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The role of H bonds in the formation of the fragility and dielectric properties of highly viscous liquids is
investigated. The heuristic supposition about the proportionality between the logarithm of the shear viscosity
and oscillatory contributions to the mean-square displacement of a molecule is presented. Concrete calculations
are carried out for the H-bond subsystem of the two-dimensional model lattice water. The conjecture on the
interrelation between the phase transition in the subsystem of H bonds and the glassification point is formu-
lated. It is shown that �i� the glassification temperature is proportional to the H-bonding energy and �ii� the
fragilities of glycerol-like liquids differ from each other as a consequence of distinct interaction energies
between H bonds. The existence of a close connection between the fragility parameter and dielectric permit-
tivity is established.
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I. INTRODUCTION

Presently, peculiarities of highly viscous states of liquids
and their transition to glasslike states are treated within the
phenomenological representations �1–3�. In such a picture
the glassification is the kinetic phenomenon, and some non-
trivial properties of highly viscous states, in the first place,
the specificity of nonequilibrium behavior, find satisfactory
qualitative explanation. However, in order to understand the
nature of the static shear viscosity and the fragility of sys-
tems, the microscopic features of the thermal motion of mol-
ecules should be taken into account �4�. It seems that the
interconnection between microscopic and macroscopic prop-
erties of systems near the glassification point is revealed to
the greatest extent for spin systems, the interaction constants
of which are the random quantities �5,6�.

The main attention in the present paper is focused on
microscopic prerequisites of the glass transition in glycerol-
like liquids in which H bonds are the most characteristic
peculiarities of the intermolecular interaction. More exactly,
we suppose that the change of the H-bonds ordering is a
necessary condition for the glass transition in such liquids. In
connection with this, we study in detail the influence of the
H-bond network on the fragility and dielectric permittivity.
For this purpose we use the two-dimensional lattice water
model proposed in Ref. �7�. We suppose the most general
properties of the H-bond subsystem in water to remain quali-
tatively the same for glycerol and glycerol-like liquids. More
exactly, we will analyze the specificity of the orientation dis-
order in liquids with developed H-bond network.

Let us consider the definition of the fragility parameter
and its connection with the properties of the H-bond sub-
system. It follows from the macroscopic definition of the
fragility �8–11�,

fM = � � log10 �

��Tg/T�
�

T=Tg

, �1�

that this problem is related to the origin of the shear viscosity
�. Furthermore in Ref. �4,12�, the microscopic fragility pa-
rameter

fm = �d�u0
2/�u2�l�

d�Tg/T�
�

T=Tg

, �2�

proportional to fM, is introduced. Here

�u2�l = �u2�dis − �u2�ord �3�

and �u2�dis and �u2�ord are the mean-square displacements of a
proton caused by vibrational degrees of freedom in disor-
dered �as determined from elastic neutron scattering data
�12�� and crystal-like state, respectively, u0

2 is the character-
istic increment of �u2�dis about a point T=Tg. Note that the
quantity �u2�dis also enters in the incoherent cross section for
cold neutrons as the Debye-Waller factor

fdw = exp�− 1
6 �u2�disk�

2� , �4�

where k� is the transfer wave vector for scattered neutrons.
It was shown in Refs. �4,12� that the proportionality be-

tween fM and fm takes place for many glycerol-like glass-
forming liquids. This fact allows one to suggest that fm can
serve as a microscopic measure of fragility.

This microscopic definition �2� is very useful for the in-
vestigation of the role of H bonds in the formation of fragil-
ity. In general, molecules drift and rotate. As a result, the
displacements of protons, which give the main contribution
to the neutron scattering, can be represented in the form

�u2�dis = �u2�tr + �u2�rot, �5�

where the subscripts “tr” and “rot” denote the terms caused
by the translational and rotational motions. Using the results
for the hexagonal ice �13�, one can show that the contribu-
tions �u2�tr and �u2�rot are practically the same: �u2�tr

