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Stretching of buckled filaments by thermal fluctuations
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We study the buckling instability of filaments or elastic rods in two spatial dimensions in the presence of
thermal fluctuations. We present an analytical solution based on a renormalizationlike procedure where we
integrate out short wavelength fluctuations in order to obtain an effective theory governing the buckling
instability. We calculate the resulting shift of the critical force by fluctuation effects and the average projected
filament length parallel to the force direction as a function of the applied force and of the contour length of the
filament. We find that, in the buckled state, thermal fluctuations lead to an increase in the mean projected
length of the filament in the force direction. As a function of the contour length, the mean projected length
exhibits a cusp at the buckling instability, which becomes rounded by thermal fluctuations. Our analytic results

are confirmed by Monte Carlo simulations.
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I. INTRODUCTION

Buckling of elastic rods is a ubiquitous mechanical prob-
lem, which is relevant in elasticity theory and mechanical
engineering [1]. An elastic rod undergoes a buckling insta-
bility if the compressional force F exceeds a certain thresh-
old value, the critical force F., for constant rod length or if
the rod length L exceeds a certain critical length L. for con-
stant force. Such buckling instabilities also play a role in
biological systems, whenever rigid filaments or semiflexible
polymers, such as cytoskeletal filaments or DNA, are under a
compressive load. In a living cell compressive loads can be
generated by the polymerization of filaments or by molecular
motors, both of which are driven by hydrolysis of adenine
triphosphate (ATP) [2]. Both processes can generate forces in
the piconewton range. On the other hand, biological nano-
rods also show pronounced thermal shape fluctuations,
which give rise to a number of interesting cooperative phe-
nomena [3]. Therefore thermal fluctuations should influence
the buckling behavior of filaments as well.

It has been shown experimentally that polymerization
forces are sufficient to buckle microtubules of micrometer
length [4]. In Ref. [4], the shape of buckled microtubules
growing against a hard obstacle has been analyzed to mea-
sure microtubule polymerization forces, which were found to
lie in the piconewton range. Forces in the piconewton range
can also be generated by motor proteins, and it has also been
demonstrated experimentally that molecular motors can
buckle microtubules of micrometer length [5]. Experiments
on microtubules growing inside lipid vesicles demonstrate
that microtubules also buckle under the compressive forces
exerted by a lipid bilayer under tension [6]. All these experi-
ments show that small forces in the piconewton range are
sufficient to buckle cytoskeletal filaments. Such small buck-
ling forces suggest that additional thermal forces, which also
generate piconewton forces on a nanometer scale, could
modify the buckling instability considerably.

Some extensions of the classical buckling instability have
been considered before. The buckling of twisted filaments,
which is relevant to many biological filaments, has been
studied in Ref. [7]. For charged polymers the buckling insta-
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bility is related to the collapse of a stiff polyelectrolyte under
the action of attractive intrachain interactions, which has also
been analyzed in the presence of thermal fluctuations [8].
Also the dynamics of buckling rods has been investigated
theoretically [9,10].

The effect of thermal fluctuations on the buckling insta-
bility, on the other hand, has received much less attention.
The strength of thermal fluctuations of semiflexible polymers
is characterized by their persistence length L,=«/T (kg
=1) [11]. On length scales larger than the persistence length
a semiflexible polymer decays into uncorrelated Kuhn seg-
ments of length 2L, and becomes an effectively flexible
polymer with no resistance to buckling, i.e., the critical buck-
ling force vanishes. In this paper, we will focus on the semi-
flexible regime L<<L,, where the buckling instability is still
governed by a nonzero threshold force but strongly modified
by thermal fluctuations. The only discussion of thermal fluc-
tuations on the buckling instability has been given by Odijk
[12] in the framework of a harmonic approximation for fila-
ments in three spatial dimensions. In a similar semiclassical
approximation the influence of quantum fluctuations on
buckling instabilities has been studied [13].

