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We obtain the best upper bound for the ground-state energy of a system of chargeless fermions of mass m,
spin s=1 /2, and magnetic moment �s� as a function of its density in the fully spin-polarized Hartree-Fock
determinantal state, specified by a prolate spheroidal plane-wave single-particle occupation function n↑�k��, by
minimizing the total energy E at each density with respect to the variational spheroidal deformation parameter
�2 ,0��2�1. We find that at high densities, this spheroidal ferromagnetic state is the most likely ground state
of the system, but it is still unstable towards the infinite-density collapse. This optimized ferromagnetic state is
shown to be a stable ground state of the dipolar system at high densities, if one has an additional repulsive
short-range hardcore interaction of sufficient strength and nonvanishing range.
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The nature of lowest-energy configurations of classical
magnetic dipoles fixed on different types of three-
dimensional lattices has been studied for a long time �1�.
However, the problem of magnetic dipolar quantum Fermi
liquid consisting of N particles in volume V0, of mass m, spin
s and magnetic moment �s�, with no electric charge, did not
attract enough attention in the past. Although, it was ex-
pected �2� that even in the quantum Fermi liquid case, having
an additional large positive kinetic energy contribution, such
a system would be unstable towards an infinite-density col-
lapse, i.e., its total energy per particle E /N→−�, as its den-
sity N /V0��3 / �4�r0

3��→�, we did not come across any de-
tailed study of the nature of its possible high density ground
state before the collapse, and how such a system can get
stabilized. Recently �3�, within the framework of nonrelativ-
istic quantum theory we tried to obtain upper bounds for
E /N of such a system as a function of the average inter-
particle distance r0, using different forms of variational
single-determinant N-particle Hartree-Fock �HF� wave func-
tions. As shown by Lieb �4�, unless the particle-particle in-
teraction is repulsive everywhere, which is not the case for
the dipole-dipole interaction, one can indeed obtain upper
bounds for the ground-state energy if one uses such varia-
tional HF functions and not any arbitrary variational positive
semidefinite single-particle density matrix �5�, which is al-
lowed for variational calculations in the case of the Coulomb
interaction between electrons. The problem of ferromag-
netism in chargeless magnetic dipolar systems originally at-
tracted our attention in the context of the possibility of fer-
romagnetism in high density neutrino gas of the early
universe, proposed �5� by Yajnik. However, we feel that this
is an important problem in many body physics, in itself, and
it should be of intrinsic interest to those who study new
quantum states of exotic matter or the nature of different
interacting fermionic systems, such as quantum dipolar spin

liquids and dipolar spin ice systems �see the second paper in
Ref. �1�� on a lattice.

For the dipolar system of spin-1 /2 particles, using plane
waves for the spatial part of single particle states, labeled by
the wave vector k� and spin �=↑ or ↓, we showed �3� that a
fully polarized ferromagnetic state with prolate spheroidal
occupation function n↑�k��=	�kF↑

2 −k2�1−�2P2�cos 
k̂���,
P2���= �3�2−1� /2, 0��2�1, gives better upper bounds for
E /N at high densities compared to other chosen N-particle
determinantal HF wave functions, and, as expected, the sys-
tem was unstable towards the infinite density collapse. Here,
kF↑ is related to the density N /V0 and the deformation pa-
rameter �2 due to the fact that the sum over the occupation
function must give the total number N of the particles, and
	�x� is the usual unit step function. The above analysis was,
however, presented only for fixed values of the deformation
parameter �2 in the spheroidal ferromagnetic state, called the
JM ferromagnetic state for the purpose of identification, us-
ing the small-�2 approximation. In this paper, we present
exact analytical results for the variational ground state en-
ergy of the dipolar Fermi liquid in the JM ferromagnetic state
at each density for any arbitrary allowed value of the defor-
mation parameter 0��2�1 and obtain the optimum value
�2

*�r0� of the parameter which gives the lowest upper bound
for the energy at that density. Such a variational minimiza-
tion is crucial to get a correct picture of the nature of the
infinite density collapse of E /N in the JM state because
in this state the positive kinetic energy contribution
Ekin��2

*�r0�� /N is found to have a high-density singularity of
the type r0

−2�1−�2
*�r0��−2/3. This leads to the best variational

upper bound for the energy in the JM ferromagnetic state as
a function of the density parameter r0, and allows us to de-
termine the actual value of the exponent �, in the expression
E /Ekin= �1−Cr0

−��, C
0, in the limit r0→0. The exponent �
has to be positive for the infinite density collapse. With this
optimum deformation function �2

*�r0� in the JM ferromag-
netic state, we also show how the addition of a suitable short
range repulsive hardcore interaction between the particles to*mahanti@pa.msu.edu
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the dipolar Hamiltonian leads to a stable equilibrium density
curve for E /N.