��u2�rot. It seems natural that the similar relation between
�u2�tr and �u2�rot exists also for highly viscous states in which
the average number of H bonds per molecule is close to that
for the corresponding crystal. Therefore, the careful study of
orientation disorder and rotational oscillations is very impor-
tant to understand the nature of the fragility.
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H bonds play a very important role also in water. Equa-
tion �2� can therefore be used for determination of the fragil-
ity of the H-bond network in water. Here the main problem is
related to the correct account of the strong correlations be-
tween H bonds. For three-dimensional water this problem
still remains unsolved. However, the effective methods were
developed for the description of the strong H-bond correla-
tions in two-dimensional lattice water �7�. It was shown that
at a certain temperature the H-bond network undergoes a
sharp first-order phase transition at which the number of H
bonds per molecule considerably changes. As it follows from
the qualitative arguments formulated above, we expect �u2�dis

to change essentially as well. In real water the translational
motion of molecules will smear the sharp phase transition.
However, the tendency in the behavior of �u2�dis should re-
main.

In accordance with our intentions formulated above, we
consider �i� the most important details of the phase transition
in the subsystem of the H-bond network in two-dimensional
water; �ii� the temperature dependence of the oscillatory con-
tributions to �u2�dis and similar characteristics as well as
some correlation functions for the angular variables that de-
scribe thermal motion in lattice system; �iii� H-bond contri-
butions to the fragility and dielectric permittivity.

II. MODEL HAMILTONIAN

The lattice model of the two-dimensional water �7� is the
generalization of two-dimensional model of Pauling ice �14�.
In this model four active ends of a molecule—two donor and
two acceptor—are located at the ends of the perpendicular
line segments. Contrarily to the Pauling ice model, mol-
ecules can rotate about the axis perpendicular to the crystal
plane. The state of the ith molecule is unambiguously de-
scribed by the set of two variables 	� ,�
i �see Fig. 1�. The
discrete variable �i can take 6 values, just as in the case of
Pauling ice. This variable enumerates the discrete states, cor-
responding to all possible dispositions of two “negative
charges” on four ends of the crosslike molecule. In any of

these states ith molecule can rotate on the angle �i. For un-
ambiguous description of rotations it is necessary to restrict
changes of the angular variable by limits: −� /4��i�� /4.
Note that in the Pauling ice model there are only six discrete
states for a molecule. It is assumed that the states of two
nearest neighbors, turned to each other by the same ends
�charges�, are forbidden. This assumption takes place in our
model only if the rotation angles �i ,� j of the nearest mol-
ecules do not exceed some limiting value:

��i�, ��i� � � . �6�

The value of � is implied to be close to the amplitude of the
angular oscillations of water molecules in ice, therefore �
� �	�� /4. We choose the parameter � in such a way that

d =
�

4 − �
�� = 8. �7�

An H bond between the nearest neighbors forms if �1� the
rotation angles satisfy the inequality �6�, and �2� the discrete
variables �i, � j set the compatible states, in which molecules
are turned to each other by ends with opposite charge. The
H-bonding energy is set to −
0, and remains the same for all
�i, � j that satisfy condition �6�. If any of these angles ex-
ceeds �, the H bond does not form and the energy of such a
state is zero.

Thus, the energy of intermolecular interaction is equal to

�H��i,�i;� j,� j�

= 
 + � , if �i,� j are noncompatible, ��i�, �� j� � � ,

− 
0, if �i,� j are compatible, ��i�, �� j� � � ,

0, if ��i� 
 � and �or� �� j� 
 � .
�

�8�

In real water the interaction of H bonds is also essential. To
model this interaction, we use the following reasons. The
most symmetric and energetically profitable configuration in
the distribution of protons and the electron density corre-
sponds to the configuration, in which a molecule forms four
H bonds with its nearest neighbors. Due to this, we choose
the interaction energy as

�HH�i,	j
i� = �− �
0, � 	 1, if �nH�i = 4,

0, in the opposite case,
� �9�

where 	j
i denotes four neighbors of the ith molecule. Since
the interaction energy depends on the states of five molecules
�including a central molecule and four of its nearest neigh-
bors�, the irreducible five-particle interaction should be taken
into account in concrete calculations. As a result, the Hamil-
tonian of the system can be represented in the form

H = �
�i,j�

�H�i, j� + �
i,	j
i

�HH�i,	j
i� �10�

where symbol �i , j� denotes the nearest neighbors. For real
three-dimensional �3D� water other mechanisms of the
H-bonds interaction are also important �15,16�.

We will henceforth put 
0=1, which is equivalent to mea-
suring temperature in units of 
0.