In this paper, we will systematically consider the influ-
ence of anharmonic corrections for buckling in two spatial
dimensions, which can be realized experimentally in con-
fined geometries, i.e., for filaments adsorbed or confined to a
planar substrate. We use a systematic expansion in the ratio
L/L, of contour length to persistence length, and integrate
out small scale fluctuations to obtain an effective theory gov-
erning the buckling instability. We calculate the shift of the
buckling force in the presence of thermal fluctuations and
find that the buckling force increases in two dimensions in
contrast to the perturbative result of Odijk for three spatial
dimensions [12]. We also calculate the mean projected length
as a function of the applied force (at fixed contour length)
and as a function of the contour length (at fixed applied
force) in the presence of thermal fluctuations. Our results
show that thermal fluctuations lead to a stretching of buckled
filaments, whereas they compress unbuckled filaments.
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FIG. 1. Thermally fluctuating filament under a compressive
force F for (a) free and (b) clamped boundary conditions at both
ends. For absolute values |F| of the force larger than the critical
buckling force F. the filament is buckled; for forces smaller than F,
it remains unbuckled. The filament has contour length L, t(s) is the
unit tangent vector, and ¢(s) is the corresponding tangent angle at
arc length s. L; is the projected length in the force direction.

II. MODEL

An inextensible semiflexible polymer or filament of con-
tour length L in d spatial dimensions is governed by the
general wormlike chain Hamiltonian as given by

L
H=f ds{g(ﬁst)z—Et(s)}, (1)

0

where s is the arc length and t(s) are the unit tangent vectors
of the contour with |t(s)|=1, see Fig. 1. F is a homogeneous
external force, which will be taken to be compressive in the
following. The Hamiltonian (1) only contains contributions
from the bending energy and the external force and applies to
inextensible filaments without torsional degrees of freedom.

There is a close analogy between the Hamiltonian (1) for
a filament in d spatial dimensions and a one-dimensional
magnetic system of d-component magnetic spins. The
Hamiltonian (1) with the constraint |t(s)|=1 is equivalent to
a nonlinear o model in one dimension in an external field for
a d-component spin vector of unit length; the compressive
force plays the role of an external magnetic field, which acts
to reverse the magnetization. In this analogy the buckling
instability corresponds to the onset of magnetization reversal
upon reversal of the magnetic field, and the critical threshold
force F. for buckling is analogous to the coercive magnetic
field. In the context of magnetic systems, it is well known
that there is no ordered phase in one-dimensional systems in
the thermodynamic limit of infinite system size. Thus for the
buckling instability it is crucial that we consider a finite sys-
tem. This is reflected in the result F, o~ «/L? for the critical
buckling force at zero temperature, which vanishes in the
thermodynamic limit of large lengths L.

In two spatial dimensions we can fulfill the constraint
|t(s)|=1 explicitly by using a parametrization in terms of the
tangent angle ¢(s), i.e., t(s)=(cos ¢(s),sin ¢(s)). The
Hamiltonian becomes

L
H= f ds[g(&s¢)2+Fcos #(s) |, )
0

where F=|F| is the absolute value of the compressive force.
We consider the buckling instability of the straight state
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¢(s)=0 and the compressive force is acting in the direction
¢=. An important quantity, which can serve as an order
parameter for the buckling instability, is the projected length
L, which is given by

L
L= f ds cos ¢(s). (3)

0

III. BUCKLING AT ZERO TEMPERATURE

The classical buckling instability is obtained by minimiz-
ing the total energy (2) with respect to the angle configura-
tion ¢(s). This minimization leads to the beam equation

k> p+ F sin ¢(s) =0 4)

which has to be solved for appropriate boundary conditions.
Boundary conditions at each end of the rod can be classified
as free or clamped, where “free” means that the tangent at
the end point can freely adapt to the compressional force and
“clamped” means that it is constrained to a certain direction,
which is usually parallel to the applied force. In the follow-
ing, we will focus on boundary conditions with two clamped
or two free ends. In two dimensions, as considered here, we
use either clamped boundary conditions ¢(0)=¢(L)=0 with
both tangent vectors (anti)parallel to the applied force or free
boundary conditions, which correspond to d,¢(0)=4,¢(0)
=0, i.e., a vanishing curvature and thus a vanishing torque at
the filament ends.

Solving the beam Eq. (4) one finds that a nonzero buckled
solution exists at zero temperature above a critical buckling
force F. g, which is given by

F,o=mKIL? (5)

both for free and clamped ends and fixed contour length L.
Alternatively, if the filament polymerizes against a fixed
compressive load F, it will buckle above a critical contour
length

Leo= W(K/F)l/z (6)

at zero temperature.

