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Risk perception in epidemic modeling
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We investigate the effects of risk perception in a simple model of epidemic spreading. We assume that the
perception of the risk of being infected depends on the fraction of neighbors that are ill. The effect of this factor
is to decrease the infectivity, that therefore becomes a dynamical component of the model. We study the
problem in the mean-field approximation and by numerical simulations for regular, random, and scale-free
networks. We show that for homogeneous and random networks, there is always a value of perception that
stops the epidemics. In the “worst-case” scenario of a scale-free network with diverging input connectivity, a
linear perception cannot stop the epidemics; however, we show that a nonlinear increase of the perception risk
may lead to the extinction of the disease. This transition is discontinuous, and is not predicted by the mean-

field analysis.
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I. INTRODUCTION

In spring 2006, the potential threat of bird flu dominated
headlines in U.K. newspapers. On March 26, 2006, The Sun
has called it “the day we all dreaded,” while The Guardian
says avian flu is “almost certain to spread to wild birds
across the U.K.” The Daily Telegraph adds that the most
likely human victims will be poultry farmers, who will be
bankrupted. But The Mirror calls for calm, saying people
have a better chance of winning the lottery than catching the
virus. Interestingly, given a certain amount of clustering of
wealthy residents and a correlation between wealth and read-
ers preference, this would translate into a differently in-
formed neighborhood. When the epidemic is over its peak or
other news has just peaked or media has “cried wolf” too
many times over unfounded health scares, there is a quick
drop in attention to that disease (something similar is re-
ported nowadays for HIV). In other parts of the world, for
example, Indonesia—a country with 18 000 islands—people
reacted differently to the bird flu epidemics. Despite aware-
ness campaigns in the media and even door-to-door visits in
some of the islands, many Indonesians remained oblivious to
the dangers of being in contact with diseased birds, and
aware of the need to inform the authorities and implement a
cull. Note that awareness campaigns, such as during the
SARS epidemics, are expensive and may result in culling,
and reductions in commerce, travel, and tourism. The media
hype over epidemics threats has a close similarity in how
worried or fatalist, resilient, skeptical, or cheeky may be ones
friends and neighborhood. Therefore, the individual percep-
tion of the risk of becoming infected is a key factor influenc-
ing the spread of an epidemic and, toward a realistic infer-
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ence, epidemiological models should incorporate such a
parameter [1].

In order to investigate the effect of risk perception in
influencing the spread of a disease, let us start from
simple, yet meaningful models, such as the susceptible-
infected-susceptible (SIS) or susceptible-infected-removed
(SIR) models. These models are defined on a network where
individuals, or groups of individuals, correspond to the nodes
and links representing social contacts and relationships
among them. Most classical studies used either a regular lat-
tice or a random one. Both of those choices are characterized
by a well defined value of the mean connectivity (k), and
small variance (k*)—(k)>. As shown by Watts and Strogatz
[2], the simple rewiring of a small fraction of links in an
otherwise regular lattice results in a sudden lowering of the
diameter of the graph, without affecting the average connec-
tivity or the degree of clustering. This small world effect
manifests itself in a dramatic shortage of the distance be-
tween any two individuals, almost without affecting the local
perception of the network of contacts. The consequences of
epidemics spreading are important: just a few long-distance
connections may promote the spread of a disease in rural
areas, whereby an epidemic would otherwise diffuse very
slowly.

However, the investigations of social networks have
shown that they are quite different from regular and random
graphs [3,4]. The probability distribution of contacts often
exhibits a power-law behavior [ P(k) «k~7], with an exponent
v between 2 and 3 [5,6]. This distribution is characterized by
a relatively large number of highly connected hubs, which
are presumably responsible for the spread of epidemics.
Moreover, such distributions have a diverging second mo-
ment (k%) for y=3 and a diverging average connectivity (k)
for y=2.

