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The applicability of constitutive models based on kinetic theory for dense granular flows is examined. First,
we calculate the average coordination number of a particle in a dense flow down an inclined plane using
discrete element simulations that employ a linear spring-dashpot model for particle interactions. It is found that
the average coordination number decreases as the spring constant increases at constant coefficient of restitu-
tion, and is less than 1 for the values of spring constant corresponding to materials such as sand and glass
beads. The Bagnold coefficients, which are the ratios of the different components of the stress and the square
of the strain rate, are calculated using both discrete element (DE) simulations and event driven (ED) simula-
tions; collisions are considered to be instantaneous in the latter simulations. It is found that the theoretical
predictions of the Bagnold coefficients are in quantitative agreement with both DE and ED simulations pro-
vided the pair distribution function obtained from the simulations is inserted into the theory. However, it is
found that the pair distribution function in a sheared granular flow is significantly larger than that in an

equilibrium fluid of elastic particles.

DOL: 10.1103/PhysRevE.76.061305

I. INTRODUCTION

There has been a lot of interest in the flow of a granular
material down an inclined plane, because large scale simula-
tions [1] have been able to provide a detailed description of
the dynamics within the flow which was not previously ac-
cessible in experiments. The simulations reveal several sur-
prising features. It is found that the volume fraction in the
bulk of the flow is a constant, independent of total height and
of conditions at the bottom boundary, and dependent only on
the angle of inclination. There have been some simulation
studies [2] which have also indicated that the constitutive
relations derived from kinetic theory are valid for these
flows, while other studies [3-5] suggest that long-range cor-
relations are important and kinetic theory cannot be applied
for these flows. All the components of the stress are found to
be proportional to obey the Bagnold law, which states that
the stress is the square of the strain rate,

Uij=Bl-_,-j/2, (1)

where the Bagnold coefficients, By, which have dimensions
of (mass)(length)™!, are functions of the volume fraction.
The Bagnold law is a dimensional necessity if the only time
scale in the flow is the inverse of the strain rate, and the
period of particle interactions does not influence the flow
dynamics. Note that the gravitational acceleration does not
provide a material time scale. It cannot enter into the consti-
tutive relation for the stress, because the gravitational accel-
eration is a body force, whereas the stress is a surface force
generated by the local strain rate. In other words, the consti-
tutive relation must be independent of whether the material is
deformed with gravity or without. In the present problem, the
gravitational acceleration provides the applied force per unit
volume, which is balanced by the divergence of the stress;
the stress is provided by the constitutive relation which is not
dependent on gravity. Since collisions are due to the fluctu-
ating velocity of the particles, the collision frequency must
be related to the fluctuating velocity, which in turn is related
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to the strain rate through the energy balance equation (note
that the conduction term is neglected in the energy balance
equation when the length scale is large compared to the con-
duction length). If the period of particle interactions is small
compared to the inverse of the strain rate, collisions can be
considered instantaneous, and there is no material time scale.
Therefore, the only time scale is the inverse of the strain rate,
and the stress must be proportional to the square of the strain
rate. The fact that simulations do observe that the stress is
proportional to the square of the strain rate suggests that
results from the Kinetic theory calculations [6—11] may be
applicable for dense granular flows down an inclined plane.

The applicability of constitutive relations from kinetic
theory [6—11] for dense granular flows is a contentious issue,
because some specific assumptions made in deriving consti-
tutive relations from the Enskog equation do not seem to be
applicable for dense flows. For example, we have the follow-
ing:
(1) The collision integral in the Boltzmann and Enskog
equations assume two-body interactions between particles.
For dense granular flows, it is assumed that multibody con-
tacts are the dominant mode of interaction.

(2) Correlations in the particle positions are incorporated
in an approximate way using the pair distribution function,
and the correlations in the velocities are neglected in kinetic
theory.

The latter issue has been examined by Kumaran [13],
where it is shown that the dispersion relations for the hydro-
dynamic modes in the shear flow of inelastic particles is very
different from that in an elastic fluid. In particular, the long
time tails in the velocity autocorrelation functions are not
present in a granular fluid because energy is a nonconserved
variable in a granular fluid. It is known that hydrodynamic
correlations in an elastic fluid do alter the form of the con-
stitutive relations derived by kinetic theory [12], resulting in
a divergent viscosity in two dimensions and divergent Bur-
nett coefficients in three dimensions. However, these diver-
gences are not present for a system of inelastic particles [13],
if the Green-Kubo relations are used to calculate the trans-
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port coefficients. The applicability of Green-Kubo relations
to a system far from equilibrium is not certain, and a more
detailed calculation using the ring kinetic approximation is
required to ascertain the effect of long time tails on the trans-
port coefficients in these systems.

