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We consider the problem of determining the proportion of edges that are discovered in an Erdős-Rényi graph
when one constructs all shortest paths from a given source node to all other nodes. This problem is equivalent
to the one of determining the proportion of edges connecting nodes that are at identical distance from the
source node. The evolution of this quantity with the probability of existence of the edges exhibits intriguing
oscillatory behavior. In order to perform our analysis, we introduce a different way of computing the distri-
bution of distances between nodes. Our method outperforms previous similar analyses and leads to estimates
that coincide remarkably well with numerical simulations. It allows us to characterize the phase transitions
appearing when the connectivity probability varies.
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I. INTRODUCTION

The small-world phenomenon has attracted increasing at-
tention over the last few years �1,2�. In a small-world net-
work, the average distance between two nodes is small as
compared to the total number of nodes. In many natural net-
works, it is typically of the order of log�n� �n is the total
number of nodes� and several models have been proposed to
explain this phenomenon �see, e.g., �1,3,4��. In some appli-
cations though, one is interested not only in this so-called
“average intervertex distance”, but in the whole intervertex
distance distribution.

Even though this distribution is of much interest, it has
not been studied very much in the literature. A theoretical
method for the computation of the distances in uncorrelated
random networks of infinite size was proposed by Dorogovt-
sev et al. in 2003 �5�. In 2004, Fronczak et al. analyzed the
distance between nodes for a wide class of random networks
of finite size that generalizes the Erdős-Rényi graphs, the
so-called uncorrelated random networks with hidden vari-
ables �6�. They propose an approximation of the distribution
of the distance between nodes that performs well for a cer-
tain range of parameter values. Their formula has the advan-
tage of being simple and analytical, but the approximations
made in the calculations lead to significant differences from
the numerical evidence for some ranges of parameters.

Our work is motivated by the analysis of algorithms that
have been recently developed for analyzing networks such as
the internet. A typical way of doing that is to use the free-
ware TRACEROUTE, which provides the user a short path
from his computer to any other one in the internet. In the all
shortest paths �ASP� model, introduced to model this strat-
egy, one chooses a particular node s of the network, and then
constructs all shortest paths from s to all other nodes of the
network �7�. Some edges of the network may not belong to

any of these shortest paths and so they are left undiscovered.
The problem considered in �7� is that of determining the
proportion of edges of the network that are discovered. Thus
the question is “what is the proportion of edges that are on at
least one shortest path starting from the source?” As pointed
out in �7�, the edges that are not discovered are exactly those
connecting nodes that are at identical distances from the
source. Indeed, if an edge connects two equidistant nodes, it
cannot be on a shortest path from the source, since any path
using this edge �say going from v1 to v2� can be shortened by
going directly to v2 via the shortest path to v2. Conversely, if
an edge links two nodes that are not at the same distance,
then it links a node v1 at a certain distance d to a node v2 at
a distance d+1, and at least one shortest path to v2 passes
through this edge. We are therefore interested in computing
the number of edges connecting nodes that are at the same
distance from the source. Other models exist for representing
network analysis strategies. For instance, �7� introduces the
unique shortest path �USP� model. In the USP model one
chooses only one shortest path from the source to each node
in the graph and so there are possibly more edges that are left
undiscovered. Our work is also relevant to the analysis of
this model, as it counts the proportion of edges that are never
found by any single or multiple USP search.

In �7�, massive numerical simulations were performed to
analyze the proportion of edges that are on shortest paths in
Erdős-Rényi graphs. In such random graphs, edges are all
equally likely to be present and the probability of presence is
given by some fixed probability p. We do not consider self-
loops or multiple edges. So, for constructing an Erdős-Rényi
graph, one needs to fix two parameters: the number of nodes
n and the probability of existence for every edge p. As
shown in Fig. 1, the proportion of edges that are discovered
in the ASP model presents an interesting dependence on the
parameter p. One can directly explain some characteristics of
this curve. When p is very small the graph is highly discon-
nected and consists in small connected components. Most
edges therefore do not belong to any path starting from the
source, and the proportion of observed edges is close to zero.
Conversely, if p is very high, the graph is almost complete,
and every shortest path has length 1. So n−1 edges are
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found, while there are almost 1
2n�n−1� edges in the graph,

and thus the proportion also vanishes.
The aims of this paper are first to introduce another