The influence of the connectivity on the spreading dynam-
ics is well outlined by a simple mean-field analysis. Let us
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consider for the moment a tree with fixed connectivity k. In a
SIS model with immediate recovery dynamics, a single in-
fected individual may infect up to k neighbors [7], each one
with probability 7. The temporal behavior of the mean frac-
tion ¢ of infected individuals is given by

k

c’=2(f>cf(1—c)k-5[1—(1—rﬂ, (1)

s=1

where c=c(1), ¢’ =c(t+1), and the sum runs over the num-
ber s of infected individuals. The basic reproductive ratio Ry,
[8] is simply given by Ry=k7, so that the epidemic threshold
Ry=1 corresponds to 7.=1/k. This means that for a fixed
connectivity, only diseases with an infectivity of less than
1/k do not spread.

In heterogeneous networks (nodes with different connec-
tivity) the mean-field analysis, reported in Sec. III, gives 7,
=(k?)/{k). In the case (k*)={(k)?, 7. is again equal to 1/({k).

In summary, the result is that in very nonhomogeneous
networks, with diverging second moment (k?) (and even
worse in those with diverging average connectivity (k)), a
disease will always spread regardless of its intrinsic morbid-
ity [9].

This result can be modified by the assortativity degree of
the network and by the presence of loops, not considered in
the mean-field analysis. In networks with assortative connec-
tions (hubs are preferentially connected to other hubs), it
may happen that epidemics spread for any finite infectivity
even when the second moment is not diverging [10,11],
while for disassortative networks the reverse is true; epidem-
ics may be stopped by lowering the infectivity with random
vaccination campaigns, even in the presence of a diverging
second moment [10]. This is particularly evident in networks
lacking the small-world property (a consequence of high dis-
assortativity) [12,13].

In small-world networks with a diverging second mo-
ment, it is quite difficult to stop an epidemic. The most com-
mon recipes are vaccination campaigns (removal of nodes)
or modification of the social structure (removal of links),
which mathematically corresponds to site and bond percola-
tion problems. To be efficient, a vaccination campaign must
be targeted to hubs, either directly [3] or implicitly, for in-
stance, by exploiting the fact that hubs are the most probable
neighbors of many nodes [14].

The modification of the social structure can be obtained
by coercive methods (quarantine, etc.) or by raising alerts so
as to modify traveling and business patterns, but this option
may be so expensive that the amount of money put into
restoring the previous situation may exceed that used to cure
ill people [15].

However, epidemics in the modern world are relatively
uncommon, and most of them are stopped quite easily in
spite of the presence of high network connectivity. The ex-
istence of an epidemic threshold on such networks has mo-
tivated the investigation of the effects of connectivity-
dependent infectivity [ 16—18]. In this latter case, most of the
investigations have been performed using mean-field tech-
niques, thus disregarding the presence of loops.
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Loops are irrelevant at and near the percolation threshold
[19], and therefore one can treat the network as a tree in
these conditions. However, for processes evolving on perco-
lating networks, this assumption may not hold.

At present, the basic models used do not take into consid-
eration the knowledge that all human beings have nowadays
about the mechanisms of diffusion of diseases. In fact, even
in the absence of vaccination campaigns, a disease that mani-
fests itself in a visible way induces modifications in the so-
cial network: lower frequency of contacts (usage of mass
transportation systems), higher level of personal hygiene,
prevention measures (masks), etc. Indeed, recent works
stress the importance of using a time-dependent bare infec-
tivity to reproduce real patterns of epidemics [20-23].

Viruses with high mutation rates (like computer viruses)
follow a dynamics which is more similar to SIS than to SIR
[24], even in the presence of immunization. On the other
hand, the origin of vaccinations comes from cross immuni-
zation conferred by strains with lower pathogenicity.

We shall study here a SIS model in which the bare infec-
tivity of the spreading agent is modulated by a term that tries
to model the effects of the perception of the risk of being
infected.