In the present analysis, we consider a three-dimensional
dense granular flow of particles with volume fraction in the
range 0.52 to 0.59. We first examine the issue of multibody
contacts in a dense granular flow by evaluating the depen-
dence of the coordination number on the stiffness of par-
ticles. The equivalent spring constant for materials such as
sand or glass beads is of the order of 10’ N/m or more,
whereas most simulations are carried out with a spring con-
stant of order 10° N/m for computational efficiency. Silbert
et al. [14] studied the contact lifetime distributions of dense
granular flows using the DEM method for relatively soft par-
ticles with spring constant of order 10°> N/m, and found that
the dominant mode of interaction is brief binary collisions,
rather than a large number of long-lived contacts. This indi-
cates that the binary collision approximation is, in fact, a
good approximation for dense granular flows. In the present
study, we examine whether the coordination number changes
significantly when the stiffness of particle contacts is in-
creased.

In the present analysis, we use a rough particle collision
model, in which the post-collisional relative velocity normal
to the surfaces at contact is —e,, times the precollisional nor-
mal relative velocity, and the post-collisional relative veloc-
ity tangential to the surfaces at contact is —e, times the pre-
collisional relative tangential velocity. The normal
coefficient of restitution e, varies between 0 and 1; e,=1
corresponds to perfectly elastic collisions, while e, =0 corre-
sponds to perfectly inelastic collisions. The tangential coef-
ficient of restitution e, varies between —1 and +1, e,=—1
corresponds to smooth particles where there is no change in
the relative velocity after collision, while e,=1 corresponds
to perfectly rough particles where the relative velocity per-
pendicular to the line joining centers is reversed after the
collision. Energy is conserved for both ¢,=+1 and e,=-1,
and it is convenient to carry out an asymptotic analysis about
the limit where energy is conserved. Detailed measurements
of particle collisions (see, for example, Foerster [15]) indi-
cate that there are two types of collisions depending on the
angle between the relative velocity vector and the line join-
ing centers. Head-on collisions are found to be sticking col-
lisions, where the asperities on the particles lock during a
collision. The impulse tangential to the colliding surfaces is
proportional to the relative tangential velocity at the point of
contact. Grazing collisions are found to be sliding collisions,
where the tangential impulse is equal to the coefficient of
friction times the normal impulse. While sticking collisions
can be incorporated with relative ease in kinetic theory cal-
culations, it is difficult to obtain analytical results for the
constitutive relations for sliding collisions. It was possible to
obtain results for a partially rough collision model in an ear-
lier paper [11], where head-on collisions were considered
rough, while grazing collisions were considered smooth. In
the present, we consider all collisions to be rough and char-
acterized by just one normal and one tangential coefficient of
restitution, in order to facilitate a quantitative comparison
between theory and simulations.
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This analysis shows that the average coordination number
is less than 1 with [k,/(mg/d)]=108, even when the angle of
inclination is only 1° greater than the angle of repose (for
comparison, [k,/(mg/d)]~10' for 100 um particles of
sand or glass). This indicates that the binary collision ap-
proximation is valid for granular flows of materials of prac-
tical interest. We then numerically compare the coefficients
in the constitutive relations for the different components of
the stress obtained from soft particle discrete element (DE)
simulations, hard particle event driven (ED) simulations, and
from kinetic theory [11]. It is found that the Bagnold coeffi-
cients obtained by theory, ED and DE simulations are in
quantitative agreement, to within about 40% for the normal
stress and about 20% for the shear stress, even when the
Bagnold coefficient varies by more than an order of magni-
tude, provided the pair distribution function at contact ob-
tained from simulations is used in the theory. It is also found
that the pair distribution function obtained from simulations
is much higher than the equilibrium pair distribution function
of an elastic hard sphere system by an order of magnitude or
more. Therefore, the Bagnold coefficients obtained using the
equilibrium pair distribution function are likely to be signifi-
cantly in error. Finally, we examine the reason why the Bag-
nold coefficients in the DE simulations do not change very
much when the spring constant varies by about three orders
of magnitude between [k,/(mg/d)]=103 (for which particle
interactions are by multibody contacts) and [k,/(mg/d)]
=108 (where particle interactions are primarily due to binary
contacts). In the multibody contact regime, we determine the
magnitudes of all the forces acting instantaneously on a par-
ticle, and calculate the ratio of the forces with the second
largest and the largest magnitudes. In a static regime, it is
expected that this ratio is O(1), since a static equilibrium is
due to all the forces acting on a particle. In a flowing state
with [k,/(mg/d)]=10°, it is found that this ratio is smaller
than 1, indicating that the net force on the particle is prima-
rily due to one contact. This indicates that the binary contact
approximation may be valid even when the coordination
number is larger than 1.