X X

(b)(a)

1 2 43 5 6

FIG. 1. Schematic representation of the model with the six ways
��=1. . .6� of arranging the protons �solid circles� of a “flat” water
molecule at fixed orientation of active ends �top�, and specification
of the state of a molecule at the site: �a� �=6, �=−15°; �=2, �
=20°. The state of the ith molecule is unambiguously described by
the set of two variables 	� ,�
i.
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III. PHASE TRANSITION IN THE SUBSYSTEM
OF H BONDS

To investigate the phase diagram of the lattice water
model, the Monte Carlo �MC� simulation of the system de-
scribed by the Hamiltonian equation �10� was undertaken. At
each simulation, a random initial configuration of the system
was chosen on a 256�256 square lattice. A classical Me-
tropolis MC algorithm �17,18� was used. After 108–109

equilibration steps, the averages were accumulated for 108

MC steps.
The temperature dependence of the average number of H

bonds per molecule, �nH��t�, where t=T /
0 is dimensionless
temperature, is presented in Fig. 2 for �=0. It manifests a
smooth transition from the two-dimensional ice state ��nH�
�4� to the liquid state ��nH�	4�. Figure 3 demonstrates the
dependence of the transition temperature, defined as the tem-
perature at which �nH�=2, upon the value of the parameter �
�see Eq. �9��. Note that, rigorously speaking, the temperature
t0 of the phase transition should be determined from the con-

dition Ford�t0�=Fdis�t0�, where Ford and Fdis are the free en-
ergies of the system in ordered and disordered states. Apply-
ing to Ref. �7�, one can show that the value determined in
such a way is very close to t̃0 calculated from the equation
nH�t̃0�=2.

As it can be expected for the system with finite number of
microscopic states, the water model does not manifest sharp
transition on a finite lattice. This problem can be overcome
in MC simulations by using finite size scaling �18�. This has
indeed been done in several other lattice models with success
�19–21�. However, in the present paper we will use the
method of many-particle irreducible distribution functions
�MMPIDF� for further investigation.

MMPIDF is a method developed by the authors �22� and
is the generalization of the Kikuchi cluster variational
method �23� and of the Bethe-Peierls quasichemical ap-
proach �24�. The distinctive feature of this method is the
perturbation theory, in which the order of approximation is
determined by the size of the compact cluster taken into ac-
count in the calculations. MMPIDF essentially improves the
results obtained within the mean-field approximation if the
correlation radius noticeably exceeds the interparticle spac-
ing. This method fills the gap between the mean-field ap-
proximation, in which the correlation radius is zero, and the
renormalization-group approach, in which the correlation ra-
dius tends to infinity.

The method has been applied to the lattice water model
�7�, starting from the consideration that the most symmetric
and energetically favorable configuration of the electron and
proton density distribution occurs when a molecule forms
four H bonds with its nearest neighbors. Hence for the inter-
action energy of the bonds the form �9� has been chosen.

The MMPIDF allows us to conclude that in the subsystem
of H bonds the first-order phase transition takes place at t
= t0. However, it is necessary to note the following peculiari-
ties of different approximations. The character of the phase
diagram is especially sensible to the values of two key pa-
rameters of the Hamiltonian: � and d. For d=8, noted above,
the states of the system change continuously for ��0.22 in
two-particle approximation and for ��0.17 in four-particle
approximation. In the narrow temperature interval the aver-
age number of H bond per molecule decreases from nH�4
up to nH�0. In the nine-particle approximation the transition
between these states is sharp for all ��0. In this approxima-
tion the ordered �nH�4� and disordered �nH�0� metastable
phases can also exist. The former is observed at t0� t
� t1��� and the latter at t2���� t� t0. Thus t1��� or t2��� can
be interpreted as the spinodal points. At approaching t1��� or
t2��� from the side of the metastable states, heat capacity of
the system diverges. Note that the intervals t1���− t0 and t0

− t2��� depend also on the order of approximation: they are
the narrowest in the nine-particle approximation.

The dependence of t0 on � obtained in the nine-particle
approximation is shown in Fig. 3. It is evident from the
inspection of the average ����H�2� calculated by the
MMPIDF method and presented in Fig. 4 that the spinodals
of the system are situated above and below t0, which ex-
plains the essential increase in ���nH�2� near t0.