simple model of intervertex distances in Erdős-Rényi graphs
that can be used to compute the curve of Fig. 1 without any
numerical experiment, and second to analyze the oscillating
behavior of this curve and explain the phase transitions ap-
pearing with variations of the graph connectivity. Note that
similar oscillating behaviors in random graphs have recently
been observed �8�, and that these phenomena seem to open
challenging questions in random graph theory. This paper
proposes a precise analysis of such an oscillating behavior in
the simple theoretical framework of Erdős-Rényi graphs.
One could imagine exploiting these oscillations to optimize
the design of a network or to develop a method for its analy-
sis, although this is beyond the scope of this paper. Besides,
such applications of the concepts developed here would
probably require some further analysis and extension of our
results, because real networks often exhibit nontrivial corre-
lations between nodes that do not occur in Erdős-Rényi
graphs. These extensions, however, would most likely not
lead to the derivation of simple analytical solutions provid-
ing an intuitive understanding of the phenomena as is done
here.

The remainder of the paper is organized as follows. In
Sec. II, we introduce a recurrence equation allowing us to
evaluate the intervertex distance distribution for Erdős-Rényi
graphs, and compare our results to those previously pub-
lished �6�. From this function we derive a theoretical expres-
sion for values shown on Fig. 1. In Sec. III we analyze this
curve, characterize the phase transitions, and give analytical
expressions in different phases �proved in the Appendix�. In
Sec. IV we conclude and make some remarks on practical
applications of the phenomena studied in the paper.

II. APPROXIMATION OF INTERVERTEX
DISTANCE DISTRIBUTION

In this section we propose an approximation for the inter-
vertex distance distribution in Erdős-Rényi graphs. We com-
pare our results to those obtained by Fronczak et al. �6� in a

more generic situation, and show how our results outperform
theirs in the particular case of Erdős-Rényi graphs. We also
analyze the accuracy of our model and its dependence on the
graph connectedness. We then use our intervertex distance
distribution to estimate the proportion of equidistant pairs of
nodes.

In the following, we consider the distance between a ran-
domly selected node and a fixed but initially randomly se-
lected “source node.” Since this source is randomly selected,
all results obtained for the distance probability can also be
applied to the distance between two randomly selected ver-
tices. Let Fd be the probability for a randomly selected node
to be at a distance larger than d from the source, that is, the
probability that there is no path of length smaller than or
equal to d from the source to this node. The probability fd for
the node to be at a distance exactly d from the source is then
given by fd=Fd−1−Fd. Obviously, F0=1−1 /n. We now de-
rive a recurrence relation allowing the computation of Fd for
higher values of d. A node is at a distance larger than d from
the source if it is not the source itself, which happens with
probability 1−1 /n, and if it is connected to no node at dis-
tance less than d from the source, which happens with prob-
ability �1− p�nd, nd being the number of nodes at distance less
than d from the source. We have therefore the following
simple relation:

Fd = �1 −
1

n
��

k=1

n−1

P�nd = k��1 − p�k, �1�

where P�nd=k� denotes the probability that nd=k. In order to
express the probability Fd, we should thus know the distri-
bution of nd. We approximate this quantity to be always ex-
actly equal to its expectation �nd	= �1−Fd−1�n. Introducing
this approximation in �1�, we obtain a recurrence relation for
F,

Fd = �1 −
1

n
��1 − p��1−Fd−1�n, �2�

which allows us to compute fd for any d. This formula is
different from, but provably equivalent to, Eq. �6� in �9�,
which was derived independently for other purposes.

In �6�, Fronczak et al. propose an expression for the in-
tervertex distance distribution of any random graph with hid-
den variables �these graphs are a generalization of Erdős-
Rényi graphs�. In these graphs, two nodes i and j are
connected with a probability pi,j =hihj /�, where each node v
has its own hidden variable hv, and �= �h	n. So, in a large
graph, the hidden variables represent the expected degree of
the vertices. In the particular case of Erdős-Rényi graphs,
that is, when hv=np for all v�V, the expression of Fronczak
et al. for the function F of intervertex distance distribution
reduces to

Fd = e−1/n�np�d
. �3�

This result has a straightforward interpretation as the solu-
tion of another recurrence equation in d, although it is not
obtained in that way in �6�. A vertex i is at a distance larger
than d from the source node if all its neighbors are at dis-
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FIG. 1. Evolution with p �logarithmic scale� of the proportion of
edges that lie on a shortest path in an Erdős-Rényi random graph
with n=1000 vertices. Each value is computed by averaging the
observations made on 1000 graphs �7�.
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tance larger than d−1 from the source. Approximating the
number of neighbors by its expectation np and neglecting the
dependence effects, one obtains the recurrence Fd=Fd−1

np . The
relation �3� is then obtained again by taking F0=e−1/n
1
−1 /n as initial condition. Numerical experiments confirm in-
deed that taking e−1/n or 1−1 /n as initial condition has no
influence on the results if n is sufficiently large.

