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This is the second paper of a series of three investigating, by numerical means, the geometric and mechani-
cal properties of spherical bead packings under isotropic stresses. We study the effects of varying the applied
pressure P �from 1 or 10 kPa up to 100 MPa in the case of glass beads� on several types of configurations
assembled by different procedures, as reported in the preceding paper �I. Agnolin and J.-N. Roux, Phys. Rev.
E 76, 061302 �2007��. As functions of P, we monitor changes in solid fraction �, coordination number z,
proportion of rattlers �grains carrying no force� x0, the distribution of normal forces, the level of friction
mobilization, and the distribution of near neighbor distances. Assuming that the contact law does not involve
material plasticity or damage, � is found to vary very nearly reversibly with P in an isotropic compression
cycle, but all other quantities, due to the frictional hysteresis of contact forces, change irreversibly. In particu-
lar, initial low P states with high coordination numbers lose many contacts in a compression cycle and end up
with values of z and x0 close to those of the most poorly coordinated initial configurations. Proportional load
variations which do not entail notable configuration changes can therefore nevertheless significantly affect
contact networks of granular packings in quasistatic conditions.
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I. INTRODUCTION

The mechanical properties of solidlike granular packings
are traditionally studied, at the macroscopic level, in engi-
neering fields such as soil mechanics �2–5�, and are currently
being investigated, with some attention to the grain scale and
micromechanical origins of macroscopic behaviors, in con-
densed matter physics and material science communities
�5–7�.

The present paper, the second of a series of three, inves-
tigates, by numerical simulations, the mechanical and micro-
structural response of a model material, the packing of iden-
tical spherical beads, to pressure intensity variations. It refers
a lot to the results of the previous, companion paper �1�, but
may be read independently.

Although the molecular dynamics �or “discrete element”�
approach has repeatedly been applied to sphere packings
�8–13�, many important questions related to the microscopic
origins of their macroscopic mechanical behavior in the qua-
sistatic regime have not been fully explored yet. One such
issue is the influence of the initial state, which is determined
by the assembling process. In the first paper of the present
series �1� �hereafter referred to as paper I�, the results of
several packing preparation methods, all producing ideally
isotropic states, are compared. Direct compressions of granu-
lar gases produce states that do not depend on dynamical
parameters if the compression is slow enough. Their solid
fraction � and coordination number z* �evaluated on exclud-

ing the rattlers, a proportion x0 of grains which do not carry
any force� are decreasing functions of the friction coefficient
�, from ��0.639 and z*=6 for �=0, in which case the
random close packing state �RCP� is obtained, down to �
�0.593 and z*�4.5 for �=0.3. In paper I �1� we accurately
checked the uniqueness of the RCP, on confronting our own
numerical results with those of several recent publications, in
which different numerical procedures were implemented
�14,15�. In the presence of intergranular friction, however, it
is possible to prepare quite different packing states. First, it is
of course possible to increase the friction coefficient, in
simulations, once the packing is equilibrated under some
pressure; such a numerical procedure can be regarded as a
model for an assembling process in the presence of a lubri-
cant within intergranular gaps in the laboratory. Ideally,
whatever the value of the friction coefficient used in the
modeling of the quasistatic mechanical properties of the ma-
terial, it is possible to assemble the sample with �=0 �thus
assuming ideal, perfect lubrication in the fabrication stage�
and hence with the RCP density and coordination number.
Once the grains are packed and form a solid material, con-
tacts between grains can then be attributed the final, finite
friction coefficient used in quasistatic modeling. Experimen-
tally, it is of course well-known that given granular materials
can be packed with varying densities. A common method to
make them denser, other then lubricating the contacts in the
assembling stage, is the application of vibrations or “taps.” A
numerical idealized vibration procedure, apt to prepare dense
samples with little computation time, was defined in paper I.
Surprisingly, although it produces isotropic states with den-
sities close to the RCP value, their coordination numbers are
as low as in the loosest states assembled by direct compres-
sion. The small geometric differences between configurations
with the same solid fraction but very different coordination
numbers is still not accessible to tomographic observation
techniques �1�. Only mechanical properties can thus be con-
fronted to experimental results, to determine whether or in
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which conditions the investigated numerical systems are
close to experimental reality.