Here the impression can appear that the first-order phase
transition is an artifact, arising in higher orders of the pertur-

FIG. 2. Temperature dependence of the average number of H
bonds per molecule as obtained with MMPIDF in nine-particle ap-
proximation �solid line� and Monte Carlo simulation �circles�. t
=T /
0 is the dimensionless temperature.

FIG. 3. Phase diagram of lattice water model. The temperature
of the phase transition, defined as the temperature at which �nH�
=2, at different values of the parameter � was obtained with
MMPIDF �circles� and Monte Carlo simulation �crosses�. Solid line
is a guide to eye.
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bation theory. To clarify this question, let us consider the
character of the phase transition at other values of the param-
eter d. One can show that the phase transition for �=0.3 is
continuous in all orders of the perturbation theory if d�d0,
where d0�5. In the opposite case �d
d0� the phase transi-
tion becomes sharp, and this conclusion does not depend on
the order of the perturbation theory. Thus, the consideration
of fine correlation effects is essential to identify the character
of the phase transition only for the boundary value d=d0. It
is necessary to emphasize that the regular description of cor-
relations in the MIMPDF method is not equivalent to the
mean-field approximation. Even the minimal two-particle ap-
proximation in our approach is finer than standard versions
of the mean-field description. In connection with this we
note that the correspondence can be established between our
model, in which � changes continuously, and the discrete
models investigated in �25,26�. In �26� a version of the
mean-field approximation was developed. Within this ap-
proximation it was shown that for large enough values of
parameter q, related to � in our model, the subsystem of H
bonds undergoes to the first-order phase transition. Note, that
the dimensionless temperature t0 for the phase transition is a
function of the both key parameters: t0= t0�� ,d�. The calcu-
lations show that t0 diminishes when d increases. In particu-
lar, in the approximation of two variational parameters
t0�0.31,8�=0.63 and t0�0.31,32�=0.41. The similar depen-
dence of t0 upon the parameter describing the sharpness of H
bonds is also expected for the three-dimensional systems.
Therefore, an estimate t0�0.1 seems to be quite reasonable
in this case, i.e., the phase transition in the subsystem of H
bonds takes place at the room temperatures or lower ones.

The passage from lattice to disordered disposition of wa-
ter molecules is accompanied by the effective change of � or
q �see �26��, and therefore it can lead to the smearing of the
phase transition in the subsystem of H bonds. In this case the
situation is in many respects similar to that for spin systems
with random distribution of the interaction constants �5,6�.

In the following section we will use MMPIDF to calculate
the equilibrium correlation functions.

IV. EQUILIBRIUM FLUCTUATIONS AND CORRELATION
FUNCTIONS

The macroscopic thermodynamic functions, which are the
most important in our consideration, are immediately related
to the equilibrium averages ��2�, ��4� and the correlation
function ��1

2�2
2�, where 1 and 2 denote pairs of the nearest

neighbors �due to spatial homogeneity, the averages ��i
2�,

�� j
2� and ��i

2� j
2�, where i and j denote pairs of nearest neigh-

bors, do not depend on the choice of i and j�. To calculate the
value of ��2n�, the one-particle distribution function g1�� ,��
is needed,

��2n� = �
�=1

6 �
−�/4

�/4

�2ng1��,��d�, n = 1,2, . . . . �11�

In our model, the function g1�� ,�� is independent of the
parameter � and is a “piecewise” continuous function of the
rotational angle �. For ����� and �� ����� /4 the func-
tion g1�� ,�� takes different constant values

g1��,�� = 

G1�1��d + 1�

3�
, ��� � � , � = 1 – 6,

G1�0��d + 1�
3�d

, � � ��� �
�

4
, � = 1 – 6,�

�12�

where G1�1� is the total probability for a molecule to be
found in the angular interval �−� ,�� and G1�0� is the prob-
ability to be turned on an angle greater then �. The normal-
izing rule demands G1�1�+G1�0�=1.

