�

This form for P assigns zero likelihood to edges between
vertices with the same color, precluding any such edges in
the null model.

The modularity matrix B in turn has a block off-diagonal
form of

B = 	 Op�p B̃p�q

�B̃T�q�p Oq�q

 , �6�

where B̃= Ã− P̃. The all-zero blocks on the diagonal are the
potential modularity contributions from pairs of vertices of
the same color being present in a module; all meaningful
contributions, positive or negative, to the modularity thus are
made by pairs of vertices with distinct colors. In contrast,
with the usual null model based on unipartite networks �19�,
the corresponding blocks contain only negative elements �or
zeros for isolated nodes of degree zero�, always providing a
modularity penalty for pairs of like-colored vertices in the
same module.

Equation �1� can be rewritten as
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Q =
1

m
�
i=1

p

�
j=1

q

B̃ij��gi,hj� , �7�

where hj =gj+p. Since Q=0 when all vertices are in the same
module, we can set all gi and hj equal, giving

�
i=1

p

�
j=1

q

�Ãij − P̃ij� = 0, �8�

so that

�
i=1

p

�
j=1

q

P̃ij = �
i=1

p

�
j=1

q

Ãij = m . �9�

Thus, the expected number of edges in the null model must
equal the number of edges in the actual network.

The degrees of the red vertices are given by � j=1
q Ãij =ki,

while those of the blue vertices are given by �i=1
p Ãij =dj. By

constraining the expected degrees in the null model to match
the actual degrees, as discussed above, we obtain

�
j=1

q

P̃ij = ki, �10�

�
i=1

p

P̃ij = dj . �11�

Since

�
i=1

p

ki = m , �12�

�
j=1

q

dj = m , �13�

Eqs. �10� and �11� ensure that Eq. �9� holds.
In the usual null model, the probability of an edge being

present between two vertices is proportional to the product of
the degrees of the vertices. For the bipartite case, this be-

comes P̃ij =Ckidi for some constant C. Combining this defi-
nition with Eqs. �11� and �12�, we obtain

dj = �
i=1

p

P̃ij = C�
i=1

p

kidj = �Cm�dj , �14�

so that C=1 /m and thus

P̃ij =
kidj

m
. �15�

The same result can be obtained from Eqs. �10� and �13�
instead of Eqs. �11� and �12�. With Eq. �15�, we have fully
defined the modularity Q for a bipartite network.

III. MODULE IDENTIFICATION

A. Spectral methods for module identification

Using the modularity defined in Sec. II, we can assess the
quality of any partitioning of the vertices of a bipartite graph

into modules. A partitioning can be determined using any
method. Two general approaches seem relevant. First, the
modularity defined in Sec. II can be maximized using stan-
dard optimization algorithms such as genetic algorithms,
greedy search methods �18�, or extremal optimization �29�;
this is generally straightforward and will not be discussed at
length in this work. Second, the spectral properties of B or
other matrices associated with the graph can be analyzed to
partition the vertices into modules.

For example, one standard partitioning approach is to as-
sign the vertices to modules using spectral partitioning �SP�.
In spectral partitioning, the eigenvectors of the network La-
placian are used to minimize the number of edges running
between groups. The SP approach has a significant draw-
back: the vertices are assigned to modules of predetermined
size. This is problematic for the investigation of real-world
networks, where the number and sizes of community groups
are not generally known in advance.

An analogous approach based on the spectral properties of
the modularity matrix B has recently been proposed �19�.
Since the modularity is conceptually closer to our under-
standing of network community structure, this spectral opti-
mization of modularity �SOM� is better tailored for real-
world networks.

An important special case in both spectral partitioning and
spectral optimization of modularity is to assign the vertices
to two groups based on a single eigenvector of the Laplacian
�SP� or modularity �SOM� matrix. In the case of SP, we are
interested in the eigenvector corresponding to the smallest
positive eigenvalue; this is the Fiedler vector. For SOM, we
are interested in the leading eigenvector x, corresponding to
the largest positive eigenvalue � of B; we propose calling
this the Newman vector. Using the Newman vector, we ap-
proximate B as

B � �xxT. �16�

With just two modules, S= �s1 �s2�, so that the modularity in
Eq. �3� becomes

Q =
�

2m
��s1,x2 + �s2,x2� . �17�

Recall that the index vectors s1 and s2 take on values from
�0, 1�. It is clear how to maximize the modularity in Eq. �17�:
when xi, the ith element of x, is positive, assign vertex i to
the first module by setting the ith entry of s1 to one, and
when xi is negative, assign vertex i to the second module by
setting the ith entry of s2 to one �30�.