Energy minimization gives the contour length L as well as
the projected length L; as a function of the maximal buckling
angle ¢*, which is attained at s=0 or s=L for two free ends
and for s=L/2 for two clamped ends,

L F Il(¢*)
Lo VFo~ 7,00 )

L T(#)-To(¢)

= ()
Lc,() I1 (0)
with the two integrals
Y 1
0o V2(cos x—cosy)

and
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FIG. 2. Reduced projected length L;/L as a function of the re-
duced force F/F.(. For F<F_, the filament is straight with L,
=L and 1-L;/L=0. The buckled solution appears for F'’>F,,. The
solid curve is obtained numerically from relations (7) and (8) by a
parametric plot using the buckling angle ¢* as the curve parameter.
The dashed line is the linear approximation (12). For F/F,
>2.183, L; becomes negative.

Y 1 —cosx
Ly = f dx . (10)
0o V2(cosx—cosy)

As y goes to zero, the first integral has the finite limit
Z,(0)=1/2 whereas 7,(0)=0. Relations (7) and (8) can also
be used as implicit equations to determine the buckling angle
¢" for given contour length L or projected length L, respec-
tively.

Using Egs. (7) and (8), one can obtain parametric repre-
sentations of the reduced projected length L;/L or L;/L, as
a function of the reduced force or the reduced contour length,

F=F/F,, and L=1L/L,, (11)

in the buckled state with F’>F,, or L> L., see Figs. 2 and
3, where we use the buckling angle ¢* as a curve parameter.

I1-Ly/L.g

0.6 0.8

1.2 1.4

L/L.,

FIG. 3. Reduced projected length L;/L. as a function of the
reduced contour length L/L, . For L<L,, the filament is straight
with Lj=L which corresponds to the left part of the diagram with
L/L.y<1. The buckled solution appears for L>L.,. The solid
curve is obtained numerically by a parametric plot using the buck-
ling angle ¢* as the curve parameter in Egs. (7) and (8). The dashed
line is the linear approximation (12). For L/L.,>1.478, L; be-
comes negative.
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Close to the buckling instability we find the asymptotic be-
havior

1-L/L=2(F-1) forsmall F—1>0,

1-L/L.o=3(L-1) forsmall L-1>0. (12)

For L<L,,, on the other hand, the filament is unbuckled
which implies that the projected length L; is identical with
the contour length L and

1-L/L.o=1-L for L-1<0. (13)

Combining the two results for L>L., and L<L_,, we see
that the relation between projected and contour length exhib-
its a cusp at the buckling point with L=L, [3], as shown in
Fig. 3. The cusp could be used to detect the buckling thresh-
old in experiments on growing filaments under a fixed com-
pressive load, which could be generated, for example, by
optical traps. The parametric representations shown in Figs.
3 and 2 and thus the asymptotic behavior (12) just above the
buckling threshold are valid both for two free and two
clamped ends.

IV. BUCKLING IN THE PRESENCE
OF THERMAL FLUCTUATIONS

In order to consider the effects of thermal fluctuations on
the buckling instability, several approaches are possible. We
can expand around the “classical” configuration obtained in
the previous section and integrate out fluctuations up to qua-
dratic (or higher) order. This approach, however, does not
allow us to calculate a fluctuation-induced shift of the thresh-
old force for buckling. Therefore we employ a renormaliza-
tionlike procedure where we integrate out short wavelength
fluctuations in order to obtain an effective theory governing
the long wavelength buckling instability. We focus on the
regime close to the buckling instability where we can expand
the Hamiltonian (2) in tangent angles up to quartic order, and
obtain

Lok 1 1
H=J;) ds|:§((9s¢)2+F<l—§¢2(S)+£¢4(S))].