II. CONSTITUTIVE RELATIONS

The basic equation used is the inelastic Enskog equation,
and the details of the derivation have been discussed earlier
[10,11]. The velocity distribution function is assumed to be
an anisotropic Gaussian in both the linear and angular veloci-
ties. An expansion is carried out about the elastic limit in the
parameter e=(1-e¢,)"?, where e, is the coefficient of resti-
tution. In the case of rough particles, the ratio (1—e,)/(1
—e,) is considered to be O(1) in the expansion. The leading
order, O(e) and O(g?) equations are solved to obtain the
corresponding distribution functions. The constitutive rela-
tions are then determined from the solutions for the distribu-
tion function. In the expansion, we retain all terms up to
O(&?) smaller than the leading order pressure, and neglecting
terms O(e®) and higher, where £=(1-¢,)"?. The viscous
stress is O(e) smaller than the pressure, while the correction
to the viscosity is O(g?) smaller than the viscosity. There-
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fore, the correction to the viscous stress due to inelasticity is
O(e?) smaller than the pressure. The latter is neglected, and
so the viscosity is identical to that for an elastic system.
Similarly, the Burnett terms proportional to the square of the
strain rate are O(g?) smaller than the leading order pressure,
and the corrections to the Burnett terms due to inelasticity
are O(g?) smaller than the Burnett terms, or O(e*) smaller
than the pressure. Therefore, these are also neglected. The
viscometric coefficients obtained in this manner are approxi-
mate due to the assumption that the solution is an anisotropic
Gaussian. This approximation is equivalent to retaining the
leading term in the Sonine polynomial expansion for the first
and second corrections to the distribution function. In the
calculation of the viscous stress, for example, the correction
to the distribution function due to mean shear is of the form
[16] fMBGij[CiCj—(5 C
velocity, fyg is the Maxwell-Boltzmann distribution, G;; is
the strain rate, and B is a function of the absolute value of the
fluctuating velocity. A Sonine polynomial expansion is then
used for the function B(|e|). In the Gaussian approximation
[11], when an anisotropic Gaussian function of the fluctuat-
ing velocity is expanded about a Maxwell-Boltzmann distri-
bution, it is equivalent to assuming that the function B is a
constant, so that only the leading term in the expansion is
retained. A similar approximation is used for the second cor-
rection to the distribution function, which provides the Bur-
nett terms in the equation for the stress that are quadratic
functions of the strain rate. We neglect terms proportional to
the gradient of the strain rate for reasons explained below.
For an elastic gas of smooth particles, a comparison of the
results obtained using the Gaussian approximation [10] with
that obtained using the Sonine polynomial expansion [16]
indicated that the error in the viscosity due to the neglect of
the next higher term is 1.2%, and the error in the Burnett
coefficients is about 6%.

We use a uniform approximation for the constitutive rela-
tion which is valid in the limits where the length scale is
large and small compared to the conduction length. We dis-
cuss the constitutive relations appropriate for both these lim-
its first, and then the uniform approximation is provided. The
mass of a particle is set equal to 1 in the present calculation,
so that all parameters are nondimensionalized by particle
mass, and the temperature has units of the square of velocity.
The conduction length is determined by a balance between
the rates of thermal diffusion and dissipation. The divergence
of the heat flux is pDy(T/L?), where T is the temperature, L
is the length scale over which the temperature varies. The
thermal diffusivity D;~\T"2, where \ is the microscopic
scale (mean free path in a dilute gas and particle diameter in
a dense gas). The rate of dissipation is proportional to
(pe®T?%/\), since dissipation of energy in a collision is pro-
portional to (1—e,)T, and the collision frequency is propor-
tional to (7V/2/\). A balance between the rates of conduction
and dissipation is obtained only for L=45~ (\/g), where & is
the conduction length.

If the macroscopic scale, which is the height of the flow-
ing layer 4 in the present system, is large compared to the
conduction length, the rate of conduction of energy is small
compared to the rate of dissipation. The temperature is de-
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termined by a local balance between the rates of production
and dissipation, and the energy balance reduces to
2uS;:S;;—=D=0, (2)

17 jl

where w is the viscosity, S;; is the symmetric part of the rate
of deformation tensor G;; » and D is the rate of dissipation of
energy. The stress is expressed in terms of the symmetric part
S;j» the antisymmetric part A;;, and the isotropic part of the
rate of deformation tensor Gyj, as well as in terms of the
temperature gradients. The most general expression for the
stress obtained using the leading order, first and second cor-

rections to the distribution function is [16]

=_p(¢’Sistii) +2/‘L(¢ Sl]Gzz)Sz]"'/J’b(d) Slj’Gll) Gkk
+ AgsSuSij + AscSijGri + Asas(SuAr; + S A i)

