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In this paper, we investigate the dynamical properties of electroencephalogram �EEG� signals of humans in
sleep. By using a modified random walk method, we demonstrate that scale-invariance is embedded in EEG
signals after a detrending procedure is applied. Furthermore, we study the dynamical evolution of the prob-
ability density function �PDF� of the detrended EEG signals by nonextensive statistical modeling. It displays a
scale-independent property, which is markedly different from the usual scale-dependent PDF evolution and
cannot be described by the Fokker-Planck equation.
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I. INTRODUCTION

The analysis of electroencephalogram �EEG� signals at-
tracts extensive attention from various research fields, since
it cannot only help us to understand the dynamical mecha-
nism of human brain activities, but also be potentially useful
in clinics in diagnosing some neural diseases. Some previous
work has been done on human EEG signals in sleep and
other physiological states. In Refs. �1–3� the correlation di-
mension and Lyapunov exponent were calculated to charac-
terize and discriminate the sleep stages. Lee et al. provided
evidence for the long-range power-law correlations embed-
ded in EEG signals �4�. The mean scaling exponents were
distinguished according to rapid eye movement �REM�, non-
REM, and awake stages, and gradually increased from stage
1 to stages 2, 3, and 4 in non-REM sleep. Hwa et al. found a
variable scaling behavior in two regions, and described the
topology plot of the scaling exponents in these two regions,
which reveals the spatial structure of the nonlinear electronic
activity �5�. Random matrix theory is used to demonstrate
the existence of generic and subject-independent features of
the ensemble of correlation matrices extracted from human
EEG signals �6�. Yuan et al. found similar long-range tem-
poral correlations and power-law distribution of the incre-
ments of EEG signals after filtering out the � and � waves
�7�.

Furthermore, some very recent work �8,9� pointed out that
the sleep-wake transitions exhibit a scale-invariant pattern
and embed a self-organized criticality �see also Ref. �10� for
the concept of self-organized criticality�. In the present pa-
per, the Tsallis entropy is used to analyze a series of human
EEG signals in sleep. Robust scale invariance was discov-
ered for the EEG signals of brains in sleep, which does, to
some extent, indicate that the human brain activity in sleep
may be related to a self-organized critical system.

We use the Massachusetts Institute of Technology �MIT�–
Beth Israel Hospital �BIH� polysomnographic database,

which is a collection of recordings of multiple physiological
signals during sleep. Subjects were monitored in Boston’s
Beth Israel Hospital Sleep Laboratory for evaluation of
chronic obstructive sleep apnea syndrome, and to test the
effects of constant positive airway pressure, a standard thera-
peutic intervention that usually prevents or substantially re-
duces airway obstruction in these subjects. The database con-
tains four-, six-, and seven-channel polysomnographic
recordings, each with an electrocardiogram �ECG� signal an-
notated beat by beat, and with an EEG signal annotated with
respect to sleep stages �12�. The records were digitized at a
sampled interval of 250 Hz and 12 bits precision. The poly-
somnographic wave forms were displayed on CRT display
and edited by using a program called WAVE �wave-form
analysis, viewer, and editor�, which was developed at Mas-
sachusetts Institute of Technology. The sleep stage was an-
notated at 30 s intervals according to the criteria of Rech-
schaffen and Kales, denoted by six discrete levels—1, 2, 3,
4, REM, and awake �stages 1, 2, 3, and 4 belong to non-
REM sleep� �13�. More details of the MIT-BIH polysomno-
graphic database collection can be found in Ref. �14�. In this
paper, we chose the experimental data with the criterion that
the subject record contain at least five states, with the persis-
tent length of the state larger than 105. Under this criterion,
we chose ten subjects, and in total 40 samples: nine samples
for the awake state, eight samples for the REM state, five
samples for stage 1, nine samples for stage 2, six samples for
stage 3, and three samples for stage 4. The testers in the
experimental procedure were patients with diseases like ob-
structive apnea with arousal, hypopnoea with arousal, and
obstructive apnea. However, the disease status could only be
observed in a short time period during the transition between
states. The chosen experimental data were required to cover
sufficiently long time periods in which the testers did not
detect the disease. The average length of records in each
stage was larger than 105. The smallest average length was
1.21�105 for stage 3 �corresponding to 7 min�, while the
largest contained 4.525�105 samples for the awake stage
�corresponding to 28 min�. A representative example is
shown in Fig. 1. In addition to Fig. 1, all the experimental*zhutou@ustc.edu
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results shown in this paper were obtained by averaging over
the ten chosen subjects.

II. SCALE INVARIANCE OF DETRENDED EEG SIGNALS

Consider an EEG series, denoted by �xi� �i=1,2 , . . . ,N�,
whose scaling characteristics are detected through the fol-
lowing procedure.

Step 1. We construct the profile series Y j =�i=1
j xi , j

=1,2 , . . . ,N, and consider Y j as the walk displacement of the
resulting random walk.

Step 2. We divide the profile series into nonoverlapping
segments with equal length and fit each segment with a
second-order polynomial function. We regard the fitting re-
sults as trends; a stationary series can be obtained by elimi-
nating the trends from the profile series.