(14)

For free and clamped boundary conditions, Fourier expan-
sion of ¢(s) leads to

N
#(s) = >, ¢, cos(nms/L) (free), (15)
n=1
N
d(s)=> &, sin(nms/L)  (clamped), (16)
n=1

respectively, with Fourier coefficients ¢,. The maximal wave
number N is given by the number of degrees of freedom,
N=L/a, where a is a microscopic cutoff, which is set by the
monomer size or the filament diameter. The n=0 mode is
absent for free boundary conditions because we apply the
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additional constraint z(L)-z(0)=f§ds sin ¢(s)=0 that the
end points have the same height coordinate (perpendicular to
the force direction). This constraint is automatically fulfilled
by the zero temperature solution but has to be imposed sepa-
rately in the presence of thermal fluctuations. The condition
&o=0 satisfies this constraint up to terms of order (9(5133).

In order to investigate the effect of the anharmonic quartic
terms, we write the Hamiltonian (14) as

H=H2+H4, (17)

where H, contain all terms up to quadratic order and H, the
remaining terms up to quartic order. Using the Fourier ex-
pansions (15) or (16), the quadratic part can be rewritten as

Ho{dh,b = FL+ 2 %w-m& (18)

n=1
This representation in Fourier modes shows that buckling is

an instability of the n=1 mode for F> 1, which attains a
nonzero equilibrium value in this regime at zero temperature.
Higher modes n>1 remain stable up to higher order buck-

ling forces, i.e., for F<n?. In the following we focus on the
regime F <4 where only the n=1 mode can become unstable
and large. Expectation values for higher modes n,m=2,
2T 1
Fool,2_F

(Pnb) = S , (19)

as calculated with the Hamiltonian (18) are of the order of

=——=1 (20)

The dimensionless parameter ¢ is a reduced temperature,
which is small for semiflexible filaments with L=<L,. Expec-
tation values (<7>,21>~t of higher modes are thus small as well.
The parameter ¢ will be used in the following as an expan-
sion parameter for the systematic treatment of fluctuations.
This parameter is small in the limit of small temperature,
large bending rigidity, or small contour length. A typical
value for a microtubule of contour length L=10 um and
L,=1 mm is t=1073, whereas an actin filament of contour
length L=10 um and L,=15 um has a much larger value,
t=6.7X 1072

This motivates our treatment of the quartic Hamiltonian
‘H4. Because fluctuations of higher Fourier modes n=2 will
remain small at the buckling transition we neglect terms of
cubic and quartic order in the Fourier modes n=2. The cor-
responding terms for the unstable n=1 mode have to be re-
tained, and we obtain

H{ b}/ T= —¢1 + 4—8t¢1 b3+ 2 1—6[<¢1¢ + G by usa)-
n=2

(21)

The upper and lower signs in Eq. (21) are for free and
clamped boundary conditions, respectively.

We first trace over all higher order modes 7 =2 in order to
obtain an effective Hamiltonian for the single mode n=1,
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which is the relevant mode for the buckling instability:

o~ Hetd BT _ ( 11 f d an) o~ HABHT-Hy{ ST (22)
n=2 J —o

The Hamiltonian H,+H,4 as given by Egs. (18) and (21) is

quadratic in the higher order modes and the Gaussian inte-

grals in Eq. (22) can be performed to obtain

Hed 1M T = Fit + ot + BP} (23)
with

1[1-F 1 _
a= Z( . +5h(F)), (24)
WH=3 . 25)

=2 nt—F

1 F

“ear 20

to leading order in the small parameter 7. We point out that to
this order there is no difference between clamped and free
boundary conditions. Therefore our results regarding the
critical force and the mean projected length will be identical
for both types of boundary conditions also in the presence of

thermal fluctuations. The function 4(F) can be approximated
by h(F)= \/;_7 arccoth(2/ \/1—;) by converting the sum into an
integral. Close to the buckling threshold around F=1 we can
also find an exact expression for the Taylor expansion A(F)
~3/4+(1=F)(7/12+1/16). For <1 we can therefore use

13 1-F
““1(?7) 27

to a good approximation.
A. Critical force

The resulting effective theory (23) for the single mode ¢,
is a fourth order Ginzburg-Landau-type theory. The buckling

instability occurs if the coefficient a(F) of the quadratic term
changes sign. This determines the critical force F, in the
presence of thermal fluctuations,
3t
FC,O(I + g) , (28)

where the last approximation is to leading order in the re-
duced temperature ¢ such that A(F,)~h(1)=3/4. Using the

relation F=L? we obtain the corresponding result for the
critical contour length L. in the presence of thermal fluctua-

tions,
L = \/_ ~1 + — (29)

to leading order in ¢.