1dp
+ ApaAiAi; + Asaa(ApSy; — Sudy)) + CS|: ( )

p ox;
d (1dp 26;; d (1 dp Sii

+ (9_(__> - —ll_<__)} + _l|:BSSSkISlk
x;\ p ox; 3 dx;\ pdx; 3

BusAyAy + BooGr +Cr— (1&07{1)
+ + +
sl Doabiet b\ DT

a(lap) a(lap) (a d
+Cyl — |\ ——|-—|\—— | |+D| ——
dx;j\ p Ox; dx; \ p 0x; dx; 9x;

ﬁﬁ) §<a_TaT 5aTaT> f(lapaT

5 | T+ +—| -
3 ox; T\dx;dx; 3 dxidxy) pT\2dx; dx;
1 9T 3p 5,07_T(9_p> (3)
Z&x dx; 3 Ix; dx; '

Note that the mass of the particle has been set equal to 1
without loss of generality, and from dimensional analysis, all
the Burnett coefficients above have dimensions of inverse
length. In the above equation, we retain the pressure and the
viscous terms, and the Burnett terms proportional to A4 and
B, and neglect all other terms, for the following reason. The
Burnett terms proportional to .A and B are proportional to the
square of the strain rate, 3. The terms proportional to C to F
are all proportional to (7/h?%), where h is the macroscopic
scale. The temperature and strain rate can be compared by
examining the energy balance equation (2), in which the vis-
cosity is proportional to (T"2/d?), and the rate of dissipation
of energy per unit volume is proportional to (pe?T*?/\). For
a dense flow, p~ (1/d?), and A ~d, so the temperature scales
as T~ (yd/&)*~(5y)*. This can be used to compare the
terms proportional to the square of the strain rate and the
temperature gradient in Eq. (3). The terms proportional to the
strain rate scale as 37, while those proportional to the second
spatial derivative of the temperature and pressure scale as
(y6/ h)?, where h, the height of the flowing layer, is the mac-
roscopic length scale in the present problem. For (6/h) <1,
the terms proportional to the second derivative of the tem-
perature can be neglected compared to the terms proportional
to the square of the strain rate. Therefore, we retain the terms
proportional to A and B in Eq. (3), and neglect all other
terms. The expression used for the stress is
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= p6ij+2uSj+ 186Gy + AssSuSi; + AscSiiGr
+ Asas(SuAyj + SpAr) + ApaAuAy; + Asan(AySy;

5;
= SyAy)) + BL(BSSSkISlk + BuaAAy + BooGh) . (4)

The reason the terms proportional to .4 and 5 are retained
here are twofold. First, it has been shown [10] that the decay
rates of the hydrodynamic modes in a uniformly sheared
granular flow depend on the coefficients A and B in the long
wave limit. In the present system, the terms proportional to
A and B are necessary to capture the normal stress differ-
ences. It has been observed in simulations [1] that the first
normal stress difference is close to zero in these flows, but
the second normal stress difference is significant. We exam-
ine whether the predictions are in agreement with the obser-
vations by retaining the normal stress terms: The pressure,
viscosity and the coefficients .A and B from an earlier calcu-
lation [11]. Not all of these coefficients are required for the
present calculation, since we are considering a unidirectional
flow in which the isotropic part of the rate of deformation
tensor is zero. The equations for the components of the stress
tensor are

Oy =7,
Tpe==P+by ¥,
Syy==P+ by}’V’
s..=—p+b_.7. (5)

The theory predicts that the coefficients b, and b,, differ
by less than 1%, so separate expressions are not provided for
these coefficients. However, there is a significant difference
between b,, and b,,. Note that the coefficients b;; in Eq. (5)
are not the same as Bj; in Eq. (1). In Eq. (5), the pressure is
proportional to the temperature, which in turn is proportional
to the strain rate due to Eq. (2). Therefore, for the normal
stress terms, the ratio of the pressure and the square of the
strain rate is included in the coefficient B;; in Eq. (1). In a
similar manner, for the shear stress, the viscosity is propor-
tional to the square root of the temperature, which in turn is
proportional to the strain rate due to the energy Eq. (2).
Therefore, the ratio of the viscosity and strain rate is in-
cluded in the definition of B,, in Eq. (1).

It is convenient to express the viscometric coefficients and
the dissipation coefficients as a product of two functions, one
of which is a dimensionless function of volume fraction, and
the other is a product of suitably chosen powers of the granu-
lar temperature and particle diameter, the latter having the
same dimensions as the viscometric function under consid-
eration. (Note that the granular temperature has dimensions
of the square of the velocity, since the mass is set equal to 1.)
From dimensional analysis, it can be inferred that pressure p
is proportional to (7/d*), the viscosity u and thermal con-
ductivity K are proportional to (T'/?/d?), and rate of dissipa-
tion of energy D is proportional to (p>*T%?), where p is the
number density, and therefore we write
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TABLE 1. Viscometric coefficients obtained from kinetic theory
for rough nearly elastic spheres in three dimensions [11]. Here, q,
=(1-¢,)/(1=e,). It should be noted that in the above relations,
particle mass is set equal to 1.