The Hamiltonian for the magnetic dipolar system being
considered here is given by �5,3�

H = �
i=1

N

pi
2/2m + �

N

�
N

i�j

V�r�is�i,r� js� j� , �1�

V�r�1s�1,r�2s�2� = ��2/r3��s�1 · s�2 − 3s�1 · r̂s�2 · r̂�

= ��2/r3� �
M=−2

+2

C−MY2,−M�r̂�N12
�M��s�1,s�2� , �2�

V12�q�� � 	 d3re−iq� ·r�V�r�1s�1,r�2s�2�

= �2 �
M=−2

+2

h−MN12
�M��s�1,s�2�Y2,−M�q̂��1 − �q� ,0� , �3�

where r�=r�1−r�2, r= 
r�
, r̂=r� /r, q̂=q� /q, C−M and h−M are nu-
merical constants, and N12

�M��s�1 ,s�2� are two-particle spin op-
erators �5�. While finding the expectation value of the dipole-
dipole interaction in a given determinantal HF wave
function, only the M =0 term contributes, for which C0
=−�16 /��1/2, h0= �4� /3��16 /��1/2, and

N̄12
�0���1,�2� � ��2�s�1��1�s�2�
N12

�0�
�1�s�1��2�s�2��

=
1

4
��1,�2

−
1

4
���1,↓��2,↑ + ��1,↑��2,↓� . �4�

We construct any N-particle single determinant HF wave
function �N by choosing N occupied single particle space-
spin wave functions �r�s� 
k��= �1 /V0�1/2 exp�ik� ·r�����s��. In or-
der to specify a particular �N, it is enough to know the
corresponding values of the occupation function n��k�� which
is 1 �0� if the single particle state 
k��� is occupied �unoccu-
pied�, with

�
k�,�

n�k�� = �
�

V0	 �d3k/8�3�n��k�� = N . �5�

For any chosen �N, as described above, the variational
energy of the dipolar system is then given by

E = ��N
H
�N� = Ekin + Eexch, �6�

Ekin = �
k��

��2k2/2m�n��k�� , �7�

Eexch = − �2
4�

3
� 1

V0
�

k�
�

q�
�
�1

�
�2

n�1
�k� + q��n�2

�k��

�P2�cos 
q̂�N̄12
�0���1,�2� . �8�

Note that there is no direct interaction term contribution to
the energy because V12�q�� vanishes for q� =0, and the ex-
change term Eexch also vanishes if �i� n↑�k��=n↓�k��=n�k�� or
�ii� n��k��=n��
k�
�. It is, therefore, necessary to assume

n↑�k���n↓�k�� and take n��k�� to be nonspherical to obtain any
finite negative contribution from the exchange energy, which
may be at the expense of increasing the positive kinetic en-
ergy contribution. For the particular case of spherical occu-
pation function, only the positive kinetic energy term con-
tributes to the total energy with its minimum value E0 given
by the familiar expression for the paramagnetic state for free
spin-half Fermi particles

E0 � N�3/5���2/2m�kF0
2 � N��2/2m�

�2.21�
r0

2 . �9�

As stated earlier, the most likely N-particle determinantal
wave function which gives the best upper bound to the
ground-state energy at high densities is the fully polarized
JM ferromagnetic state with a prolate spheroidal form for the
occupation function. This state is specified by the occupation
function n��k��=��,↑n↑�k��, with

n↑�k�� = 	
1 −
�kx

2 + ky
2�

kFx
2 −

kz
2

kFz
2 �

= 	�kF↑
2 − k2�1 − �2P2�cos 
k̂��� , �10�

kFx
2 = kFy

2 = kF↑
2 /�1 + �2/2�, kFz

2 = kF↑
2 /�1 − �2�, kFz

2 � kFx
2 ,

�11�

kF↑
3 = 6�2��1 + �2/2��1 − �2�1/2�N/V0, 0 � �2 � 1.