r
F,= FCY0<1 + Eh(FL.)> ~
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It is remarkable that, in two dimensions as considered so
far, the critical buckling force increases because of fluctua-
tion effects as described by Eq. (28). In the special case of
two dimensions, the short wavelength fluctuations always
weaken the effect of the applied force on a larger scale be-
cause the fourth order contribution to the force term in the
Hamiltonian (14) has a sign opposite to the leading quadratic
contribution. We can define an effective compressive force
F (L) for the mode n=1 of wavelength L by rewriting the
coefficient « of the quadratic term of the effective theory
(23) in an analogous form as the n=1 term in the original
Hamiltonian (18),

1 _
=—(1-F). 30
a 4[( ff) (30)
This effective compressive force is smaller than the original
force,

Foll)=F— éh(ﬁ) <F (31)

as can be read off from Eq. (24). On the other hand, it is well
known that short wavelength fluctuations do not affect the
bending rigidity on a larger scale in two dimensions because
there is no bending rigidity renormalization in two dimen-
sions for the continuous wormlike chain model (2) [11].
Thus the effective buckling threshold F (L) is not affected
by short wavelength fluctuations, and Fg (L)=F.q
=mk/L?. The condition that the effective force needs to be
sufficient to buckle the filament becomes Fe(L) > F o (L)
=F_,. Since the effective force is smaller than the “bare”
force according to relation (31), this condition is equivalent
to an increase of the bare critical buckling force: F.>F .
Because the bending rigidity is renormalized toward smaller
values in dimensions d>2 [11], this argument only applies
to two spatial dimensions.

The argument can be generalized to arbitrary spatial di-
mensions by considering the behavior of the bending rigidity
k and the force F under the action of the renormalization
group (RG) transformation, which has been worked out in
the context of the equivalent nonlinear o model [14]. The
continuous RG flow equations for the equivalent one-
dimensional and d-component nonlinear ¢ model under an
infinitesimal change of the length scale by a factor b=1
+d{ are

de__ e 229 (32)
e~ Toama
L S (33)
dae 47A Kk’

where A~ 1/a is a large scale momentum cutoff. The buck-
ling instability is governed by the dimensionless force F
=F/F.,=FL?/mk. Using the RG flow Egs. (32) and (33)
(and the trivial flow under rescaling, dL/d¢=-L), we find
the RG equation for the dimensionless force,
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dF L* dF FL?>dk _FLdL

a_ L& Ak e a 34
A0 mrdl  Pldl | mrdl (34)

i-3 1 -
L 35
4ar L[,A (35)

i.e., dF/dt <0 for d<3 and dF/d€>0 for d>3. The effec-
tive dimensionless force for a mode of wavelength L is ob-
tained by following the RG flow from the bare initial dimen-

sionless force, F(0)=F, to the logarithmic scale €=In(L/a),
where F.(L)=F(In(L/a)). The condition for buckling in the

presence of thermal fluctuations is Fo(L)>1. If dF/d€<0
small fluctuations weaken the effective force as compared to
the buckling threshold and an increased bare force is needed
to achieve buckling, as in our above argument for two di-
mensions. The RG treatment thus shows that critical force F.
in the presence of thermal fluctuations should be increased
by thermal fluctuations for all dimensions d<3, i.e., F,
>F., whereas it decreases for dimensions d>3, i.e., F,
<F.y. The three-dimensional case d=3 is marginal, and
higher order terms in the RG equations would need to be
considered. For three spatial dimensions it has been argued
by Odijk that the critical force decreases in the presence of
thermal fluctuations [12] based on a calculation up to qua-
dratic order.

The RG Eq. (34) shows that the behavior of the critical
buckling force in the presence of thermal fluctuations is a
result of two competing effects: (i) The decrease of the ef-
fective compressive force by thermal fluctuations, which is
present in all dimensions d > 1 according to the RG Eq. (33),
and (ii) the softening of the filament by thermal fluctuations,
which decreases the renormalized bending rigidity in dimen-
sions d>?2, as can be seen from the RG Eq. (32). The soft-
ening of the filament for d>2 is related to the existence of
out-of-plane fluctuations, which lead to additional anhar-
monic terms governing the fluctuations of azimuthal angles.
The weakening of the effective force (i) gives rise to an
increase in the critical buckling force and dominates for di-
mensions d<3, whereas the softening of the filament (ii)
leads to a decrease of the critical buckling force and domi-
nates in dimensions d > 3.