In Fig. 2 we compare the predictions from the two models
with numerical results. One can see that both models per-
form very well when the average degree np is significantly
larger than 1 and if p is not too big, as in Fig. 2�c�. For an
average degree np�1 which is below the emergence of the
giant connected component �see �1��, our results approxi-
mately match the experimental observations, while Fronczak
et al.’s model is not valid as it gives an increasing curve �see
Fig. 2�a��. For values of np larger than but close to 1, both
models present significant errors but ours is closer to the
experimental observations �see Fig. 2�b��. Finally, for a large
p, one can see in Fig. 2�d� that our results match the experi-
mental data very well while those obtained with the model of
�6� are significantly different.

The fact that the model derived in �6� behaves very dif-
ferently from our model for a certain range of values of p
may seem surprising. Our derivation presents indeed various
similarities with the interpretation of Fronczak et al.’s model
as a solution of a recursive equation. Three reasons can,
however, explain why a model based on this interpretation
gives less accurate results than ours. First, for np�1, the
possibility for the randomly selected node to be the source
cannot be neglected, as very few nodes are in the connected
component of the source. When np is larger than but close to
1, the approximation that a node has exactly np neighbors
leads to proportionally more important errors. This problem
could be solved by considering a binomial distribution for
the number of neighbors in our interpretation of Fronczak et
al.’s model. Finally, for large values of p, the number of
neighbors of the randomly selected node is large, so that
some independence problems are not negligible. Indeed, the
probabilities for two neighbors of the randomly selected
node to be the source are not independent, as there is exactly
one source in the graph.

The errors of our model, observed for values of np larger
than but close to 1 are due to the approximation mentioned
above: To obtain the recurrence equation �2� from �1�, we
suppose that the number nd of vertices at a distance smaller
than d from the source is exactly equal to its expectancy
n�1−Fd−1�, instead of considering its probability distribution.
In this range of parameters, the distribution is far from being
centered because of the existence of a peak around 0 �see
Fig. 3�a��. For these values, indeed, the graph is not totally
connected. If the source happens not to be in the giant con-
nected component, almost all nodes are at an infinite distance
from it, so that nd is close to 0 for any d. The weight of the
peak thus represents the probability for a randomly selected
source not to be in the giant connected component. It is
known that, when np grows, this probability tends exponen-
tially to 0 independently of n ��10�, Theorem 5.4�. This prob-
lem therefore appears only when the average degree np is
very small �but larger than 1�, independently of the size n of
the graph. Figure 3�b� shows that the problem is already

almost negligible when np=4 �for these values, the giant
connected component already contains more than 98% of the
vertices�. Note that for np�1 the graph is highly discon-
nected so that almost no nodes are at a finite distance from
the source. The distribution P�nd=k� consists thus of only
one peak around 0 and is therefore centered.

We close this section by explaining how the distance dis-
tribution can be used to compute the proportion Ps of edges
belonging to shortest paths starting at the source node. As
explained in the Introduction, the edges that do not belong to
any shortest path are those connecting nodes that are at the
same distance from the source, in addition to all edges that
are not in the same connected component as the source.
Since the expectation of the number of nodes at distance d
from the source is equal to nfd, the expected number of
edges connecting these nodes is roughly equal to 1

2 p�nfd�2.
Taking 1

2 pn2 as the total number of edges, we obtain the
following expression for the proportion of edges that lie on a
shortest path in an Erdős-Rényi graph, which we denote by
Ps�n , p� in the following:

Ps�n,p� = 1 −

�
d=1

n

p�nfd�2

n2p
= 1 − �

d=1

n

fd
2. �4�

Note that this expression implicitly handles the edges that are
not in the same connected component as the source if we
take fn=Fn−1�F�. Indeed, this quantity represents those
nodes that are not connected to the source, as they are at a
distance larger than n−1. The evolutions with p of Ps using
the two models presented above are represented in Fig. 4 for
n=1000 and 10 000. One can see that our results match the
experiments very well except when np is larger than but
close to 1, which is the range of parameters for which our
model has already been shown to be less accurate. Moreover,
the range of values of np for which our model is less accu-
rate appears not to grow with n.