Substituting Eq. �12� into Eq. �11� and integrating, we
obtain

��2n� =
1

�2n + 1��d + 1�n��

4
�2n

��G1�1� + ��
p=0

2n

�d + 1�p�G1�0�� . �13�

The value of ��2n� together with the probabilities
G1�0� ,G1�1� depend on order k of approximation, therefore
we will write G1

�k��0� ,G1
�k��1� and ��2n��k�. The temperature

dependence of ��2��9� is given in Fig. 5.
In our model the correlation function ��1�2� for the near-

est and arbitrary neighbors equals zero, ��1�2�=0, because
the formation �or breaking� of an H bond depends only on
the absolute values of the corresponding angles. For the near-
est neighbors, the nonzero correlation function ��1

2�2
2� is ex-

pressed through probability functions G2�2�, G2�1�, and
G2�0�, where the subscript “2” indicates the order of the
correlation function. Here G2�2� is the total probability for
both molecules to be turned on angles not exceeding �, the
function G2�1� is the total probability to find a state in which
one of two angles exceeds �, while another is less than �,
and the probability for both molecules to be turned on angles
�� ��1� , ��2��� /4 is designated by G2�0�. The character of

FIG. 4. Dispersion ���nH�2� of the number of H bonds per mol-
ecule, calculated by the MMPIDF method, versus temperature. The
spinodals of the system are situated above and below t0, which
explains the essential increase in ���nH�2� near t0.
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temperature dependence of the correlation function ��1
2�2

2�
for two nearest neighbors is shown in Fig. 6.

The average �cos��1−�2��=R�2�+R�1�+R�0� can be cal-
culated exactly. Here R�2�, R�1�, R�0� are the contributions
from the regions of angles �1 and �2 at which �i� the H bond
forms �R�2��; �ii� one of the molecules of a pair can form the
H bond while another one cannot �R�1��; �iii� both molecules
of a pair are turned on large angles and cannot form H bonds
�R�0�� �see Fig. 7�. Each contribution can be expressed in
terms of the complete probability to find a pair of molecules.
The additional information about G1�0� ,G1�1� and G2�2�,
G2�1�, G2�0� is given in the Appendix.

The average number of H bonds per molecule and the
average of the square of the number of bonds are given by
formula

�nH
m� = �

p=1

4

pmW�p�, m = 1,2, �14�

where W�p� is the probability for a molecule to form p H
bonds. The values W�k��p� can be expressed via five-particle
probabilities G5�. . .�, which are cumbersome even at k=2
�see Ref. �7�, Eqs. �58�–�60��. The dispersion ���nH�2�
= ��nH�2�− �nH�2, calculated in the nine-particle approxima-
tion, is presented in Fig. 4.

V. MICROSCOPIC DEFINITION OF FRAGILITY

By definition �8�, the macroscopic fragility parameter fM
is related to the shear viscosity � by Eq. �1�. Since � is the
macroscopic characteristic of liquid, it is appropriate to refer
to the quantity, defined by Eq. �1�, as the macroscopic fra-
gility parameter. The logarithm of the shear viscosity was
observed to be inverse proportional to the part of the vibra-
tional contribution to the mean-square displacement of a
molecule caused by the disorder effects in liquid �27�:

log10 � � �u2�l
−1. �15�

The proportionality described by Eq. �15� is illustrated in
Fig. 8 for glycerol. Note that it takes place below the glassi-
fication point as well as above the melting temperature. Tak-
ing into account the proportionality of log10 � and �u2�l

−1, the
heuristic microscopic definition of the fragility, Eq. �2�, has
been proposed �12�.

In the temperature interval �235–320� K the behavior of
the shear viscosity of water in supercooled and normal states
is mainly determined by the H-bond interactions �28�. In this
temperature region the average number of H bonds per mol-
ecule is greater than 2, so one can speak about the developed
H-bond network. Due to this, the molecular vibrations in
water are mainly determined by the H-bond interactions.

The quantity �u2�l can be written in the framework of the
2D lattice model of water as

FIG. 5. Temperature dependence of the mean-square value ��2�.
The value of ��2n� together with the probabilities G1�0�, G1�1�
depend on order k of approximation. Here ��2��9� is considered.

FIG. 6. Temperature dependence of the correlation function
��1

2�2
2� expressed through probability functions G2�2�, G2�1�, and

G2�0�, where the subscript “2” indicates the order of the correlation
function. Here G2�2� is the total probability for both molecules to
be turned on angles not exceeding �, the function G2�1� is the total
probability to find a state in which one of two angles exceeds �,
while another is less than �, and the probability for both molecules
to be turned on angles �� ��1� , ��2��� /4 is designated by G2�0�.