The use of multiple eigenvectors allows more than two
modules to be considered �c�2�, with at most one module
more than the number of positive eigenvalues of B �19�.
Additional eigenvectors of B can also be used for SOM �19�
in a vector partitioning algorithm adapted from spectral par-
titioning �31,32�. In the present work, we will not make use
of this algorithm, nor of a recursive bipartitioning approach,
instead developing an alternative technique that capitalizes
on the bipartite nature of the networks.
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B. Module identification in bipartite networks

In Sec. III A, we have seen how to identify community
groups of networks by using the Newman vector to maxi-
mize Q. However, we made no use of the bipartite character
of the networks. For a bipartite network, the eigenvalue
equation Bxi=�ixi can be written as

	O B̃

B̃T O

	ui

vi

 = �i	ui

vi

 , �18�

where ui is a p�1 vector and vi is a q�1 vector. The left-
hand side of Eq. �18� can be multiplied out, giving

	O B̃

B̃T O

	ui

vi

 = 	 B̃vi

B̃Tui


 = �i	ui

vi

 , �19�

i.e., B̃vi=�iui and B̃Tui=�ivi.
Additionally, we can construct a vector from ui and −vi,

so that

	O B̃

B̃T O

	 ui

− vi

 = 	− B̃vi

B̃Tui


 = − �i	 ui

− vi

 . �20�

Hence, for any eigenvalue �i of B, −�i is also an eigenvalue
of B.

Since only the eigenvectors corresponding to positive ei-
genvalues of B can give positive contributions to Q, we can
focus on just the positive eigenvalues �i= ��i��0. In this
case, ui and vi are, respectively, left and right singular vec-

tors of B̃. If we shift our attention from the spectral decom-
position of B to the singular value decomposition �SVD� of

B̃, we therefore automatically exclude the eigenvectors of B
that correspond to negative eigenvalues.

The appearance of the singular vectors of B̃ is not surpris-
ing. All the information about the linkage structure of the

network is contained in B̃, and the singular value decompo-
sition is the natural generalization of the spectral decompo-

sition used for B to asymmetric matrices like B̃. What is

more, the singular values and singular vectors of B̃ can
sometimes provide more information than the eigenvalues
and eigenvectors of B.

For example, the number of modules is at most one more
than the number of positive eigenvalues of B. Since, for each
vertex, the expected degree in the null model equals the ac-

tual degree in the network, the rows and columns of B̃ all

sum to zero. The rank r of B̃, which equals the number of

singular values of B̃, must then be less than both p and q.
From this, we conclude that the number of communities is at
most equal to the smaller of p and q.

To assign vertices to modules using B̃, we first partition
the index matrix S so that

S = 	R

T

 . �21�

The matrices R and T have dimensions p�c and q�c, re-
spectively, indexing the red and blue vertices into c modules.

Substituting the partitioned matrices into Eq. �3�, we obtain

Q =
1

m
Tr RTB̃T . �22�

Our goal then becomes to assign network vertices to modules
such that Eq. �22� is maximized.

One approach to optimizing the modularity as expressed
in Eq. �22� is essentially the same as the Newman vector
approach considered in Sec. III A. Without loss of generality,
label the singular values such that �1��2� ¯ ��r�0. Ap-

proximate B̃ as

B̃ � �1u1v1
T. �23�

Now, we bipartition the vertices with R= �r1 �r2� and T
= �t1 � t2�, so that

Q =
�1

m
��r1,u1�t1,v1 + �r2,u1�t2,v1� . �24�

As with the Newman vector approach, Q is maximized by
assigning the vertices to modules based on the signs of the
corresponding component of u1 or v1, as appropriate. This
maximizes the magnitude of the inner products in Eq. �24�,
with consistent assignment of both red and blue vertices to
the same module based on the signs ensuring that positive
contributions are made to the modularity.