�12�

In the JM state, for any �2 we are able to obtain here the
following exact analytic expressions for the kinetic energy as
well as exchange energy contributions

Ekin = E0��2�2/3�1 − �2/2��1 + �2/2�−1/3�1 − �2�−2/3� ,

�13�

Eexch = − E0� 1

4 � �2.21�
rm

r0

1

�2

��1 − �1 + �2/2��1 − �2�1/2
„2/�3�2�…1/2

�sin−1
 3�2

�2 + �2��
1/2�� , �14�

where the magnetic length rm��2m /�2��2. The optimum
value of the variational deformation parameter �2 is obtained
by minimizing E=Ekin+Eexch with respect to �2, at each den-
sity, i.e., for each density parameter r0m�r0 /rm. This leads to
the required optimum value of the deformation parameter, to
be called �2

*�r0m�, as a function of the density parameter r0m.
This function is plotted in Fig. 1. We see that at low densities
�2

*�r0m� is very small compared to 1, whereas at high densi-
ties �2

*�r0m� is close to 1, i.e., t*�r0m��1−�2
*�r0m� is small

compared to 1. In fact, in these two limiting cases expres-
sions in Eqs. �13� and �14� get greatly simplified. We find �i�
�2�1:
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E/E0 → 22/3�1 + �2
2/4� −

3

40 � �2.21�
1

r0m
��2 + 5�2

2/14� ,

�15�

�2
*�r0m� → 0.04275�r0m − 5/7 � �0.04275��−1,

valid for r0m � 0.1, �16�

�ii� t=1−�2�1:

E/E0 →
1

�3�1/3t2/3 −
1

4 � �2.21�
1

r0m
�1 − �3/2�1/2��/2�t1/2 + 2t� ,

�17�

t*�r0m� = 1 − �2
*�r0m� → 3.4552�r0m�6/7, valid for r0m

� 0.1. �18�

Thus, at high densities as we approach the infinite density
collapse, in the JM ferromagnetic state we find that Ekin /N
varies as �+�r0

�−2−4/7� and Eexch /N varies as �−�r0
−3. Explicitly,

as r0→0, we get

E/Ekin = �1 − C�r0�−��, with � = 3/7 and C = 0.373�rm��.

�19�

Since �
0, the infinite density collapse of the dipolar liquid
remains real. The large spheroidal deformation of the fully
spin polarized Fermi sphere makes the divergence of the
positive kinetic energy stronger, but not strong enough to
dominate the diverging dipolar exchange energy. Note that
the high-density variation of the kinetic energy does not vio-
late the bound for fermionic kinetic energy derived by Lieb
and Thirring �6�. The curve in Fig. 2, labeled by �cm=0,
gives the plot of E /E0 in the JM ferromagnetic state as a
function of the density parameter r0m=r0 /rm, with the opti-
mum deformation parameter �2

*�r0m� at each density. This, of
course, gives much lower upper bound at each density for the
energy of the dipolar system compared to earlier results �3�
obtained for fixed values of �2.

To stop the infinite density collapse of the dipolar system,
one has to add a repulsive hardcore interaction between the
particles at very short distances, which may originate from
some higher-level theories valid at very short distances in-
volving appropriate relativistic quantum field theory depend-
ing upon the nature of the particles. Here, we add it to the
dipolar Hamiltonian given by Eqs. �1�–�3�, as a phenomeno-
logical interaction, working still within the framework of the
nonrelativistic quantum mechanics. We have considered dif-
ferent forms for the central hard core repulsive interaction
VC�r� to obtain a stable JM ferromagnetic state, which in-
clude the usual three-dimensional repulsive square-barrier
�3,7� of strength U0 and range a. If we adjust the numerical
constants such that for each form of the hardcore interaction,
its Fourier transform at q� =0, VC�q� =0�, is equal to
�4� /3�U0a3, all those forms lead to similar results for the
stability of the dipolar system as long as the ratio of the
hardcore and dipolar coupling constants �cm�U0a3 /�2 is
not very small compared to 1 and the range a in the units of
rm does not vanish. For the case of vanishing range of the
hardcore potential, in the fully polarized JM ferromagnetic
case the direct and the exchange terms arising from the hard-
core will cancel each other, as is the case for the conven-
tional fully polarized ferromagnetic state with a delta-
function interaction. For definiteness, we present here our
results only for the square barrier potential, for which

VC�r� = U0, r � a;VC�r� = 0, r 
 a;

VC�q�� = �4�U0a3/3���3 sin qa − 3qa cos qa�/q3a3� .