We assume that this perception is just an increasing func-
tion of the fraction of ill people in the neighborhood, given
that the illness presents visible symptoms. This assumption is
modeled after the heuristic-systematic information-
processing model [25] that simply states that attitudes are
formed and modified as people gain information about a pro-
cess. In the absence of explicit alarm or communication, the
only way of gaining this information is through examination
of people in the neighborhood. Individuals can process infor-
mation in two ways: either heuristically, using simple semi-
unconscious schemes, or carefully examining them in a ra-
tional way, also called data driven and schema driven,
respectively.

It states that the processing of information can follow two
paths: a slow and conscious one, or a faster and unconscious
one, which in general emerges from training. For instance,
driving a car, after proper training, becomes an automatic
process. Education and daily experiences also contribute to
training, which is moreover favored for certain topics (say,
recognition of social role, aggression, etc.) by the structure
of our brain, as a result of natural selection. The unconscious
mechanism is generally monitored, so that an exceptional
event such as, for instance, the vision of something unusual
during driving, may pass control to the conscious part of the
brain.

The unconscious mechanism is rather schematic, and is
exploited by advertisements based, for instance, on fear or
sex. Experience says that the efficacy of an advertisement
based on some risk is proportional to the perception of the
risk, with a lower threshold for low perceived risks and an
upper threshold for shocking risks. In the case of too high
risk, there is a removal mechanism that makes them unusable
for advertisement. This effect is a common experience in all
campaigns about prevention: it is very difficult to make cam-
paigns against risks that are perceived to be low (such as
driving, smoking, drinking, etc.). One has to first rise the
perception of the risk. On the other hand, a too high risk (like
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advertisements on cancer risk for smoking tobacco) is
equally useless since it is not perceived.

Notice that the perception of a risk may have no connec-
tion with the actual value of the risk. An example of this is
the perceived risk of driving with respect to the risk of taking
an airplane.

In this work we simply assume that the local information
(not enhanced by alarms) about the incidence of the illness
translates into a lowering of the infection probability, imple-
menting only the “linear part” of the information-processing
model. In principle, it is possible to compare the effective
susceptibility to infection for diseases that manifest them-
selves in a visible and in an invisible way and test experi-
mentally this hypothesis. In summary, we assume that (1) the
illness is visible prior to or at the same moment it becomes
infective; (2) the perception of the risk of being infected is
proportional to the fraction of contacts with ill people, with
respect to the total number of contacts; and (3) all individu-
als have the same perception and reaction, independently
from their culture, role, etc. (uniform society). This last point
is introduced because we are interested in the influence of the
dishomogeneity of contacts, and we do not want to mix an-
other source of differences among individuals.

Notice that the actual relation between risk and the per-
ception of risk is of no importance, as long as all individuals
share the same parameters and it is always within the low
and high threshold of the heuristic-systematic model.

In our model, the infectivity is a dynamical quantity. Al-
though the idea of modulating the infectivity of the infection
process is not new, it is generally studied (mostly in the
mean-field approximation) as a function of time [20-23]
and/or of connectivity [16,17], depending on the total infec-
tion level [26,27]. In this latter approach, a nonlinear grow-
ing dependence of the infection rate on the total number of
infected people may originate bifurcation and chaotic oscil-
lations.

As we shall show in the following, mean-field analysis
[28] may not capture the essential phenomena in highly con-
nected networks. Moreover, we study the case of a decreas-
ing infection rate with an increasing local infection level,
which might also induce chaotic oscillations at the mean-
field level (see Ref. [29] and Sec. II). However, one should
consider that chaotic oscillations on networks easily desyn-
chronize, and the resulting “microscopic chaos” is quite dif-
ferent from the synchronous oscillations predicted by mean-
field analysis [30], which may nevertheless be observed in
lattice models in the presence of long-range coupling [31].

We explicitly describe the model in Sec. II, analyze it
using mean-field techniques in Sec. III, and study numeri-
cally its behavior on different types of networks in Sec. IV.
Conclusions and perspectives are drawn in Sec. V.