C. Recursive identification of bipartite modules

In Secs. III A and III B, we have seen how the leading

eigenvector of B and the leading singular vectors of B̃ can be
used to bipartition network vertices. Extending these meth-
ods to use the full modularity matrices and to handle more
than two modules is, in general, nontrivial. However, for the
bipartite case at least, there is a relatively straightforward
extension that leads to a useful algorithm.

First, we assume that the blue vertices are all assigned to
modules through some mechanism. Maximizing the modu-
larity then consists solely of assigning the red vertices to
modules. This is a comparatively simple task. To see this,
rewrite Eq. �22�, giving

Q =
1

m
Tr RTB̃T =

1

m
Tr RTT̃ , �25�

where we have aggregated the fixed terms into the matrix

T̃= B̃T. We now write Eq. �25� in terms of explicit sums, so
that

Q =
1

m
�
k=1

c

�
i=1

p

RikT̃ik =
1

m
�
i=1

p ��
k=1

c

RikT̃ik� . �26�

The inner sum in Eq. �26� is a sum across the rows of R.
Since each row of R consists of a single 1 with all other
elements being 0, the modularity is now simple to maximize:

we just assign red vertex i to module k such that T̃ik is the

maximum of the ith row of T̃ �33�.
Conversely, if the red vertices are all assigned to modules,

maximizing Q consists of assigning the blue vertices to mod-
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ules. Analogously to the previous case, we define R̃= B̃TR
and manipulate Eq. �22� into the form

Q =
1

m
�
j=1

q ��
k=1

c

TjkR̃jk� . �27�

As with the red vertices, we maximize Q by assigning the jth

blue vertex to the module k such that R̃jk is the maximum of

the jth row of R̃.
Taken together, these two maximization procedures define

an algorithm that we call BRIM �bipartite, recursively in-
duced modules�. The BRIM algorithm is an iterative algo-
rithm for maximizing Q, with the sets of red and blue verti-
ces each recursively drawing the other into modular
structures. For each iteration, Q is guaranteed never to de-
crease, as it is always possible at least to maintain the previ-
ous vertex partitioning and keep the modularity the same.
Therefore, the BRIM algorithm will always find a partition at
a maximum of Q. In general, the identified partition will
correspond to a local maximum in Q, not the global maxi-
mum.

Note that the BRIM algorithm can work with the entire B̃
matrix, or a rank-restricted approximation calculated by

omitting the smallest singular values. By using the full B̃
matrix, we automatically include all positive contributions to
the modularity. As well, the algorithm can work with any
assumed number of modules; however, no constraint exists
to ensure that each module is occupied.

To test the efficacy of the BRIM algorithm, we apply it to
a simple model network. The model consists of Nmod mod-
ules, each containing Nred red and Nblue blue vertices. An
edge exists between a red vertex and a blue vertex with prob-
ability pin if they are in the same module and with probabil-
ity pout if they are in different modules. No edges exist be-
tween vertices with the same color.

The qualitative behavior of the model depends on pin and
pout. When pin� pout, there is a greater probability of vertices
within a module being linked than vertices in different mod-
ules, matching our intuitive notion of modularity. With pin
sufficiently close to one and pout small, the actual modular
structure of a particular realization of the model should cor-
respond to the assumed modular structure. As pout→pin, the
network becomes more uniform, with the assumed modular
structure ultimately vanishing and all vertices belonging to a
single module �34�. Lower values of pin introduce additional
substructure into the modules; the general behavior as pout
varies should be similar to the previous case, but with an
overall reduced correspondence between the assumed mod-
ules and the actual modules in networks instantiated from the
model.