B. Mean projected length

The partition sum Z is obtained by performing the one-
dimensional integral over the remaining Fourier amplitude

mode ¢,

Z= f d e Merd T (36)

—00

The partition sum defines the free energy G=-T In Z. If the
force dependence G=G(F) is known the mean value of the
projected filament length L, from Eq. (3) can be determined
from the relation

(L) = 9sG(F) = — Ty In Z(F). (37)

The remaining integral over ¢, in Eq. (36) gives
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FIG. 4. (Color) Reduced projected length (L;)/L as a function of the reduced force F/F, for L,/L=100 (red, O), 10 (green, A), 2 (light
blue, V), and 1 (blue, () corresponding to #=1073, 1072, 5X 1072, and 10~". The solid curves show the analytic result (41). (a) Comparison
with Monte Carlo simulation data for two clamped ends using the full model (2). The dashed line corresponds to the zero temperature
solution from Fig. 2. (b) Comparison with Monte Carlo simulation data for two clamped ends using the fourth order approximation of Eq.

(14). The analytical zero temperature solution 1—L;/L=1-F2 is included as a dashed line.

- f A, HBH = g (38)

with

1
f(y) = E\rmeyz/gl(lu(yz/& for y > 0,

1 — o2,
Fly) = 5\"|y|ey /875[11/4@2/8)+1_1/4(y2/8)] for y <0,
AY

(39)

where I,(x) and K,(x) denote the modified Bessel functions
[15]. The parameters a and B are given by Egs. (24) and
(26), respectively. The mean projected length is obtained by
differentiating expression (38) with respect to the force ac-
cording to Eq. (37). For the reduced mean projected length
(Ly)/L we finally obtain

_iL) _

1 9B f’(a/ﬂ”z)( e aﬁiﬁ)
L =1 - 418+ ]:(a/BI/Z) B1/2_2ﬁ3/2 :

(40)

We further evaluate this expression using the approximation
(27) for a, which leads to the following dependence on the

reduced force F:

<L> t o t1/2 _ _
1= ee——Fl o | —(F+F) (4D
L 4F B
with
a 2 - —
W~W(FC—F), (42)
where
F'(y) vy K34(y°/8)
Fiy)=——==(1-—"5—=| for y>0,
‘ F) 4\ KiuG)

Fily) = Y

(1 Lya(y%/8) + I_3,4(y*/8)
4

for y <0
114(y%/8) + 1—1/4()’2/8))
(43)

is a monotonously increasing, negative function. The solid
curves in Fig. 4 show the result (41) for 1 —(L;)/L as a func-

tion of the reduced force F for different values of the param-
eter 7.

For F<F, and 1< (F,—F)?, we use the asymptotic behav-
ior to find the asymptotic behavior F,(y)=~-1/2y for y>1
and obtain

Wi

1 —_ — b
L 2F.-F)

(44)

which is reminiscent of the shortening of a free filament by
thermal fluctuations 1—(L;)/L~{$?)/2~t. For F>F, and

t<(F.—F)? we use F,(-y)=-y/2+5y/16 for y>1 and ob-
tain the asymptotics

SRRt
L F 4F

which describes the suppression of thermal fluctuations and
the approach to the zero temperature solution 1-L;/L=1

5F,+F
+—— _), (45)
8F-F,

—F2 in the strongly buckled state. Note that this zero tem-
perature solution differs from the results of Sec. III, which
are shown in Fig. 2, because of the expansion of the full
Hamiltonian (2) up to fourth order in Eq. (14). The asymp-
totics (44) and (45) show that thermal fluctuations as de-
scribed by the small parameter ¢ decrease the mean projected
length (L) below its zero temperature value Ly=L for F
< F.. whereas they increase the mean projected length above
the zero temperature value Ly=LF~> in the buckled state for
F>F..
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FIG. 5. (Color) Reduced projected length {Ly)/ L. as a function of the reduced contour length L/L, for L,/L=100 (red, O), 10 (green,
A), 2 (light blue, V), and 1 (blue, (1) corresponding to #=1073, 1072, 5X 1072, and 107!, The solid curves show the analytic result. (a)
Comparison with Monte Carlo simulation data for two clamped ends using the full model (2). The analytical zero temperature solution from
Fig. 3 is shown as a dashed line. (b) Comparison with Monte Carlo simulation data for two clamped ends using the fourth order approxi-

mation of Eq. (14). The analytical zero temperature solution 1—L;/L=1-L"* is included as a dashed line.