II. MODEL

In this paper we study the dynamics of an infection
spreading over a network of N individuals. We use different
kinds of networks: regular, with long-range rewiring [2], ran-
dom, and scale-free [5]. The network structure is considered
not to depend on the infection level.
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FIG. 1. Distribution of input and output connections for the
scale-free network used in simulations.

Let us denote by P(k) the probability distribution of con-
nectivity k. We shall denote by z=p,(P) the average connec-
tivity (first moment of the distribution) z=(k)=2,kP(k), and
by wy, mpy=z> The rewiring of the network is performed by
starting from a regular lattice in one dimension, detaching a
fraction p of links from one end and attaching them to ran-
domly chosen nodes. The regular case is studied numerically
in one dimension. Simulations on the rewired network are
performed both in the quenched and in the annealed cases.

For random graphs, studied only at the mean-field level,
the probability distribution is assumed to be Poissonian,

Zre?

k!

P(k) = .
corresponding to drawing Nz links at random among the N
nodes (u,=z).

The scale-free network that we study numerically is
asymmetric: each node i has a certain number k;,(i) of input
contacts and k(i) of output ones, and was grown using the
following rule.

We start with a ring of K nodes, and we add the other N
— K nodes by choosing, for each of them, K connected nodes
jw n=1,....K, with probability ki,(j,)/ = k(1) (preferen-
tial attachment). The node being attached is added to the
inputs of the chosen nodes. We also choose another node at
random and add it to the list of input nodes of the new node.
This process simulates the growth of a social network in
which a new node (a family or an individual) is born from
another one (the ones that are added as input of the newborn
node) and joins the society according to the popularity of
nodes.

Our procedure allows one to generate a network that has a
power-law distribution of input contacts, Pj,(k)=k"?, with
v=2 (see Fig. 1), while the distribution of output connec-
tions, P, (k), is found to be exponentially distributed. This is
an interesting feature of the model as the input connections
represent the total number of contacts to which an individual
is exposed, while the output connections represent the ac-
tively pursued contacts, e.g., familiar ones. A customer, for
instance, is exposed to a large number of obliged contacts,
and may become infected with a large probability. These are
considered “input” links. On the other hand, people in a pub-
lic position are more monitored, and it is not plausible that
they can infect a comparably large number of people. Infec-
tion is limited to the private sphere, where contacts are more
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intense. These are the “output” links. We choose this algo-
rithm in order to have a “worst-case” scenario, with an ex-
ponent corresponding to a diverging average of input con-
nectivity.

We have not studied the case of dynamic dependence of
the network on the infection level, however, a high level of
infection of a severe disease may surely induce changes in
the social network. It is reasonable to assume that, for mild
diseases (or diseases considered harmless, like most com-
puter viruses), the social network is not affected and only the
level of prevention is increased.

In the present paper we assume the effects of the infection
to be immediately visible, with no latency or “hidden infec-
tivity.” We also assume as a temporal unit the time required
to recover from an illness without immunization and thus we
explore the case of a SIS dynamics.

An individual can be infected separately by each of his
neighbors with a probability 7 per unit of time [see Eq. (1)].
We model the effects of the perception of the risk of being
infected replacing the bare infection probability 7 with

71(s,k).
I(s,k):exp{— {H+J(%)a]}, (2)

where k is the number of neighbors of a given site and s is
the number of them that are ill.

We assume the perception of the risk of being infected to
depend on the fraction of infected individuals among the
neighbors s/k, on the level of precaution measures adopted,
J, and on the use of special prophylaxis, = 1. The quantity
H models a global influence over the population, alarm of
broadcasting media news, in which case it could depend on
the average level of the infection. Its effect is that of reduc-
ing the bare infectivity 7, so in the following we only con-
sider the case H=0. For the moment, we consider a=1; the
role of this parameter will be clear in the following. Differ-
ently from Ref. [17], in our model the infectivity is not ex-
clusively related to the connectivity.

A comment about the linearity or proportionality of en-
counters of the source of risk follows. The simplest assump-
tion is that of assuming that the risk of smoking two ciga-
rettes is twice that of smoking one cigarette; the risk of
exiting two times at night is double of going out once, etc.