III. ANALYSIS OF THE CURVE

In this section we analyze the function Ps�n , p� generated
with our model and �4�. We show the appearance of a sort of
phase transition: for some particular values, a weak variation
of the probability p may cause abrupt changes in the propor-
tion of discovered edges with the ASP model and dramati-
cally affect the properties of the graph. We give analytical
formulas for the asymptotic behavior in several phases.

We begin by analyzing the first transition, starting from
small values of p. It is well known �1� that, in an Erdős-
Rényi graph, a giant component emerges when p becomes
larger than 1 /n. If the average degree np is sufficiently
small, the graph is not connected and the only edges that the
observer can see are in the �small� connected component of
the source. This quantity is negligible in view of the total
number of edges, and so the function is approximately zero.
Note, however, that such graphs do not contain many cycles,
so that most paths starting from the source are shortest paths.
Therefore, the observer discovers approximately all edges in
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FIG. 2. Evolution of Fd, the probability for a random node to be
at a distance larger than d from the source node, for n=1000 nodes
and for np= �a� 0.5, �b� 2, �c� 10, and �d� 900. The three curves
represent the experimental observations �averaged on 500 graphs�,
our model, and the model of Fronczak et al. given in �6�.
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FIG. 3. Representation of P�nd=k�, the probability that there are
exactly k nodes at distance less than d from the source, obtained
experimentally, compared to Fd, the proportion of nodes at a dis-
tance larger than d from the source, obtained experimentally and
with our model, for np=2 �a,b� and 4 �c,d�, with n=1000 in both
cases. P�nd=k� is represented for d=11 in �a� and for d=7 in �c�
as typical path lengths are different when np=2 or 4. The distribu-
tion in �a� is bimodal as it contains a large peak around 0, while
the peak in �c� is much smaller. Our approximation of nd by its
average value n�1−Fd−1� leads thus to larger errors for np=2 than
for np=4.
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its connected component. When p grows the size of the con-
nected components increases, so that more and more edges
are discovered. Now, when np�1, the giant component
emerges very quickly, and the source is in this component
with a large probability. Since most of the edges are also in
this component, the proportion of discovered edges increases
rapidly with np. Simultaneously with the apparition of a gi-
ant component, there also appear a non-negligible number of
cycles in the graphs, so that not all edges lie on shortest paths
any longer. As a result of these two conflicting phenomena a
�global� optimum is reached for np�2. Experimentally, our
model gives an optimum that seems to lie exactly at np=2,
but we have not been able to prove this, nor to express ana-
lytically the values of Ps�n , p� around np�2. However, ex-
periments seem to indicate that in this range of parameters
Ps�n , p� depends only on np. All this can be seen in Fig. 5,
for different values of n. When np becomes larger, one can
see that Ps does not depend only on np, and presents an
oscillatory behavior. In particular, the successive values of
the maxima seem to tend to 1

2 . We explain this phenomenon
in the following.

As can be observed in Fig. 6, the shape of Ps�p� tends to
the parabola 2p�1− p� on any interval �� ,1� when n increases
�note that the x axis is in linear scale�. This fact can be
proved theoretically, based on our model of evolution of Fd.
In the following, for the sake of clarity in our analysis, we
modify �2�, and study the slightly different equation

Fd�n,p� = �1 − p�n�1−Fd−1�n,p��. �5�

This new approximation is justified by the fact that we will
consider asymptotic behaviors for n→�. Moreover, the re-

sults that we derive can be obtained without making this
approximation. Observe that F1�n , p�=1− p, so that
F2�n , p�= �1− p�np. When n grows, F0=1−1 /n→1, and if p
is bounded from below by an arbitrary positive constant �,
F2�n , p�= �1− p�np tends uniformly to 0. As a consequence
the probability f�d� for a node to be at a distance d from the
source tends uniformly to 0 for all d except for d=1,2, for
which f1=F0�n , p�−F1�n , p�→p and f2=F1�n , p�−F2�n , p�
→1− p. It follows then from �4� that