FIG. 7. The behavior of �cos��1−�2��=R�2�+R�1�+R�0� ver-
sus temperature. Here R�2�, R�1�, R�0� are the contributions from
the regions of angles �1 and �2 at which �i� the H bond forms
�R�2��; �ii� one of the molecules of a pair can form H bond while
another one cannot �R�1��; �iii� both molecules of a pair are turned
on large angles and cannot form H bonds �R�0��.
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�u2�l = rp
2���2�dis − ��2�ord� , �16�

where rp is the average H-bond length. We take the value �u0�
equal to

u0
2 = ��u2�dis�T0

+ − ��u2�dis�T0
−, �17�

where T0 is the temperature of the phase transition in the
subsystem of the H-bond network.

To determine the fragility parameter fm according to Eqs.
�2� and �3�, it is necessary to evaluate the mean-square dis-
placement �u2�ord of a molecule for the ordered state. In the
framework of a 2D lattice model of water, �u2�ord is identi-
fied with the mean-square displacement of protons situated at
two ends of a crosslike molecule. The fully ordered state in
the considered model is realized only at T=0, although the
average number of H bonds per molecule remains close to 4
in the larger part of the temperature interval �0, t0� �see Fig.
2�. In fact, nonzero values of ��2� only arise due to the break
of H bonds, i.e., in consequence of violation of the ordering
�small oscillations of molecules in the considered model of
water are absent�. Therefore, �u2�ord should be set to zero.

As a result, the contribution of H bonds to the fragility
parameter at the point t0

+, considered by us as the prototype
of glassification point, can be estimated by formula

fm � � −
t2

t0

d�u0
2/�u2�dis�

dt
�

t=t0
+
. �18�

Here, as in the Introduction, we suppose that the change of
the H-bonds ordering is a necessary condition for the glass
transition in glycerol-like liquids. Note that the distinct ana-
log of the point t0 in real water or its models is absent, since
in our model all sites of the square lattice are occupied by
molecules and the lattice type remains invariable.

As it follows from Fig. 9, the contribution of H bonds to
the fragility decreases with the growth of the parameter �
which describes their interaction. The decrease of ��2� at �
�0, in comparison with the case �=0, is physically natural.
Note that the temperature t0 of the phase transition in the

subsystem of H bonds increases with �. The situation in real
ice is slightly different because �u2�ord is mainly determined
by elastic vibrations. Although they can also be introduced
into the 2D water model, the breaking of H bonds is the most
important reason for changes in fragility. The dependence of
the fragility parameter upon � is expected to be observable
for liquids-homologues similar to disaccharides: trehalose,
maltose, and sucrose �4�.

VI. DIELECTRIC PERMITTIVITY

It can be shown that the dielectric permittivity of the 2D
square lattice water, in which we neglect the electron polar-
izabilities and take into account only the dipole correlations
of the nearest neighbors, takes the form

� − 1

� + 1
=

1

2
��n�d1

2 + 4�d1 · d2�� , �19�

di being the dipole moment of the ith molecule, n being the
density of the sites, and �=1 /kBT. Let kBTd=d1

2 /a2, where a
is the lattice constant, be the characteristic dipole tempera-
ture. Since na2=1, the formula �19� can be rewritten as

� − 1

� + 1
=

�

2�
�1 + 4�cos��2 − �1���, � =

T

Td
. �20�

It follows from Figs. 5 and 6 that ��2��0.15 and ��1
2�2

2�
� ��2�2. Therefore, the value of cos��2−�1� can be approxi-
mated by several first terms,

� − 1

� + 1
=

��

2t
�5 − 4��2� +

1

3
���4� + 3��1

2�2
2��� , �21�

where �=Td /
0. The correlation function ��1
2�2

2� is presented
in Fig. 6.

Let �0 be the dielectric permittivity of two-dimensional
ice at the melting temperature Tm. Taking into account that
the values of all angular contributions are small, we can
write

FIG. 8. Linear behavior of log10 � versus �u2�l
−1 for glycerol. It

takes place below the glassification point as well as above the melt-
ing temperature.