However, this proportionality can only hold for vanishing
probabilities. Actually, probabilities of subsequent indepen-
dent events factorize. So, assuming that there is a given
probability p of smoking a cigarette, and that an advertise-
ment has an effect a on stopping this habit, then the prob-
ability of smoking after having received one alert is p(1
—a), after having received two alerts is p(1—a)?, and after n
alerts is p(1-a)"=p exp(—an), which is the motivation of
Eq. (2).

The mean-field return map (for fixed connectivity z) is
shown in Fig. 2. The effect of the introduction of risk per-
ception is evident: for high concentrations of infected indi-
viduals the probability of being infected is diminished.
Therefore, while for /=0 and z>1 there is only one stable
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FIG. 2. Mean-field return map for fixed connectivity z=10, pa-
rameters H=0, a=1, 7=1, and varying values of precaution level J.
The effect of risk perception (J) is to lower the infectivity at high
concentrations of infected individuals.

fixed point c=1 (all individuals infected), by increasing J
one can have stable fixed points ¢ <1, limit cycles, and even
chaotic behavior [29].

III. MEAN-FIELD ANALYSIS

The simplest mean-field approximation of the evolution
of disease on a network consists of neglecting correlations
among variables. This is essentially equivalent in considering
the evolution on a tree, i.e., in assuming the absence of
loops.

Let us denote with c;=c(¢) the probability of having an
infected site of degree k (with k connections) at time 7, and
with ¢;=c;(t+1), the probability at a subsequent time step.

The mean evolution of the system is generically given by

cv= 2 Pl KCOP(k,COPL(CY,
Cr

where C, indicates the local configuration (degrees and
healthy status) at time 7 around a site of degree k. Py(Cy) is
the probability of occurrence of the healthy status of such a
configuration, P( k|C,) is the probability that the local con-
figuration is connected to the site under examination, and
P(k,C;) is the probability that the disease propagates in one
time step from C; to the site.

In our case, the local configuration is given by a set of k
nodes, of degree (n;,n,,...,n;), and status (s;,s5,...,5),
where s;=0 (1) indicates that the site i is healthy (ill). Thus
Cy=(n;,5,)%, and Py(Cp) =11% ,cti(1 —cni)"‘vi since we assume
decorrelation among sites. l

P( k|C,) depends on the assortativity of the network. Let
us define P;( n|k) as the probability that a site of degree k is
attached to a link connected to a site of degree n. P, ( nlk) is
computed in an existing network as the number of links that
connects sites of degree n and k, divided by the total number
of links that are connected to sites of degree k, and
S,P(nlk)=1. The detailed balance condition gives
kP, ( n|lk)P(k)=nP,( kln)P(n). For nonassortative networks,
P;( nlk)=p(n), and summing over the detailed balance con-
dition one gets P;( n|k)=nP(n)/z, where z is the average
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number of links per node, z=2;kP(k). Assuming again a
decorrelated network, we have

k k
Pe(kley =TT P nfo) =11 #
i=1 i=1

for nonassortative networks.
P,(k,C,) is the infection probability. In the case without
risk perception, it is

P/k,Co=[1-(1-7],

where s=2s;. The risk perception is modeled by replacing 7
with 7exp(—Js/k), which makes the equations hard to be
managed analytically except in the limit of vanishing infec-
tion probability ¢;— 0, for which only the case s=1 is rel-
evant. We shall consider this point later.

Put all together, one gets

k
= 3 [H Punfoey(1 - cnl.)“f] [1 -Tla- r)ft] .
nyny,. . LNy i=1 i

S128050 + -8k

Using the relation

> )= @f(x))’“,

X[ X0se o Xy 1

we obtain after some simplifications,

cp=1- [1 - c,Pr( n|k)]k

This expression could be obtained directly by noticing that
1—c is the probability of not being ill, which corresponds to
the combined probability of not being infected by any of the
k neighbors. Neglecting correlations, these are k independent
processes (although they depend on k). Each of these pro-
cesses is 1 minus the probability of being infected, which is
the sum, over all possible degree n of the neighboring node,
of the probability that it is ill (c,) times the probability that it
is connected to the node under investigation, P, ( n|k).