10
−4

10
−2

10
0

0

0.2

0.4

0.6

0.8

1

p

P
s(1

00
0,

p)

experiments
our model
Fronczak model

10
−5

10
0

0

0.2

0.4

0.6

0.8

1

p

P
s(1

00
00

,p
)

experiments
our model
Fronczak model

(b)

(a)

FIG. 4. Comparison of the evolution of Ps�n , p� with n=1000
�a� and 10 000 �b� according to numerical experiments �7�, to our
model, and to Fronczak et al.’s model.
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FIG. 5. Evolution of Ps�n , p� with np for different values of n.
All curves present a sharp increase between np=1 and 2, and a
global maximum at np
2. For larger values, the curves present
several oscillations, with local maxima tending to 0.5. �b� is a
zoomed-in linear-scale version of �a�.
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increases.
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Ps�n,p� → 1 − p2 − �1 − p�2 = 2p�1 − p� ,

so that asymptotically the last maximum of Ps is 1
2 and is

reached at p= 1
2 . The asymptotic parabolic character of Ps is

thus here due to the fact that almost all nodes tend to be at a
distance either 1 or 2 from the source when n grows and p is
sufficiently large, as can be observed, for example, in Fig.
2�d�.

We now analyze the oscillating behavior between the first
and last maxima. One can see in Fig. 7 that, around the
second-rightmost maximum, Ps depends only on n1/2p, and
that Ps asymptotically behaves as

Ps 
 2e−�n1/2p�2
�1 − e−�n1/2p�2

� �6�

around this maximum. The maximum therefore tends to 1
2

when n→� and is attained for �n1/2p�2=ln 2. To explain �6�,
we show in the Appendix that, as above, all nodes are as-
ymptotically at distance either 2 or 3 when n→� with �
�np2�R, where � and R are arbitrarily positive constants.
As in the case of the parabola, this together with �4� implies
that Ps then asymptotically behaves as 2�1−F2�F2. We also

show that F2�n , p� tends to e−np2
, which implies �6�.

Actually, the previous relations can be generalized induc-
tively: we prove in the Appendix that, when n→� with

��nd−1pd�R, Fd converges uniformly to e−nd−1pd
, while all

Fd� with d��d converge uniformly to 1 and all others to 0.
This means that in this range of parameters, and when n
tends to infinity, almost all nodes are at distance d or d+1
from the source. It follows then from �4� that

lim
��nd−1pd�R

Ps�n,p� = 2�1 − e−nd−1pd
�e−nd−1pd

,

which, as for d=1,2, is a parabolic curve with respect to Fd.
This parabolic curve attains its maximum 1

2 when e−nd−1pd

= 1
2 . So, when n→�, Ps contains an unbounded number of

oscillations and local maxima with asymptotic values 1
2 , and

these maxima are attained when nd−1pd=ln 2 for each d�1
as can be seen on some additional examples in Fig. 8. Ex-
perimentally, all local maxima but the first global one can be
explained in that way. Between two maxima, there is a zone
where asymptotically Fd
1 and Fd+1
0, so that almost all
nodes are at distance d+1 from the source, and Ps
1−12

=0. Such behavior is obtained when n→� with either large
values of nd−1pd but still ��nd−1pd�R, or small values of
ndpd+1 but still ��ndpd+1�R. One can indeed see in Figs. 7
and 8, for example, that the values of the local minima de-
crease significantly when n increases. Let us mention that an
explanation of the oscillatory behavior based on the fact that
almost all nodes are at distance d or d+1 from the source
was suggested without proof in �7�.
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IV. CONCLUSIONS AND FUTURE WORK

The goal of this paper was twofold: First, we have pro-
posed a simple model for the computation of the intervertex
distance distribution in a random graph, via a recurrence
equation for the probability for two randomly chosen nodes
to be at distance apart more than d. Contrary to the model of
Fronczak et al., our recurrence equation is not explicitly
solvable, but it is more accurate. It has to be noted that, for
the range of parameters corresponding to the oscillating be-
havior analyzed at the end of Sec. III, the two models are
equally valid, and that the analysis that we have made for
such values could also be made using Fronczak et al.’s
model. Let us add that the ideas behind the derivation of the
formula remain valid for more general graphs such as ran-
dom graphs with hidden variables. In the particular case of
Erdős-Rényi graphs, these ideas lead to a simple recurrence
equation, allowing computation of explicit values numeri-
cally, and proof of the asymptotic behavior of the curve ex-
perimentally obtained in �7�. Nevertheless, a further analysis
for more general graphs could be interesting.