Following Danon et al. �14�, we make precise the above
qualitative description in terms of the normalized mutual in-
formation Inorm. Consider two schemes X and Y for dividing
the n vertices into community groups, represented by two
index matrices SX and SY �35�. The two index matrices are
used to calculate the so-called confusion matrix N, which
takes the simple form

N = SX
TSY . �28�

The probability P �X=x, Y =y� that a vertex is assigned to
community x in scheme X and to community y in scheme Y
is proportional to the corresponding element Nxy of the con-
fusion matrix, so that

P�X = x,Y = y� =
1

n
Nxy . �29�

Using the probability as defined in Eq. �29�, we can calculate
the normalized mutual information as

Inorm�X,Y� =
2I�X,Y�

H�X� + H�Y�
. �30�

Equation �30� is expressed in terms of the usual mutual in-
formation I�X ,Y� and entropies H�X� and H�X� �36�, defined
as

I�X,Y� = �
x,y

P�X,Y�log
P�X,Y�

P�X�P�Y�
, �31�

H�X� = − �
x

P�X�log P�X� , �32�

H�Y� = − �
y

P�Y�log P�Y� . �33�

In Eqs. �30�–�33�, we have made use of the common short-
hand abbreviations P�X=x ,Y =y�= P�X ,Y�, P�X=x�= P�X�,
and P�Y =y�= P�Y�. The base of the logarithms in Eqs.
�31�–�33� is arbitrary, as the computed measures only appear
in the ratio in Eq. �30�.

The normalized mutual information is a measure of the
amount of information common to the two partitioning
schemes. By taking one of the partitions to be the assumed
modular structure of the network and one to be the structure
found using the BRIM algorithm, we can thus explore the
efficacy of the algorithm. When the found modules match the
real ones, we have Inorm=1, and when the found modules are
independent of the real ones, we have Inorm=0.

We now set Nmod=5, Nred=12, and Nblue=8, giving n
=100 vertices in the network. With various choices of pin and
pout, we repeatedly instantiate the model network and deter-
mine the assignment of vertices to modules using the BRIM
algorithm. The algorithm is initialized by assigning each of
the blue vertices to a unique module. For each sample, we
calculate Inorm.

In Fig. 1, we show results of applying the BRIM algo-
rithm to the model network. The points show the mean value
of Inorm, averaged over 100 instantiations of the network. The
error bars show the standard error of the mean. The general
behavior is as anticipated, lending confidence to the algo-
rithm definition.

D. Determining the number of modules

The BRIM algorithm is silent on the issue of how many
modules should be used. As noted in Sec. III B, the number
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of modules c is at most one more than the rank of B̃, which
is a relatively weak constraint. One approach is thus to as-
sign each vertex of the smaller of the red and blue vertex sets
to unique modules, and allow the vertices to be grouped into
an appropriate number of modules. For the BRIM algorithm,
said approach is resource intensive, requiring the calculation
of modularity contributions for what may be a grossly over-
estimated number of modules. Worse still, when the number
of vertices is much greater than the number of modules, the
BRIM algorithm may terminate at low-quality local maxima
far from the true number of modules in the network �see Sec.
IV B for an example of this�.

Clearly, automatically selecting the correct number of al-
lowed modules in such a case would be preferable. The al-
lowed number of modules c thus becomes an adaptable pa-
rameter for which a value is to be found that optimizes the
modularity. This presents some difficulties in that there is no
obvious relationship between the allowed number of mod-
ules and the modularity found by the BRIM algorithm. How-
ever, by assuming that the modularity depends on the al-
lowed number of modules in a reasonably smooth fashion,
we can use a simple bisection approach to identify an appro-
priate value for the number of allowed modules.

The search begins by requiring all vertices to belong to
the same module, c=1, giving Q=0. We double the allowed
number of modules c. Half of the vertices are randomly re-
assigned to the newly defined modules, and a new, locally
optimal solution is found using the BRIM algorithm. This
process continues, with c being repeatedly doubled so long
as Q continues to increase. Each step in the c search builds
on the previous solution by partially reusing the assignment
of vertices to modules.

Once Q drops as c increases, we have crossed a maximum
in the modularity landscape. We therefore switch from ex-
trapolating to larger numbers of modules to interpolating
within the interval that includes the maximum. The interpo-
lation is done using a simple bisection search in the allowed

number of modules, trying new values for c so as to continu-
ously reduce the interval wherein the putative maximum in Q
lies. As with the initial extrapolation stage of the search,
vertices are assigned from earlier solutions to the newly al-
lowed modules for each value of c, and a new, locally opti-
mal solution found.