FIG. 9. Dependence of the microscopic fragility parameter fm

on the parameter �. The contribution of H bonds to the fragility
decreases with growth of the parameter � which describes their
interaction.
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��t� = �0 −
5��

6
��0 + 2�2� 1

t0
−

1

t
−

4

5
���t0�

t0
−

��t�
t
� + ¯ � ,

�22�

where ��t�= ��1
2��t�. As it should be, dielectric permittivity of

the subsystem decreases when temperature grows �see Fig.
10�. At the order-disorder phase transition dielectric permit-
tivity changes stepwise by the value

�I�t0� − �l�t0� =
2��

3

��0 + 2�2

t0
���t0

+� − ��t0
−�� . �23�

VII. DISCUSSION

In the present paper the main attention is focused to the
microscopic basis for the glassification of highly viscous
glycerol-like liquids, their fragility and dielectric permittiv-
ity. The existence of H bonds is the characteristic feature of
these liquids. H bonds play the leading role in the intermo-
lecular interactions. Therefore it is natural to expect that
H-bond networks of such liquids are responsible for their
most important macroscopic properties.

To carry out concrete calculations, we apply to the sub-
system of 2D model lattice water. Properties of this system
are investigated with the help of the MMPIDF method and
MC simulations. It was shown that the subsystem of H bonds
near t0�0.6 �t=T /
0� undergoes the first-order phase tran-
sition. The ordered phase in which �nH��4 passes to the
disordered one with �nH�� �	�1. Such a transition is accom-
panied by strong change in the thermal motion-molecular
rotations.

We suppose that �i� such a character of behavior is also
inherent to H-bond networks of glycerol and glycerol-like
liquids and �ii� the glassification of these liquids is inherently
connected with the smeared phase transition in their H-bond
subsystems. Let us consider some arguments supporting this
point of view. It is generally accepted �1,2� that the glassifi-

cation point Tg has kinetic nature. At approaching Tg the
shear viscosity and the relaxation time �� for the anisotropy
mode �29� �� mode, according to �1�� considerably grow or
tend to infinity.

Among different formulas for the shear viscosity and the
�-relaxation time we use the exponential representation of
the activation theory, since the activation energy can be natu-
rally interpreted. In accordance with this we put

� � �� � exp�Ea/kBT� . �24�

The local state of glycerol-like liquids is characterized by
temperature and density n, as well as the number of H bonds
per molecule nH, therefore

Ea = Ea�n,nH� .

If temperature changes at fixed pressure or a system is on the
vapor-liquid coexistence curve then Ea=Ea(n�T� ,nH�T�).
Thus, the activation energy becomes effectively temperature
dependent. Applying the Hilbert’s principle �30,31�, it was
shown in Ref. �4� that

Ea = Ea„n�T�,nH�T�… � EW„n�T�… + �HnH�T� , �25�

where EW�kBTm is the contribution caused by dispersive
forces �Tm is the melting temperature� and �H�10kBTm is the
H-bonding energy. Since the main contribution to the activa-
tion energy is given by H bonds, the expression �25� can be
used for the determination of the temperature dependence of
nH�T�. In such a way it was found in Ref. �4� that the values
of nH�T� for glycerol change by a factor of 2 and more in the
temperature interval �50 °C near the glassification point.
The similar variation of nH�T� can be naturally interpreted as
the smeared phase transition in the subsystem of H bonds.

As noted in Sec. V, the glassification temperature Tg is
expected to be connected with the H-bonding energy 
0 and
dependent on the parameters of type � and d. The direction
of the shift of Tg produced by the H-bonds interaction is
presented in Fig. 3. We have studied in detail the fluctua-
tional averages ��2�, ��4�, �cos��1−�2�� that determine the
fragility and dielectric properties of highly viscous liquids
near their glassification points. Here the existence of strong
correlation between log10 � and the mean-square displace-
ment of a molecule is taken into account. We have demon-
strated that different values of the fragility of liquids homo-
logues can be explained by the difference in the interaction
energies between H bonds in them. This circumstance should
also manifest in Raman spectra: the shift of H-bond band is
expected to be proportional to �.