We thus conclude that thermal fluctuations lead to a
stretching of buckled filaments, whereas they compress un-
buckled ones. This implies that two curves for the mean
projected length (L;) as a function of force, which are taken
at different temperatures ¢, should intersect in the vicinity of
the buckling force. This characteristic behavior is clearly
confirmed in Fig. 4, where the full analytical result (41) is
shown at different temperatures. The force value F; of the
intersection point of a projected length curve taken in the
presence of thermal fluctuations with the zero temperature
curve can be obtained approximately by expanding both

curves around F=1. Using the expansion F,(y) =ay+a,y for
y<l with ay=-T'(3/4)/T(1/4)=-0.34 and a;=1/4-a}
=(.14, where I'(x) is the gamma function [15], in Eq. (41)
we find

1-

L) 2 v 4aF-1) (46)

in the presence of thermal fluctuations and 1-L;/L=~2(F
—1) at zero temperature. Equating both results we obtain the
intersection force

2
20 g, (47)
1 +4a

Fi~1+
The intersection force F; exceeds F,, by a force ~t1/2FC’0
and thus also exceeds F. for small ¢, see Eq. (28). The in-
crease of the force value for the intersection of the solid
curves with the dashed black zero temperature curve with
increasing ¢ can also be clearly recognized in Fig. 4.

A characteristic feature of the buckling instability at zero
temperature is the cusp in the relation between projected and
contour length at the critical contour length L., see Fig. 3.
For L<L., in the unbuckled state, the projected length is
given by L;=L and grows with the contour length. The pro-
jected length becomes maximal at the critical length L=L_,
where the filament buckles. If the filament grows further af-
ter buckling, L> L., the projected length decreases and L,
<L,y In the presence of thermal fluctuations, the cusp be-

comes modified, and we obtain the reduced mean projected
length 1—(L)/L., as a function of the reduced contour

length L by applying the relations F=L? and

_@_< _@)— i
vl Ul RS LR (48)

to our previous result (41). This gives

L _ t l,l/2 _ _
A —L——_—]-](%)T[L?+L2] (49)
LL 0 4L 18 L2
with
a 2
e G (50)

The solid curves in Fig. 5 represent the expression 1

—(Ly)/ L, as a function of L according to Eq. (49). Thermal
fluctuations lead to a rounding of the zero temperature cusp

to a pronounced minimum and to a shift of the location L,, of
this minimum. Because thermal fluctuations lead to a stretch-
ing of buckled filaments, whereas they compress unbuckled
filaments, curves for different temperatures ¢ intersect in Fig.

5, In principle, the contour length L,,, where the mean pro-
jected length (L) is maximal, could be determined experi-
mentally by observing filaments growing against an obstacle
as in Ref. [4]. A prediction for the value of L,, can be calcu-
lated from the result (49) by considering the limit oS8!
<1 and extending the Taylor expansion F(y)=ag+ay
+a,y*/2 for y<1 to quadratic order with a,=—|ag|*=
—0.08, which finally gives

h Z(l t1/28a1—1+2aot”2)
m = L\ 1+ 5 |

32a, + 24a,1"?

(51

i.e., the contour length L, where the mean projected length
(L,) becomes maximal, is shifted by a length ~¢/> from the
actual critical length L, as given by Eq. (29) and the zero
temperature critical length L, . For small values t<1, L,, is
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a nonmonotonic function of ¢ and first decreases to values
L, <L.o<L, before it becomes an increasing function of ¢
and grows beyond L.

V. MONTE CARLO SIMULATIONS

In order to check our analytical predictions, we perform
Monte Carlo simulations of buckling filaments in two dimen-
sions in the presence of thermal fluctuations.