The search for c terminates once the interval becomes
sufficiently small. In this work, we take the interval to be 2,
i.e., the Q maximum at c=cmax is bracketed by inferior so-
lutions at c=cmax−1 and c=cmax+1. This adaptive BRIM
algorithm enables us to identify the appropriate number of
modules cmax in a number of steps that scales logarithmically
with the number of vertices in the network.

IV. RESULTS

In this section, we apply the BRIM algorithm to a net-
work showing the interactions of women in the American
Deep South at various social events �20� and to a network
showing corporate interlocks in Scottish firms �37�. Both net-
works are conveniently available on the World Wide Web in
Pajek format �38�.

A. Southern women event participation

As an initial example, we consider the Southern women
data set, collected by Davis et al. �20� in and around
Natchez, Mississippi during the 1930s as part of an extensive
study of class and race in the Deep South. This data set and
networks derived from it have been much studied. Indeed,
Freeman �21� has described it as “. . . a touchstone for com-
paring analytic methods in social network analysis.”

The Southern women data set describes the participation
of 18 women in 14 social events. The women and social
events constitute a bipartite network; an edge exists between
a woman and a social event if the woman was in attendance
at the event. The network is connected.

We identified network modular structure using the BRIM
algorithm. The initial state is, in general, important. The de-
pendence on the initial state is most visible in the quality of
the stable solution, i.e., the algorithm can get “stuck” at a
poor quality local maximum. We initialized the assignment
of events to modules in T using several strategies: �1� assign-
ing all events to a single module, �2� assigning each event to
its own module, and �3� randomly assigning events to mod-
ules.

For this network, all three strategies identify modular
structures. The first strategy produces a good quality solution
�four modules, Q=0.345 54�. The second strategy also pro-
duces a solution that captures a great deal of the modular
structure, but is somewhat coarser than the first �2 modules,
Q=0.321 17�. The third strategy, random initial assignment,
sheds light on the quality of the first two. Because the net-
work is small, a large number of trials can be run without
difficulty; we ran 500 000 trials. The greatest modularity
found equalled that found with all events initially in unique
modules, Q=0.345 54, indicating that this best solution
found is quite good.

In Fig. 2, we show the best assignment of vertices to
modules determined using the BRIM algorithm with all
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FIG. 1. Agreement between model network modules and mod-
ules found using the BRIM algorithm. Each point shows the mean
normalized mutual information between the model network com-
munity groups and those identified using the algorithm, averaged
over 100 realizations of the model network. Error bars show the
standard error of the mean.
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events initially in different modules. The shapes of the ver-
tices show which ones belong to the same modules, with four
modules in all. Open symbols with black labels portray ver-
tices corresponding to the women, and filled symbols with
white labels portray vertices corresponding to the events.
The positions of the vertices are based on the singular vec-

tors corresponding to the two largest singular values of B̃,
with the right singular vectors giving the coordinates for the
events and the left singular vectors giving the coordinates for
the women. Several vertices have been shifted slightly to
prevent overlapping vertex symbols while preserving the
overall character of the network.

The community groups found using the BRIM algorithm
are comparable to those found in previous investigations of
the Southern women data set �Ref. �21� provides a useful
survey�. Most such studies have focused on the women, leav-
ing the groupings for the events unspecified; we can use the
groupings of the women to assign the events to the best
modules, as described in Sec. III C, and calculate modularity
values for purposes of comparison. The community groups
can be further compared using the normalized mutual infor-
mation between the various groupings of the women and the
best grouping found using the BRIM algorithm. Values of Q
and Inorm are summarized in Table I and discussed in depth
below.