Let us denote by ¢ the asymptotic value of ¢(). Assuming
that the transition between the quiescent (¢=0) and active
(¢>0) is continuous, its boundary is given by the values of
parameters for which ¢’'/c=1 in the limit ¢ — 0. In this limit

o= k7, ¢, P( nlk),

and we can now consider the case with risk perception, with
7 replaced by 7exp(-J/k%).
In the case of nonassortative networks,

olt+1)= kgexp<— ki“>2 c,(nP(n).

Calling a(t+1)=2,c,(t)nP(n) (that does not depend on k),
we have c¢;(t)=(k7)/z exp(=J/k%)a(t) and thus

clt+1)= ck(t);TE exp(— %)nZP(n).

The critical boundary is therefore given by
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FIG. 3. The mean-field dependence of the critical value of pre-
caution level J, with respect to the bare infectivity 7 for Poissonian
networks, with average connectivity z and a=1.

> exp(— %)kzP(k) = f (3)
k

from which one could obtain J, as a function of 7 (we re-
placed n by k for consistency with the rest of the paper). In
the case J=0 (no risk perception), the formula gives

(k)
z k)’

which is a well-known result [9,16].
In the case of fixed connectivity, P(k)= &, and for a=1,

T, =

J.=zIn(mz). (4)
In the absence of perception (J=0) one has 7.=1/z.
For Poissonian networks (random graphs),

Zke—z

k!

P(k) =

Numerical integration of Eq. (3) for @=1 gives the results
shown in Fig. 3. One can notice that for every value of 7and
finite average connectivity z, there is always a value of the
precaution level J, that leads to the extinction of the epidem-
ics.

For nonassortative scale-free networks with exponent 7,
P(n)n~7, the sum in Eq. (3) diverges unless y> 3, irrespec-
tive of a.

This implies that at the mean-field level, any level of pre-
caution is not sufficient to extinguish the epidemics.

IV. NUMERICAL RESULTS

The mean-field approximation disregards the effects of
(correlated) fluctuations in the real system. Indeed, the ef-
fects of random and/or long-range connections may disrupt
correlations. We found that the behavior of microscopic
simulations with random rewiring, both in the quenched and
annealed version, is well reproduced by mean-field simula-
tions with a white noise term, with amplitude proportional to
Je(1=c)N. The noise term (or the fluctuations in micro-
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FIG. 4. Critical value J.. of the precaution level as a function of
the base infectivity 7 average connectivity k=10 for the Poissonian
mean-field (P), fixed connectivity mean field, Eq. (4) (F), and nu-
merically (N=1000), for the annealed rewired p=1 (W), and regular
one-dimensional (R) cases.

scopic simulations) may bring the infection to extinction if
the average (or mean-field) oscillations come close to ¢=0,
as is often the case for a choice of J for which chaotic be-
havior appears in the mean-field approximation.

For regular (fraction of rewired links p=0) and rewired
(p>0) lattices, it is always possible to observe a continuous
transition toward a critical level J,.(7), such that the infection
becomes extinct, for every value of the bare infectivity 7, as
shown in Fig. 4.

For scale-free networks, we concentrated on the case il-
lustrated in Sec. II, which can be considered a worst-case
scenario (y=2, diverging second and first moments of input
distribution).

Simulations show that for a=1 [Eq. (2)], there is no value
of J, for which the infection may be stopped (although not
all population is always infected), for any value of 7, in
agreement with the mean-field analysis.

The investigation of nodes that are more responsible for
the spreading of the infection reveals, as expected, that the
nodes with higher input connectivity (hubs) stay ill most of
the time (Fig. 5). Notice that also nodes with high input
connectivity have finite output connectivity, so the above re-
lation is not trivially related to the infection level.