Second, following numerical simulations in previous
work motivated by practical graph exploration questions �7�,
we have analyzed the proportion of edges connecting nodes
that are equidistant from a certain source node in random
graphs. The evolution of this quantity with the parameter p
exhibits an intriguing oscillating behavior, which we have
been able to explain and reproduce with a great accuracy
using our model. We have also characterized precisely the
�infinite number of� transitions for this quantity, and the ana-
lytical evolution with p in the different phases.
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APPENDIX: EXPRESSION OF THE ASYMPTOTIC
BEHAVIOR

In this appendix, we provide an analytical expression for
Fd when n tends to infinity with ��nd−1pd�R, and we show
that, in this range of parameters, almost all nodes are at dis-
tance d or d+1. Suppose first that n→� with 0�np2�R for
an arbitrary R. Then p→0 so that F1= �1− p�→1 uniformly
with np2. From our recurrence formula �5�, we have

F2�n,p� = �1 − p�np = ��1 − p�1/p�np2
,

which, together with the classical relation limp→0�1− p�1/p

=e−1, implies that

lim
np2�R

F2�n,p� = e−np2
�A1�

holds uniformly for 0�np2�R. We now show that

lim
��np2�R

F3�n,p� = lim
��np2�R

�1 − p�n�1−F2� = 0

for any two arbitrary constants � and R. This implies that
almost all nodes are at distance 2 or 3 from the source. It
follows from �A1� that 1−F2 is uniformly bounded from
below by a positive constant when n→� with ��np2�R,
so that we just need to prove the uniform decay of �1− p�n.
The latter expression can be rewritten as

�1 − p�n = 
�1 −
np2

�np�
��np��1/p

. �A2�

Since np→� when n→� with ��np2�R, it holds uni-
formly that

e−R � lim
��np2�R

�1 −
np2

�np�
�np

� e−�.

And since 1 / p→�, it follows from �A2� that

lim
��np2�R

�1 − p�n = 0,

which implies the desired result.
It remains to prove our assertions about the asymptotic

behavior of Fd for any d�2. We first prove by induction that
the two following relations hold uniformly for nd−1pd�R
where R is any arbitrary positive constant:

lim
nd−1pd�R

Fd−1�n,p� = 1, �A3�

lim
nd−1pd�R

Fd�n,p� = e−nd−1pd
. �A4�

These relations hold for d=2 as shown above. Let us now
assume that they hold for a certain d−1 and prove that they
then hold for d. Observe first that, when n→� with nd−1pd

�R, nd−2pd−1 tends uniformly to 0 and is bounded. It follows
then from the induction hypothesis that

Fd−1�n,p� → e−nd−2pd−1 → 1 − nd−2pd−1

uniformly when n→�, nd−1pd�R. So Eq. �A3� is proved.
By our recurrence relation �5�, Fd�n , p�= �1− p�n�1−Fd−1�.
Therefore, it holds that

lim
nd−1pd�R

Fd�n,p� = �1 − p��np�d−1
= ��1 − p�1/p�nd−1pd

.

Since nd−1pd is bounded, and since p tends thus uniformly to
0 when n→�, the last equation becomes

lim
nd−1pd�R

Fd�n,p� = e−nd−1pd

uniformly for nd−1pd� �0,R�, which proves �A4�.
Using the results above we now prove that for any d�2

the following holds uniformly:

lim
��nd−1pd�R

Fd+1�n,p� = 0, �A5�

where � and R are two arbitrary positive constants. By �5�,
we have
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Fd+1�n,p� = �1 − p�n�1−Fd�.

It follows from the results above that 1−Fd is uniformly
bounded from below by a positive constant when n→� with
��nd−1pd�R, so that we just need to prove the uniform
decay of �1− p�n. The latter expression can be rewritten as

�1 − p�n = 
�1 −
nd−1pd

�np�d−1��np�d−1�1/nd−2pd−1

. �A6�

Since �np�d−1→� when n→� with ��nd−1pd�R, it uni-
formly holds that

e−R � lim
��nd−1pd�R

�1 −
nd−1pd

�np�d−1��np�d−1

� e−�.

And since nd−2pd−1→0 when n→� with ��nd−1pd�R, it
follows from �A6� that

lim
��nd−1pd�R

�1 − p�n = 0,

which implies the desired result �A5�.
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