In the original investigation, Davis et al. �20� used general
ethnographic knowledge of the community to assign the
women to two groups. The groups consisted of women 1–9
and of women 9–18; woman 9 is a secondary member of
both groups. To be consistent with the definitions in Sec. II,
we must assign this individual to a specific group. The Q and

Inorm values are seen from Table I to be similar for both
assignments, with the case where woman 9 is grouped with
women 10–18 labeled as “Davis 1” and the case where
woman 9 is grouped with women 1–8 labeled as “Davis 2.”
The latter division is the same as what Freeman �21� identi-
fied as the consensus from 21 different studies of the South-
ern women data set. The Q and Inorm values are reasonably
similar to values found for two modules using either the
BRIM algorithm or spectral bipartitioning as discussed in
Sec. III B, which groups the women into sets �1–7, 9� and �8,
10–18� �identified in Table I with the label “spectral”�.

Doreian et al. �22� considered the modular nature of both
parts of the network, suggesting several divisions of the
women and events. The division with the greatest modularity
�given in their Table 4� is characterized in Table I with the
label “Doreian.” Taking just their partitioning of the events
into three groups �events 1–5, 6–9, and 10–14� and replacing
their partitioning of the women using the approach from Sec.
III C, the modularity can be increased from 0.293 90 to
0.329 50. This is similar to the best assignment of vertices to
modules we described above, with modularity of 0.345 54,
wherein the additional structure produces a modest, but real,
improvement in the modularity.

It is also of interest to compare the community groups
obtained for the Southern women network using the bipartite
network to those found using an unweighted projection net-
work. Here, we focus on the projection consisting of the 18
women as vertices, with edges defined by mutual participa-
tion in events. The best division we found for the women,
discussed above and shown in Fig. 2, actually has a negative
value for the standard unipartite modularity; it is thus better
to use only a single module containing all 18 women than the
best module found for the bipartite network. Since the mod-
ules we identified from the bipartite network using the BRIM
algorithm are similar to those found in numerous other stud-
ies, this highlights the difficulties that can arise using a uni-
partite projection.

Conversely, we can determine the bipartite modularity for
community groups found using the unipartite projection. We
first use the Newman vector to partition the women into two
groups as described in Sec. III A, with women 2 and 4–7 in
one group and all others in a second group. Next, we deter-
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FIG. 2. Modules in the Southern women network. The women
are represented as open symbols with black labels and the events
are represented as filled symbols with white labels. The modules are
indicated by the shape of the symbols. Vertices are positioned with
coordinates based on the elements of the singular vectors corre-

sponding to the two largest singular values of B̃; some vertices are
repositioned slightly to eliminate overlaps. The vertex partition pic-
tured has the highest modularity we have found for the Southern
women network, Q=0.345 54.

TABLE I. Comparison of modules in the Southern women net-
work. Where necessary, the modularity values Q are calculated
from an optimistic assignment of the events to the best possible
modules from a given assignment of the women to modules. Values
of the normalized mutual information Inorm are calculated between
the given divisions of the women and the best division found using
the BRIM algorithm.

Modules Q Inorm

BRIM 0.34554 1

Spectral 0.32117 0.56897

Davis 1 0.31057 0.44657

Davis 2 0.31839 0.45126

Doreian 0.29390 0.60766

Unipartite 0.21866 0.28019
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mine the best assignment of events to modules using the
approach from Sec. III C. Together, this gives the values
shown in Table I for the label “Unipartite,” which reflect that
some of the modular structure of the network has been cap-
tured but is generally inferior to the solutions found from the
bipartite network. Further, the solution from the unweighted
projection does not correspond to a maximum in the bipartite
modularity; using the solution as the initial state for the
BRIM algorithm, a solution is obtained with two modules
identical to those found using spectral bipartitioning as de-
scribed in Sec. III B.

B. Scotland corporate interlock

As a second example, we consider a data set on corporate
interlocks in Scotland in the early twentieth century �37�.
The data set characterizes 108 Scottish firms during 1904–5,
detailing the corporate sector, capital, and board of directors
for each firm. The data set includes only those board mem-
bers who held multiple directorships, totaling 136 individu-
als.

Here, we focus on the bipartite network of firms and di-
rectors, with edges existing between each firm and its board
members. Unlike the Southern women network, the Scotland
corporate interlock network is not connected. In the follow-
ing, we consider only the largest component of the graph,
containing 131 directors and 86 firms—and thus, as many as
86 modules.