Rough

Pe (6¢p/ m)[1+2(2-&%) px]
R (0.195/x)+0.892¢p+3.112¢°x
Dy (144/ 72 p*x(1 +a,)
K, (1.014/ ) +5.015¢+19.27¢*x
b g (0.04094/ x) +(0.00433/ hx?)

—-0.191¢—1.05¢%x
b g (0.0300698/ x)+(0.00132835/ ¢px?)

+0.0212626—0.280498 4>

p=pyTid’),
p=py( AT,
by =by(P)(1/d),
by, = by (P)(1/d),
b.=by.(p)(1/d),
K=Ky ()T,

D =D 4()eX (T d%), (6)

where the temperature is obtained in terms of the strain rate
using the energy balance equation. The values of these coef-
ficients obtained in an earlier calculation [11] which are used
here are shown in Table 1. As already mentioned, the differ-
ence between b, and b, is very small, and so we assume
b 4 =b 4y, in the present calculation.

The theoretical expressions for the pressure, viscosity, and
Burnett coefficients are provided in Table I. Using the energy
balance Eq. (2), the relation between temperature and strain
rate is determined. This is inserted into Eq. (6) to determine
pressure and viscosity in terms of strain rate. These are then
inserted into Eq. (5), and the resulting stress is divided by the
square of the strain rate, to determine the Bagnold coeffi-
cients.

III. SIMULATION TECHNIQUES

Two types of simulation techniques are used. The first is
the discrete element (DE) simulations of the flow down an
inclined plane of spherical particles, in which the contact
force between overlapping particles is modeled by a combi-
nation of a linear spring and a dashpot. The configuration
and coordinate system for the flow down an inclined plane
are shown in Fig. 1. Here, x and y are the flow and gradient
directions, while the z direction is perpendicular to the plane
of the flow. The height of the flowing layer was set equal to
40 particle diameters for all the results reported here, and the
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FIG. 1. Configuration and coordinate system for the DEM simu-
lations for the flow down an inclined plane.

simulation cell contains 20 particles in the flow directions,
10 particles in the spanwise direction, and periodic boundary
conditions are used in the flow and spanwise directions.
While calculating the Bagnold coefficients, we restrict atten-
tion to the central region of the flow of the width of 20
particle diameters, and do not include regions at the top and
bottom of the thickness of 10 particle diameters. This is be-
cause, as explained earlier, the temperature and stress fields
in boundary layers of thickness comparable to the conduc-
tion length at the top and bottom boundaries are influenced
by the energy boundary conditions at these boundaries. The
rate of conduction of energy is of the same magnitude as the
rates of production and dissipation in the boundary layers,
and the Bagnold law is not valid. Therefore, we exclude
these boundary layers while calculating the Bagnold coeffi-
cients.

The force model used is the linear contact force model of
Silbert et al. [1] without friction, since this results in velocity
independent coefficients of restitution. This facilitates quan-
titative comparisons with earlier results [11] which were de-
rived assuming velocity independent coefficients of restitu-
tion. However, we consider only the linear contact model,
and we do not include static friction in the model. This is
because we would like to make a numerical comparison be-
tween the results of DE simulations and kinetic theory for
the same contact model, and frictional contacts are difficult
to incorporate in kinetic theory calculations, while a nonlin-
ear contact model results in velocity dependent coefficients
of restitution. The contact model contains spring and damp-
ing constants, (k,,k,) and (7,,7,), in the tangential and nor-
mal directions. Of these, one spring and damping constant, ,,
and v, are for displacements normal to the surface of con-
tact, while the other spring and damping constant, k, and v,
is for displacements tangential to the surface of contact. In
the simulations, we set k,=(2/7)k,, and adjust 7, and 7, so
that both the tangential and normal coefficients of restitution
are 0.9. The relation between the coefficients of restitution
and the spring and damping constants are given in Silbert e?
al. [1].

In addition to the DE simulations, we also use the ED
simulations of the simple shear flow in the absence of gravity
in order to obtain the Bagnold coefficients. In this simulation
technique, the interaction between particles are modeled as
instantaneous contacts, in which the post-collisional relative
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velocity normal to the surface of contact is —e,, times the
precollisional relative normal velocity, and the post-
collisional relative velocity tangential to the surface of con-
tact is —e, times the precollisional relative tangential velocity.
Here, e, is the normal coefficient of restitution and e, is the
tangential coefficient of restitution. Both e, and e, are set
equal to 0.9 in the present simulations, so that the DE and
ED models are identical to each other for binary collisions.