Other interesting two-dimensional lattice water models
have been proposed in Refs. �32–35�. The main attention is
paid to the construction of the phase diagram, in particular,
to the existence of two phases of “high and low density wa-
ter.” In �32–34� the authors consider the number of H bonds
related to a molecule and here the number of H bonds
formed by a molecule is taken into account, therefore a nor-
malization factor is present. In �32–34� nH�T� decreases
smoothly when temperature grows. The most probable fac-

FIG. 10. Temperature dependence of the dielectric permittivity

calculated according to ��t�=�0− 5��
6 ��0+2�2� 1

t0
− 1

t − 4
5
� ��t0�

t0
−

��t�

t
�

+ ¯
� with �=0.1. �0 is the dielectric permittivity of two-

dimensional ice at the melting temperature T0 and ��t�= ��1
2��t�. The

values of all angular contributions are small.
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tors leading to such a behavior of nH�T� are the low value of
the parameter q in �34� �q=6� and the disorder in the dispo-
sition of molecules.

Within our approach one can conclude that the value of
the fragility parameter is connected with the dielectric per-
mittivity of the system near Tg since they both are mainly
determined by the average ��2�. We plan to study this ques-
tion in detail in a separate work. Note that the averages �nH�,
��nH

2 �, ��2� and so on allow us to construct the structural
functions of the H-bond network �36� that play a very impor-
tant role in the description of thermodynamic properties of
the systems. In fact, our calculations justify the existence of
strong correlation between the values of 1 / ��2� and nH near
the temperature t0 of the phase transition in the subsystem of
H bonds, that was supposed in Ref. �4� on the basis of the
Hilbert’s principle. Indeed, in Ref. �4� it was motivated that
near the glassification point of glycerol-like liquids the quan-
tity �u2�dis is connected with the average number of H bonds
per molecule by the relation

�u2�dis � ��u2�w
−1 + �nH�T��−1,

where �u2�w is the contribution caused by the van der Waals
�dispersive� forces and � is the proportionality coefficient.
For the lattice water �u2�w

−1=0. Assuming Tg to be identical to
T0�0.6
0, we expect that

�u2�dis�Tg
+�

�u2�dis�Tg
−�

�
nH�Tg

−�
nH�Tg

+�
.

As it follows from Fig. 2 and Fig. 5, this relation is satisfied.
However, away from t0 �t
 t0� the agreement becomes only
qualitative. In this temperature region the rotation of mol-
ecules tends to be quasifree, so the reasoning of Ref. �4�
becomes inapplicable. In addition, the values of �u2�l can
also be used to estimate the Debye-Waller factor for water
and other liquids with H bonds, since the accuracy of its
experimental determination can in some cases be unsatisfac-
tory depending on instrumental characteristics. More detailed
consideration of these questions is at present the subject of
study and will be carried out in a separate work.

APPENDIX

In this appendix the explicit expressions are presented for
the functions G2

�k��2�, k=2,4, which have the simplest form.
They are calculated in Ref. �7� with the help of the MMPIDF
�method of many-particles irreducible distribution func-
tions�, completed by the direct variational method and the
method of quasiactivities. In this paper all calculation are
carried out within the method of quasiactivities, which in-
cludes smaller number of variational variables and is fully
equivalent to the direct variational method for k=2,4. In
accordance with �7�,

G2
�2��2� =

18

��2��z,t�
exp�1

t
� , �A1�

��2��z,t� = 18 exp�1

t
� + 72zd + 36�zd�2, �A2�

where z is the quasiactivity of states 	� ,�
 for which ���

�. The function G2

�4��2� has the structure

G2
�4��2� =

1

��4��z1,z2,t�
� �82 exp�4

t
� +

64

2
z2

2d exp�2

t
�

+
64

2
z2

2z1d2 exp�1

t
�� , �A3�

��4� = 82 exp�4

t
� + 64z2

2z1d exp�2

t
� + 64z2

2z1d2 exp�1

t
� + 4

� 64z2
2z1

2d3 + 64z1
4d4, �A4�

where z1 is the quasiactivity of states of two neighbor mol-
ecules for which ��1� , ��2�
�, z2 is the quasiactivity of
states corresponding to either ��1��� and ��2�
� or ��1�

� and ��2���. The expression for G2

�9��2� is cumbersome
�the normalizing factor has 102 terms� and is therefore not
presented. The functions G2

�k��0� and G2
�k��1� have the analo-

gous structure.
In the framework of the MMPIDF the functions G1

�k��0�
and G1

�k��1� have more complicated form. Their explicit ex-
pressions are written in Ref. �7�.
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