Step 3. After the detrending procedure, we define the in-
crement of this modified profile series at a scale s as �sY j
=Y j+s

� −Y j
�, where Y j

� is the deviation from the polynomial fit.
Step 4. Scale invariance �self-similarity� in the stationary

series implies that the probability distribution function �PDF�
satisfies

P�x,s� =
1

�s
P� x

�s
	 , �1�

where �s denotes the standard deviation at time scale s. Ob-
viously, P�0,s�= P�0�1 /�s.

Changing the time scale s from 21 to 210, the normalized
PDFs of �sY exhibit scale-invariant �self-similar� behaviors
as presented in Fig. 2. That is to say, those PDFs can be
rescaled into a single master curve, as shown in Fig. 3. The
scale invariance of the detrended EEG signals suggests that a
quasistationary property is embedded in the distributions of
time scales. Therefore, it helps us to search for stable distri-
butions to mimic them.

III. NONEXTENSIVE STATISTICAL MODELING
OF DETRENDED EEG SIGNALS

From the results sketched in the preceding section, here
we use the Tsallis entropy to model the PDFs. The Tsallis
entropy was introduced by Tsallis through generalizing the
standard Boltzmann-Gibbs theory �15�, and is given by

Sq = k

1 −
 dx�p�x��q

q − 1
�
 dx p�x� = 1, q � R	 . �2�

In the limit q→1, Sq degenerates to the Boltzmann-Gibbs-
Shannon entropy as

FIG. 1. A set of representative records of EEG signals in differ-
ent stages. Each entire experimental data set includes more than 105

data points, while only a small fraction are plotted.

FIG. 2. P�0,s� as a function of the time sampling scale s. A
power-law scaling behavior is observed for about three orders of
magnitude. The data points for awake, REM, and stages 1, 2, 3, and
4 are obtained by averaging nine, eight, five, nine, six, and three
samples, respectively.
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S1 = −
 p�x�ln�p�x��dx . �3�

The optimization of Sq �i.e., maximal Sq if q�0, and mini-
mal Sq if q�0� with the normalization condition �dx p�x�
=1, as well as the constraint ��x2

q=�2, leads to the
q-Gaussian distribution �q�3�

Gq�x,s� =
1

Zq�s�
„1 − ��s���1 − q��x − x̄�s��2�…+

1/1−q, �4�

where Zq�s� is a normalization constant, ��s� is explicitly
related to the variance of the distribution, and the subscript +
indicates that Gq�x ,s� is non-negative �16�. Gq→1�x ,s� recov-
ers the usual Gaussian distribution. The q-Gaussian PDF can
describe a set of stable distributions from Gaussian to Lévy
regimes �17� by adjusting the value of q with appropriate
time-dependent parameters ��s� and Zq�s� �18�. The distribu-
tion falls into the Lévy regime in the interval 5 /3�q�3,
with q=5 /3 the critical value.

The results in Fig. 4 show that the PDF of the awake stage
falls into the Lévy regime with q being equal to 1.94. It
exhibits sharp kurtosis and a long-tail distribution, distin-
guished from those of REM and non-REM stages. It should

be noted that we shift the distributions by dividing them by
their standard deviations and plot only the cases of time scale
s=2,8,32,128,1024 to make the figure clear.

The specific values of ��s� for all scales are shown in Fig.
5. Interestingly, ��s� does not dissipate as the time scale s
increases, unlike the behavior of ��s� recently reported in
financial markets �see Fig. 11 in Ref. �19��, in which ��s�
decreases in a power-law form with time scale s, indicating
scale-dependent PDF evolution. In other words, it demon-
strates that the dynamical evolution of EEG signals is not
coincident with the diffusion process described by the
Fokker-Planck equation �20�.

Another significant equation of the nonextensive statisti-
cal approach is the q-exponential function, which reads

eq�x,s� =
1

Zq�s�
�1 − 	�s���1 − q��x − x̄�s����+

1/1−q, �5�

where the parameter 	�s� is the relaxation rate of the distri-
bution. Clearly, in the limit q→1,

e1�x,s� =
1

Zq�s�
exp�− 	�s��x − x̄�s��� . �6�

Because the statistical distributions of the detrended incre-
ments of EEG signals in the sleep stages exhibit an approxi-

FIG. 3. �Color online� Rescaled increment PDFs for six stages.
Obviously, curves with different time scales can well collapse onto
a single master curve, demonstrating the existence of a quasistation-
ary property. The different values of the time scale s are presented
in the right panel, increasing as 2 ,4 ,8 , . . . ,1024. The data points
for awake, REM, and stages 1, 2, 3, and 4 are obtained by averaging
nine, eight, five, nine, six, and three samples, respectively.