The results reported here were carried out in a cubic box
using 500 particles. All simulations were averaged over 2
X 10* collisions per particle, after an initial equilibration run
which extended over a time period corresponding to 2
X 10* collisions per particle. For very small system sizes,
when the system is sheared, it attains in-plane ordering for
the volume fractions considered here, and the structure is not
random. As the system size is increased, the ordered state
becomes unstable and undergoes a transition to a random
state. It is this random state that is of interest in the present
analysis, so we have taken care to ensure that the structure is
actually random in both ED and DE simulations. Therefore,
we have taken care to ensure that the flowing solid is disor-
dered, that is, there is no icosahedral order or in-plane order
as inferred from the respective order parameters. In two di-
mensions, the hexagonal order parameter for particles in con-
tact is defined by [18]

qm=(exp(im8,)), (7)

where (---) is the average over all the bonds in the system
and 6, is the angle, in the x-z plane, formed by a bond with
respect to some arbitrary axis. For a hexagonal close packed
system, ¢¢ is unity, and is lower otherwise. For the present
hard sphere system, we define the order parameter ¢,, as the
sum over all binary collisions, since the particles are in con-

tact only at collision. Thus, the order parameter g,, is defined
as [18]

qm=L > exp(imb), (8)

N, col collisions

where N is the number of collisions, and the above average
is carried out over all collisions.

In three dimensions, the presence of icosahedral ordering
can be inferred from the three-dimensional order parameter
Q,, which is defined as

1 12
Ql= (21+ ! 2 |<Ylm(09 ¢)>|2> ’ (9)

4ar m=—[

where Y,,(0, @) is the spherical harmonic,

20+ 1
Yin(6.) = [ ﬁpzﬂ[cosw)]exp(im@, (10)

6 and ¢ are the azimuthal and meridional angles in a spheri-
cal coordinate system with an arbitrary axis, and P} are the
Legendre polynomials. For systems with perfect icosahedral
ordering, Qg is greater than 0.5, whereas it is zero for random
structures. Therefore, Qg can be used to distinguish between
random and ordered crystalline structures.

061305-5



K. ANKI REDDY AND V. KUMARAN

3 =

2.5 -

I |

1.5 §

Coordination number

0.5 -

10° 107 108
(kAmg/d))

FIG. 2. The average coordination number as a function of the
spring constant at different angles of inclination obtained using
DEM simulations. O, 21°; A, 22°; V, 23°; <, 24°; X, 25°,

In the present simulations with 500 particles, Q¢ is 0.03 at
the highest volume fraction of 0.57, while g, is less than
0.01. This indicates that there is no ordering in the relative
arrangement of particles. We have also done a size check by
analyzing a 2048 particle system as well, and the results do
not change by more than 2%. One of the difficulties in event
driven simulations at large volume fractions is the advent of
inelastic collapse [19], where there is an infinite number of
collisions in a finite time period. This results in overlap be-
tween particles due to numerical errors. In the present simu-
lations, we find that there are one or two particle overlaps
when the volume fraction in three dimensions is 0.58, and
the number of overlaps increases as the volume fraction is
increased beyond 0.58. Therefore, we have restricted the
comparisons with event driven simulations with volume frac-
tion 0.57 and lower. The difficulty with inelastic collapse is
not present in DE simulations, and so we are able to extend
the DE simulations to volume fraction up to 0.59 for the flow
down an inclined plane.

IV. RESULTS

First, we examine the average coordination number in the
dense granular flow down an inclined plane. For the micro-
scopic model used here, the angle of repose is 20°, flow
starts when the angle of inclination is 21°, and the flow be-
comes unstable when the angle of inclination increases be-
yond 25°. Figure 2 shows the average coordination number
as a function of the scaled spring constant [k,/(mg/d)],
where m and d are the mass and diameter of the particle, and
g is the acceleration due to gravity. It is observed that the
average coordination number is large for soft materials with
[k,/(mg/d)]=2X 10, but it decreases below 1 for harder
materials with [,/ (mg/d)]=2 X 108 for all angles of inclina-
tion above 21°. Even at 21°, the coordination number de-
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creases below 1.5 at [k,/(mg/d)]=2%10®, and the trends
indicate that it will increase below 1 for [k,/(mg/d)]=10"
or more. Thus, it is clear that the binary collision mechanism
is the dominant particle interaction mechanism in relatively
hard particle systems of practical interest.