As with the Southern women network, assigning all direc-
tors to unique modules or to the same module results in a
solution that captures some of the modular character of the
network, with Q=0.566 34 and Q=0.398 73, respectively.
However, in contrast to the Southern women network, these
are rather poor solutions to what can be found starting from
a random assignment of directors to modules �see Fig. 3�.

Further, the best solutions are found by restricting the
allowed number of modules c to less than the maximum. In
principle, allowing the number of modules to take on any
size leaves the BRIM algorithm to search the largest possible
space, potentially finding the largest possible modularity
value. In practice, the results are inferior to those obtained
from a more restricted search. In Fig. 3, we show the results,
in terms of the actual numbers of modules occupied and
modularity values, for BRIM searches with the allowed num-
ber of modules restricted. This trades off the possibility of
higher modularity values in the excluded region for im-
proved searching in the remaining region. The trade-off is
clearly a good one, as the best solutions are found with fewer
than thirty modules.

In Fig. 3, we also show three runs of the adaptive BRIM
algorithm described in Sec. III D. The lines show the
progress of the number of modules and modularity value
during the search. The number of modules c allowed for the
BRIM search is typically close �within 10%� to the number
of modules actually found, suggesting that the adaptive ap-
proach eliminates a wasteful search through vertex assign-
ments with too many modules. The three traces all show
typical behavior and lead to good solutions; two of the adap-
tive runs lead to better solutions, in terms of modularity, than

any of the much larger number of trials using BRIM with a
fixed c.

Based on the solutions shown in Fig. 3, the main compo-
nent of the Scotland corporate interlock network has roughly
20 community groups, considerably fewer than the 131 di-
rectors or 86 firms. This analysis could serve as a starting
point for an investigation of the community structures of the
firms or directors. A more comprehensive analysis would
take into account the available information on the corporate
sectors and capital of the firms.

V. CONCLUSIONS

We have defined and explored a modularity appropriate
for bipartite networks. The presented results extend and spe-
cialize the matrix-based approach recently reported by �19�
for unipartite networks. The bipartite structure of the net-
work is reflected mathematically in the importance of an

asymmetric submatrix B̃ of the full bipartite modularity ma-
trix B, with a corresponding emphasis on the singular value

decomposition of B̃ instead of the spectral decomposition of

B. We made use of the properties of B̃ to define an algorithm,
BRIM, for use in identifying network modules. By applying
the algorithm to real-world networks, we demonstrated its
effectiveness and identified some of its limitations.

The usual unipartite modularity has a limited resolution
that depends on the number of edges in the network �39�.
The main consequence of the resolution limit is that the
modules in large networks may have hidden substructures
that require deeper investigations to reveal. Although we
have not shown it, we expect that the bipartite modularity
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FIG. 3. Quality of solutions found in the Scotland corporate
interlock network. The modularity Q depends on the allowed num-
ber of modules c. The points correspond to solutions found using
the BRIM algorithm starting from a random initial assignment of
vertices to modules. The values on the ordinate indicate the number
of modules occupied by at least one vertex in the solution state
found by the BRIM algorithm. All points are slightly dithered to
better show regions with many similar or identical solutions. The
lines show the course of an adaptive search for the correct number
of modules to maximize the modularity, terminating at states with
the modularity and number of modules shown by the crosses.
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introduced in this work has a similar resolution limit, with
similar consequences.

One of the key themes in this paper has been that the
bipartite structure of the network can be beneficially incor-
porated into its mathematical description and its computa-
tional treatment. This theme was realized in the BRIM algo-
rithm, where the assignment of vertices to modules in one
part of the network, when held fixed, provides a stable
modularity landscape in which it is straightforward to parti-
tion the vertices of the other part into modules. We expect
that the characteristics of other specialized classes of net-
works could be taken advantage of in an analogous fashion
to define appropriate null model networks, modularity mea-
sures, and community detection algorithms.

The eigenvalues of the graph Laplacian are closely related
to many important properties and invariants of the graph
�40�. In contrast, relatively little is known about the spectra
of modularity matrices, be they for unipartite or bipartite
networks. We are optimistic that the eigenvalues of the
modularity matrix usefully relate to important and interesting
network properties.
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