FIG. 4. �Color online� Rescaled increment PDFs of all stages
with the approximate fit using nonextensive statistical modeling.
We use a q-Gaussian function to fit the awake stage, and a
q-exponential function to fit other five stages. The awake stage falls
into the Lévy regime with the best-fit parameter q=1.94. In the
REM stage, the values of q are slightly different; while in each
non-REM stage, they are almost the same. All the data points for
awake, REM, and stages 1, 2, 3, and 4 are obtained by averaging
nine, eight, five, nine, six, and three samples, respectively.
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mately exponential form, we use the q-exponential model to
quantify them, as shown in Fig. 4. The values of q for the
REM and the non-REM stages are a little bit larger than 1.
This means that the fluctuation of human brain activities in
the sleep stage converges to a normal exponential pattern. In
particular, the EEG signals exhibit a q-invariant pattern for
different time scales in all the four stages within non-REM
sleep. The relaxation rates of the distributions are also ap-
proximately invariant, as shown in Fig. 5. However, in the
REM stage, the values of q change slightly, and only the
center part of the distribution can be well fitted by the
present model. This irregularity of brain electrical activity in
the REM stage may result from the acute neural activity �21�.

The nonextensive statistical approach, modeling the de-
trended increment’s PDF of EEG signals with an invariant
parameter q, demonstrates the scale-independent property of
the system. In order to further test the existence of this ob-
served property, we randomize the empirical series of the
awake stage by shuffling �22,23� and show a fit for this arti-
ficial distributions at different scales in Fig. 6. Clearly, the
parameter q will approach the Gaussian regime �q=1� as the
time scale increases. This result strongly illuminates that the
scale-independent property of human brain activity in sleep
is remarkably different from the turbulentlike scale-
dependent evolution �24�. Since the fluctuation in a system
near a critical point is generally associated with scale invari-
ance, the existence of a scale-dependent property of EEG
signals indicates that the human brain activity in sleep may
be related to a self-organized critical system, supporting a
prior report about this issue �11�.

IV. CONCLUSION

In this paper, several dynamical properties of human EEG
signals in sleep are investigated. We first use a modified ran-
dom walk method to construct the profile series including the
information of the EEG signals. After a detrending proce-
dure, we obtain a stationary series and define the increments

of the resulting random walk at multiple scales. In order to
characterize the dynamical process of brain electronic activ-
ity, we then study the P�0,s� of the PDF of normalized in-
crements as a function of s. With this choice we investigate
the point of each probability distribution that is least affected
by the noise introduced by the experimental data set. Scale
invariance in both awake and sleep stages is obtained; thus
one can rescale the distributions at different scales into a
single master curve.

Aiming to investigate this property, we use the nonexten-
sive statistical approach to model these processes. The dy-
namical evolution of the detrended increments’ PDF in the
awake stage can be well fitted by the q-Gaussian distribution
with an invariant parameter q=1.94. It demonstrates that the
PDFs of the awake stage fall into the Lévy regime. In con-
trast, a q-exponential distribution is used to mimic the PDFs
of the sleep stages. In particular, the non-REM stage exhibits
scale-independent distributions; while for the REM stage, the
analysis suggests a complex distributional form with slightly
different values of q. Note that, in many prior quantitative
methods, like entropy and Lyapunov estimates, the REM and
awake states are indistinguishable based on the entire time
scale. Instead, here we analyze the EEG series at different
time scales, and find a great difference of the q value in the
awake state �i.e., q=1.94�, which may be due to the extreme
neural activity. However, the real biological reason is not
clear thus far. We hope this sharply different q value can
reveal some information that could be useful for a future and
in-depth exploration.

In a recent work �24�, Lin and Hughson proposed a tur-
bulentlike cascade model, which describes a scale-dependent
PDF evolution, to mimic the human heart rate; the validity of
the model is, now, being challenged by the critical scaling
invariance found in real human heart-rate processes �25,26�.
In this paper, we demonstrate that the process of brain elec-
tric activity is remarkably different from a turbulentlike cas-
cade evolution, similar to what was found by Kiyonol et al.
�25,26�. It is generally accepted that the complex dynamics
of the heart rate is caused by an intricate balance between the
two branches of the autonomic nervous system: the parasym-

FIG. 5. �Color online� ��s� and 	�s� versus s for awake and
non-REM stages. The values of ��s� do not dissipate as s increases.
In particular, 	�s� of non-REM sleep converges to an invariant pat-
tern. All the data points for awake and stages 1, 2, 3, and 4 are
obtained by averaging nine, five, nine, six, and three samples,
respectively.

FIG. 6. �Color online� Increment PDF of randomized series of
awake stage and fitting curves with different parameters q. The
parameter q rapidly approaches the Gaussian regime �q=1� as the
time scale increases. For clarity, we shifted the distributions by
dividing them by their standard deviations.
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pathetic �PNS� and the sympathetic �SNS� nervous systems,
which respectively decrease and increase the heart rate. The
autonomic nervous system is controlled by the central ner-
vous system of the brain. Therefore, even though the electro-
cardiograph and electroencephalogram are different, their
similarities may not be a coincidence. Although the compari-
son of the EEG and ECG in this paper could not present a
convincing link between the scale-invariant properties of
heart rate and EEG, the discussion of this aspect may en-
lighten readers and can provide some insights into the under-
lying dynamical mechanism of brain activity. In addition,

like the corresponding empirical studies on human ECG sig-
nals, this work could provide some criteria for theoretical
models of human EEG signals.
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