It is rather surprising that binary collisions dominate in a
dense flow. However, it is important to understand that the
particles in a granular flow are very stiff, in contrast to the
soft Lennard-Jones-type potentials used for molecular fluids.
In the limit of perfectly hard particles (infinite spring con-
stant), the pair potential is infinite when the distance between
particles is smaller than the sum of their radii, and zero oth-
erwise. Consequently, in this limit, all interactions are instan-
taneous, and all particle interactions are binary interactions,
even in a dense flow. For a linear contact model in which the
spring constant is high but not infinite, the time period of a
collision is TC=7T[(2kn/m)—(y,2l/4)]‘”2, and this time period
decreases as the spring constant increases. Note that the time
period of a collision is a material time scale, which depends
only on the properties of the materials used in the simula-
tions. The flow time scale is the time between collisions, or
the inverse of the collision frequency v,. In a dense granular
flow, the collision frequency scales as (x7~'), where y is the
pair distribution function at contact and 7 is the strain rate.
One would expect a transition from a multibody contact re-
gime to a binary collision regime as k, is increased for
7.v.~ 1. To make a numerical comparison, we evaluate the
collision frequency v, using the ED simulation for the same
volume fraction as that in the flow down an inclined plane.
Using the expression for the period of a collision, we then
evaluate the value of [k,/(mg/d)] at which v.7.=1. The re-
sults of the calculation show that for 25° 7.v.=1 at
[k,/(mg/d)]=1.5X10%,  while at 21°, 7p.=1 at
[k,/(mg/d)]=2%10% As noted earlier, the value of
[k,/(mg/d)]=10"" or more for materials such as glass
spheres and steel balls with diameters 100u—1 mm, and
therefore we would expect binary collisions to dominate
even for 21° at the initiation of flow for these materials.

Next, we compare the numerical values of the Bagnold
coefficients obtained from theory with those from ED and
DE simulations using Eq. (1). As mentioned earlier, the DE
simulations are carried out for the flow down an inclined
plane, and the stresses are measured in the bulk of the flow
where the volume fraction is a constant. The ED simulations
are carried out for a simple shear flow in the absence of
gravity. In the theory, we use the pair distribution function
evaluated from the ED simulations. The pair correlation
function at contact, g, is determined in two ways. The first is
to calculate the actual radial distribution function as a func-
tion of radius, and find the radial distribution function at
contact by extrapolation. For this, the region between r=d
and r=3d in the radial direction around a particle was di-
vided into 60 bins, and the probability of finding the particle
in each bin was calculated. The radial distribution function
obtained at r=d was obtained by spline fitting. The second
procedure is to use the relationship between g. and the col-
lision frequency v using the expression [16]

v=2p2g T, (11)

where T, the granular temperature, is the mean square of the
particle velocities, and p is the number density. Equation (11)
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FIG. 3. The scaled Bagnold coefficients [B,./(m/d)],
[By,/(m/d)] as a function of volume fraction. O, ED simulations;
A\, DE simulations with [k,/(mg/d)]=2 X 10°; V, DE simulations
with [k,/(mg/d)]=2 X% 108; solid line, theory. The error bar in the
estimation of the volume fraction in the DE simulations has an
average value of 0.0043, and a maximum of 0.005.

is obtained from the kinetic theory for a gas of elastic spheri-
cal particles. It is known [17] that there is a correction to the
above expression for inelastic particles. However, we find
that this correction is less than 1% for the parameter values
e,=¢,=0.9 used here, and so we use [11] for calculating the
pair distribution function in the present analysis.

This pair distribution function at contact is inserted into
the theoretical expressions [11] in order to determine the
theoretical values of the Bagnold coefficients. The Bagnold
coefficients, scaled by (m/d), are shown, along with the DE
and ED results, in Figs. 3-5, where m and d are the particle
mass and diameter. Here, x is the direction of flow along the
inclined plane, y is the gradient direction perpendicular to the
inclined plane, and z is the spanwise vorticity direction. The
volume fraction cannot be fixed exactly in the DE simula-
tions, since this is not a constant volume simulation. There-
fore, the average volume fraction in the bulk of the flow,
excluding a region of 10 particle diameters at the top and
bottom, were used for the comparison. The standard devia-
tion in the volume fraction in the DE simulations has a maxi-
mum value of 0.005 and an average value of 0.0043. The
theoretical predictions as well as the DE and ED simulations
show that the coefficients B,, and B,, differ by less than 1%
over the range of volume fractions studied here, and the dif-
ference between these is smaller than the symbol size in Fig.
3, and so we do not show these separately. However, the
Bagnold coefficient B, is lower than B,,, as shown in Fig. 4,
and the theory and simulations are in numerical agreement in
this case as well. Figure 5 shows the component B,, for the
shear stress. Results could not be obtained from the ED
simulations for volume fractions above 0.58, due to the ad-
vent of particle overlaps, and the maximum volume fraction
in DE simulations was about 0.59. Figures 3-5 show that
there is quantitative agreement between the theory, ED simu-
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FIG. 4. The scaled Bagnold coefficient [B../(m/d)] as a func-
tion of volume fraction. O, ED simulations; A, DE simulations
with [k,/(mg/d)]=2 X 10° V, DE simulations with [k,/(mg/d)]
=2 % 10%; solid line, theory. The error bar in the estimation of the
volume fraction in the DE simulations has an average value of
0.0043, and a maximum of 0.005.