In real life, however, public service workers who are ex-
posed to many contacts (such as medical doctors, for in-
stance) use additional safety measures. In order to include
this effect in the model, we use the parameter a, Eq. (2), that

1

0.8
0.6 -
n

04r

0.2

1 10 100 1000 10000
k

FIG. 5. Fraction of time spent ill (7) in the scale-free case, as a
function of k for K=10, J=10.
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FIG. 6. Dependence of the critical value of the perception J, as
a function of the exposure-enhanced perception parameter a, K=4,
=1, N=10 000.

up to now has been set to one. The effect of this parameter is
to increase the perception of the risk (or the safety measures)
for nodes with higher connectivity. As shown in Fig. 6, as
soon as a<<1, a finite critical value of J. appears. The tran-
sition from the active (¢>0) state to the absorbing (c=0)
state occurs suddenly, due to fluctuations. Essentially, nodes
with high connectivity may fail to be infected due to their
increased perception of the infection, and this efficiently
stops the spreading. This effect is similar to targeted immu-
nization, but is not captured by the mean-field analysis. It is
a dynamical effect over a network far from the percolation
threshold, and thus contains loops.

The transition may be a finite-size effect, related to the
unavoidable cutoff in the degree distribution for finite popu-
lations, although simulations with populations from N
=5000 up to N=80 000 do not show any systematic change
in the transition point.

V. CONCLUSIONS

In conclusion, we have studied the effects of risk percep-
tion in a simple SIS model for epidemics spreading. These
effects are modulated by two parameters J and «, which
reduce the infectivity of the disease as a function of the frac-
tion of people in the neighborhood that are manifestly ill.
The first parameter modulates the linear response, while the
second models nonlinear effects such as the increase of pre-
vention due to a publically exposed role. We found that for
fixed or peaked connectivity there is always a finite value J,.
of perception that makes the epidemics go extinct. We stud-
ied the evolution of the disease in a “worst-case” social net-
work, with scale-free input connectivity and an exponent 7y
=2, for which both the average input connectivity and fluc-
tuations diverge. In this case a linear perception cannot stop
the disease, but we found that, as soon as the perception is
increased in a nonlinear way (a<<1), the epidemics may be-
come extinct by increasing the perception level. This latter
transition is not continuous and is presumably induced by
fluctuations in hubs. It may be due to the finiteness of popu-
lation. Notice that, for a given local infection level s, the
infectivity in our model increases with the connectivity k,
differently from what happens in other models.

The mechanism that we propose is somehow analogous to
vaccination of hubs, except that it is a dynamics effect due to

061904-6



RISK PERCEPTION IN EPIDEMIC MODELING

the local level of diffusion of the disease, and is not exclu-
sively related to local connectivity. We think that a similar
mechanism is at the basis of the robustness of human popu-
lation with respect to epidemics, even in the absence of im-
munization procedures. One may speculate that, as a conse-
quence of such robustness, humans have been selected to
exhibit visual signs of the most common diseases, which
certainly does not favor the spread of infective agents. An-
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other common symptom of an illness is the tendency to iso-
lation, which again could be the result of selection.

ACKNOWLEDGMENTS

L.S. research is supported by the EMBO organization un-
der Contract No. ASTF 12-2007. The authors acknowledge
fruitful discussions with F. Di Patti and A. Guazzini.

[1] V. Colizza, A. Barrat, M. Barthélemy, and A. Vespignani,
Proc. Natl. Acad. Sci. U.S.A. 103, 2015 (2006).

[2] D. J. Watts and S. H. Strogatz, Nature (London) 393, 440
(1998).

[3] R. Pastor-Satorras and A. Vespignani, Phys. Rev. E 63, 066117
(2001).

[4] M. E. J. Newman, SIAM Rev. 45, 167 (2003).

[5] R. Albert and A.-L. Barabasi, Rev. Mod. Phys. 74, 47 (2002).