�20�

For this case, using the optimized JM ferromagnetic state
with the deformation function �2

*�r0m� obtained earlier for
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FIG. 1. Plot of the optimum variational deformation parameter
�2

* as a function of the density parameter r0 /rm, in the spheroidal
JM ferromagnetic state of the magnetic dipolar system.
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FIG. 2. Plots for the total ground-state energy E in the spheroi-
dal JM ferromagnetic state for the magnetic dipolar system in the
units of the paramagnetic free fermion energy E0, as a function of
the density parameter r0 /rm, with the hardcore range parameter p
�a /rm=10−3; rm��2m�2 /�2�. The curves are for different values
of the ratio of the hardcore and dipolar coupling constants �cm

�U0a3 /�2, including the case in which �cm=0.
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the purely dipolar case, we find the following form for addi-
tional contribution to the energy

EC/E0 =
�cm

r0m
�19.2/�27����WC,direct − WC,exch�p/r0m,�2

*�� ,

p � a/rm, �cm �
U0a3

�2 , �21�

WC,direct = �1 + �2
*/2��1 − �2

*�1/2	
0

1 d�

�1 − �2
*�3�2 − 1�/2�3/2

= 1. �22�

The direct positive contribution from the hardcore interaction
is independent of the deformation parameter �2

*�r0m� and the
range a, as displayed in Eq. �22�. We also have the exact
form for the negative hardcore exchange contribution, but
here it is enough to state that its magnitude is always less
than the direct contribution if the range a of the interaction is
finite.

In Fig. 2, we plot the ratio of total energy E and E0,
including the kinetic energy part, the dipolar exchange part
and the total of the direct and exchange parts from the hard-
core interaction, as a function of the density parameter r0m
=r0 /rm. Plots are for different values of the ratio of the cou-
pling constants �, including its value 0 representing the en-
ergy of the dipolar system in the absence of the hardcore
interaction, with the range parameter of the hardcore interac-
tion p=a /rm taken to be 10−3, as an example. There is no
longer any infinite density collapse of the quantum dipolar
Fermi liquid in the presence of the repulsive short-range
hardcore interaction of sufficient strength and nonvanishing
range.

In summary, we have obtained the best variational bound
on the energy of a dipolar quantum fluid using a single de-
terminant spheroidal ferromagnetic HF state with or without
a hardcore repulsion. In the absence of the hardcore repul-

sion, the system collapses �energy/particle →−�� to an infi-
nite density state due to the dominance of the negative dipo-
lar energy over the positive kinetic energy. However as the
system collapses it tends to polarize the particles in the mo-
mentum space, i.e., the particles tend to move in the z direc-
tion resulting from the limiting form of the spheroidal defor-
mation ��2

*�r0�→1, as r0→0� of the occupied fully spin
polarized Fermi sphere. The effect of this optimum deforma-
tion at very high densities is to change the nature of the
singularity of the kinetic energy, from 1 /r0

2 to 1 /r0
�2+4/7� as

r0→0, without affecting �in the leading order� the negative
dipolar exchange energy, which still varies as 1 /r0

3 in this
limit. The inclusion of hardcore repulsion of sufficient
strength arrests the high-density collapse. However one
needs a finite repulsive length scale �range a� for this to be
true. As it is clear from the curve for �cm=0 in Fig. 2, the
fully polarized JM ferromagnetic state is not the correct
ground state for the purely dipolar system in the low density
limit �r0m
2�10−2�. At sufficiently low densities, even the
paramagnetic state corresponding to free fermions, with en-
ergy E0, gives a better upper bound than the energy in the JM
ferromagnetic case. In the low density limit, the lowest upper
bound for the ground-state energy may correspond to par-
ticles in the system localized on a suitable three-dimensional
lattice with spin configurations which may be similar to the
classical results of Luttinger and Tisza �1�, but we must re-
analyze and correct those results by adding positive contri-
butions from the corresponding zero point energy associated
with spin fluctuations. Note that in our units, for proper com-
parison their �1� � has to be changed to � /2. We plan to
investigate this interesting case of the possible cross over, in
the future.
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