lations, and DE simulations, even though the Bagnold coef-
ficients increase by more than an order of magnitude over the
range of volume fractions considered. The difference be-
tween theory and ED simulations is only about 40% for the
normal stresses, and about 20% for the shear stresses even
though the Bagnold coefficients themselves increase by more
than an order of magnitude. The DE simulations, which in-
corporate multibody collisions, are found to be in good
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FIG. 5. The scaled Bagnold coefficient [B,,/(m/d)] as a func-
tion of volume fraction. O, ED simulations; A, DE simulations
with [k,/(mg/d)]=2 X 10° V, DE simulations with [k,/(mg/d)]
=2 % 10%; solid line, theory. The error bar in the estimation of the
volume fraction in the DE simulations has an average value of
0.0043, and a maximum of 0.005.
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FIG. 6. The force ratio, which is defined as the average of the
ratios of the magnitudes of the second largest and the largest forces
acting on a particle, as a function of the angle of inclination for the
flow down an inclined plane with [k,/(mg/d)]=2X10°, ¢,=e,
=0.9. O, 0=21°; A, 6=22°; V, §=23°;, &, 6=24°; X, #=25°.

agreement with ED simulations, which have only binary col-
lisions, in the dense region.

One surprising feature of the above results is that there is
a variation of less than 20% between the Bagnold coeffi-
cients when [k,/(mg/d)] varies by three orders of magni-
tude. This is particularly surprising because there is a transi-
tion from a multiple contact regime to a binary collision
regime, as indicated by the decrease in the coordination
number in Fig. 2. One possible reason for this is that though
there are multiple overlaps in the case of soft particles, there
is one contact which exerts the largest force on the particle,
and the force due to this contact is much larger than that due
to all other contacts. In order to examine this, we measured
the force ratio between the largest and the second largest
force on the particles as follows. The magnitude of all the
forces on the particles were determined, and the ratio of the
magnitudes of the second largest force to the largest force
was calculated. This was averaged over all the particles and
over time. In particles with just one contact, the force ratio is
zero, whereas one would expect the force ratio to be O(1)
in a quasistatic regime where all of the forces are nearly
balanced with each other. The results for the force ratio for
the flow down an inclined plane with [k,/(mg/d)]
=[k,/(mg/d)]=2X10° are shown in Fig. 6. The damping
coefficients have been adjusted so that e¢,=¢,=0.9. It is ob-
served that the force ratio is about 0.2 even at 21° for this
flow which has an angle of repose equal to 20°. This indi-
cates that though there are multiple contacts for a particle,
there is only one dominant contact at any instant of time.
Though this does not explain why there is a very small varia-
tion in the Bagnold coefficients, it provides an indication
why the binary collision approximation may be a good one
even when there are multiple contacts.
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FIG. 7. The pair correlation function at contact, g, as a function
of the volume fraction. The solid line shows the results from the ED
simulation of a shear flow with ¢,=¢,=0.9 obtained from the colli-
sion frequency using Eq. (11), the dotted line shows the result ob-
tained by an extrapolation of the radial distribution function, and
the broken line shows the correlation for equilibrium hard sphere
fluids [21].

It should be noted that though there is good agreement
between the theory and the DE and ED simulations, this is
primarily because the theoretical calculation has incorpo-
rated the pair distribution function at contact determined
from the simulations. It has been known [20] that the pair
correlation function in a sheared system is different from that
in an equilibrium system. Figure 7 shows a comparison be-
tween the pair distribution function from ED simulations for
a sheared system with ¢,=e,=0.9, and the correlation by
Torquato [21] for the pair distribution function in an equilib-
rium system,

2-dy by
(1) b=

g(p) = 5 (12)

where ¢.=0.64 is the volume fraction at random close pack-
ing, and ¢;=0.49 is the freezing volume fraction in three
dimensions. The result obtained from the collision frequency
using Eq. (11) is close to that obtained by extrapolation of
the radial distribution function to r=d. However, it is ob-
served that the pair correlation function for the sheared sys-
tem is between one and two orders of magnitude larger than
the pair correlation function for an equilibrium system. Thus,
the use of the equilibrium pair correlation function in kinetic
theory could result in poor comparison between theory and
simulations, due to the error in the pair correlation function
(Fig. 7).

The present analysis indicates that the binary collision
approximation is a good one for dense granular flows. There
is good quantitative agreement between the predictions of
kinetic theory and numerical simulations, provided the pair
correlation function from simulations are used in the theory,
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and provided the collisions are nearly elastic. This is ex-
pected, since the theory uses an expansion about the limit of
elastic collisions. There has been some recent work by Mi-
tarai and Nakanishi [22] which suggests that the constitutive
relations may need to be modified when the collisions be-
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come highly inelastic. We are currently examining how the
theory can be modified for highly inelastic collisions.
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ment of Science and Technology, Government of India.
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