[6] S. N. Dorogovtsev, J. F. E. Mendes, and A. N. Samukhin, Phys.
Rev. Lett. 85, 4633 (2000).

[7] In SIR dynamics the infective node cannot be reinfected, so k
is replaced by k—1.

[8] R. M. Anderson and R. M. May, Infectious Diseases of Hu-
mans: Dynamics and Control (Oxford University Press, Ox-
ford, 1991).

[9] M. Boguiia, R. Pastor-Satorras, and A. Vespignani, Phys. Rev.
Lett. 90, 028701 (2003).

[10] A. Vdzquez and Y. Moreno, Phys. Rev. E 67, 015101(R)
(2003).

[11] Y. Moreno, J. B. Gémez, and A. F. Pacheco, Phys. Rev. E 68,
035103(R) (2003).

[12] V. M. Eguiluz and K. Klemm, Phys. Rev. Lett. 89, 108701
(2002).

[13] A. Vézquez, M. Boguna, Y. Moreno, R. Pastor-Satorras, and
A. Vespignani, Phys. Rev. E 67, 046111 (2003).

[14] R. Cohen, S. Havlin, and D. ben-Avraham, Phys. Rev. Lett.
91, 247901 (2003).

[15] R. D. Smith, Infectious Disease and Risk: Lessons from SARS
(The Nuffield Trust, London, 2005).

[16] M. E. J. Newman, Phys. Rev. E 66, 016128 (2002).

[17] R. Olinky and L. Stone, Phys. Rev. E 70, 030902(R) (2004).

[18] D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J.
Watts, Phys. Rev. Lett. 85, 5468 (2000).

[19] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev.
Lett. 85, 4626 (2000).

[20] S. Riley et al., Science 300, 1961 (2003).

[21] M. Lipsitch er al., Science 300, 1966 (2003).

[22] L. Hufnagel, D. Brockmann, and T. Geisel, Proc. Natl. Acad.
Sci. U.S.A. 101, 15124 (2004).

[23] M. Kamo and A. Sasaki, Physica D. 165, 228 (2002).

[24] R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 86,
3200 (2001).

[25] A. H. Eagly and S. Chaiken, The Psychology of Attitudes (Har-
court, Fort Worth, TX, 1993); A. H. Eagly and S. Chaiken,
“Attitude Structure and Function,” in The Handbook of Social
Psychology, edited by D. T. Gilbert, S. T. Fiske, and G.
Lindzey (McGraw-Hill, New York, 1998), Vol. 1, pp. 269-322;
S. T. Fiske and S. L. Neuberg, “A Continuum of Impression
Formation, from Category-Based to Individuating Processes:
Influences of Information and Motivation on Attention and In-
terpretation,” in Advances in Experimental Social Psychology,
edited by M. P. Zanna (Academic Press, New York, 1990), Vol.
23, pp. 1-74.

[26] P. Glendinning and L. P. Perry, J. Math. Biol. 35, 359 (1997).

[27] B. T. Grenfell, O. N. Bigrnstad, and B. F. Finkenstidt, Ecol.
Monogr. 72, 185 (2002).

[28] N. T. J. Biley, The Mathematical Theory of Infectious Diseases
and its Applications, 2nd ed. (Griffin, London, 1975); J. D.
Murray, Mathematical Biology: 1. An Introduction, 3rd ed.
(Springer, Berlin, 2002).

[29] L. Sguanci, P. Li6, and F. Bagnoli, “The Influence of Risk
Perception in Epidemics: A Cellular Agent Model,” in Cellular
Automata, edited by S. El Yacoubi, B. Chopard, and S. Ban-
dini, Lecture Notes in Computer Science Vol. 4173 (Springer,
Berlin, 2006). pp. 321-329.

[30] N. Boccara, O. Roblin, and M. Roger, Phys. Rev. E 50, 4531
(1994).

[31] F. Bagnoli, F. Franci, and R. Rechtman, Phys. Rev. E 71,
046108 (2005).

061904-7