We simulate discretized versions of both the full Hamil-
tonian (2) and its fourth order approximation (14). In the
simulations, we employ clamped boundary conditions. For
free boundary conditions, the simulation is complicated by
the fact that the filament “flips around” and reaches its trivial
absolute minimum at ¢(s)=1r [for the Hamiltonian (2)] by
thermal activation out of the metastable buckled state. In the
configuration ¢(s)=m the end points have crossed corre-
sponding to a filament that is stretched rather than com-
pressed by the force F.

In the Monte Carlo simulation we discretize the inexten-
sible filament into N segments of fixed length b=L/N with
angles ¢; = ¢(ib). In order to equilibrate the filament, we use
two kinds of Monte Carlo (MC) moves: (i) a local move in
real space, which changes the angles of two neighboring seg-
ments ¢, — ¢;+A¢ and ¢;_;— ¢,_;—A¢ in opposite direc-
tions and thus induces a displacement of the point connecting
both segments in the direction perpendicular to the local fila-
ment orientation; (ii) a collective move in Fourier space,
which changes the amplitude ¢, of Fourier mode n by a

random amount, ¢,— ¢,+A¢. For the simulation results
shown in Figs. 4 and 5, we used a discretization into N
=200 segments and performed 8 X 10° MC sweeps alternat-
ing local moves and moves in Fourier space.

The simulation results for the reduced projected length
(Ly)/L as a function of the reduced force F in Fig. 4 are in
good agreement with our analytical result (41). Deviations
become appreciable for the largest values of the reduced
temperature 7=10"! for which we performed simulations.
For these values it becomes necessary to include higher order
terms in the expansion in ¢ underlying the analytical result
(41). In particular, also the MC simulations confirm that
curves for the mean projected length (L) as a function of
force, taken at different temperatures ¢, intersect in the vicin-
ity of the buckling force. Also the MC results for the reduced
projected length (L;)/L., as a function of the reduced con-

tour length L are in good agreement with the analytical result
(49). The existence of a cusp rounded by thermal fluctuations
close to the critical length L, is clearly confirmed.

VI. CONCLUSION

We presented a systematic study of the buckling instabil-
ity in the presence of thermal fluctuations in two spatial di-
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mensions. By integrating over all short wavelength modes
we derived an effective theory governing the buckling insta-
bility of the Fourier mode with the longest wavelength given
by the filament length. We find that thermal fluctuations in-
crease the critical force for buckling in two spatial dimen-
sions. The increase in the critical buckling force is closely
related to our main result that curves for the mean projected
length (L) measuring the end-to-end extension of the fila-
ment as a function of the applied compressive force, which
are taken at different temperatures, intersect in the vicinity of
the buckling force. This leads to the conclusion that thermal
fluctuations lead to a stretching of buckled filaments,
whereas they compress unbuckled filaments.

We presented arguments based on renormalization results
for the nonlinear o model which suggest that an increase in
the critical force is found for all spatial dimensions d<<3,
whereas the critical force should decrease for dimensions d
>3. The exact behavior in the marginal three-dimensional
case remains an open question for future studies. It also re-
mains an open question whether the effect of stretching by
thermal fluctuations persists for spatial dimensions d=3.

Our main result is the observation that a buckled filament
stretches, i.e., increases its mean projected length in the di-
rection of the applied force, upon increasing the temperature.
This effect might have interesting consequences for a cross-
linked network of filaments, which is under uniaxial com-
pression such that a large fraction of filaments is buckled.
The stretching of filaments by thermal fluctuations on the
single filament level should lead to a swelling of the cross-
linked filament network by thermal fluctuations. This is
qualitatively different from the typical behavior of a network
of flexible polymers, i.e., a rubberlike material, which stiff-
ens and shrinks upon increasing the temperature [16]. The
main reason for this qualitative difference lies in the role of
entropy. Before buckling a filament is governed by entropy
and an increasing temperature leads to a shortening of the
filament in order to maximize its configurational entropy,
similar to the well-known elastic behavior of a flexible poly-
mer, which gives rise to classical rubber elasticity [16]. A
buckled filament, on the other hand, is governed by its bend-
ing energy and for increasing temperature also the bending
energy decreases in favor of the entropy, which gives rise to
the observed effect of stretching by thermal fluctuations.
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