Before studying elastic properties in paper III of the
present series �16�, it is first necessary to investigate the ef-
fect of an isotropic compression. The application of a large
enough confining pressure, usually at least a few tens of kPa
�with rare exceptions �17,18��, is necessary before the mac-
roscopic mechanical behavior of solidlike granular packings
is tested �2,19,20�, and characteristic quantities such as dila-
tancy and internal friction angle are measured. Experimental
data on elastic moduli �21–28� are also extremely scarce be-
low that range. Most relevant laboratory sample histories to
be understood in order to relate the macroscopic response to
internal variables and micromechanics involve an assem-
bling stage, and then a compression stage, which is often
isotropic or oedometric. It is therefore necessary to assess the
influence of pressure changes on the initial states.

In addition, the material behavior under varying isotropic
stress is interesting per se. The behavior of sands is tradition-
ally regarded �2,3,20� as elastoplastic under isotropic load-
ing, with pressure cycles entailing irreversible density in-
creases. Such effects are nevertheless considerably smaller
than in cohesive materials such as clays �2–4� or powders
�29�. It is worth investigating such behavior in model sphere
packings by numerical means.

II. MODEL MATERIAL, MICROMECHANICAL
PARAMETERS

A. Contact model

We briefly recall here the model material and the contact
laws, which are described in paper I with more detail. Equal-
sized spherical beads of diameter a �whose value, as we ig-
nore gravity, will prove irrelevant�, interact in their contacts
by point forces of elastic, frictional, and viscous origins. The
Hertz law relates the normal elastic force N to the normal
deflection h �approach of sphere centers closer than a� as

N =
Ẽ�a

3
h3/2, �1�

with the notation Ẽ= E
1−�2 , E being the Young modulus of the

beads, and � the Poisson ratio. The Hertz law introduces a
normal stiffness KN= dN

dh that depends on h or on N.
Tangential elasticity and friction are described with a sim-

plified form of the Cattaneo-Mindlin-Deresiewicz results
�30�, in which the tangential stiffness KT, relating the tangen-
tial elastic force increment to the relative tangential elastic
displacement duT in the contact, is proportional to KN:

KT =
dT

duT
= �TKN with �T =

2 − 2�

2 − �
. �2�

The Coulomb condition with friction coefficient � requires T
to be projected back onto the circle of radius �N in the
tangential plane whenever the increment given by Eq. �2�
would cause its magnitude to exceed this limit. In order to
avoid unphysical increases of elastic energy, T is scaled
down in proportion with KT when the elastic normal force N

decreases, as indicated in paper I and advocated in Ref. �31�.
Tangential contact forces also move with the particles in con-
tact, so that the condition of objectivity is satisfied �see paper
I and Ref. �32��.

A viscous term opposing normal relative displacements
reads �positive normal forces are conventionally repulsive�

Nv = ��h�ḣ , �3�

with a damping coefficient � depending on elastic normal
deflection h �or on elastic repulsive force N�, such that its
value is a fixed fraction � of the critical damping coefficient
of the normal �linear� spring of stiffness KN�h� joining two
beads of mass m:

��h� = ��2mKN�h� . �4�

We do not introduce any tangential viscous force and impose
the Coulomb inequality to elastic force components only.
The main justification of such a term is computational con-
venience �to accelerate the approach of equilibrium states�,
and we could check that its value did not affect the statistical
results on the configurations of the packings.

The present numerical study was carried out with the elas-
tic parameters E=70 GPa and �=0.3 that are suitable for
glass beads, and the friction coefficient is set to �=0.3.

B. Stress control

The numerical results presented below were obtained on
samples of n=4000 beads, enclosed in a cubic or parallelepi-
pedic cell with periodic boundary conditions. The sizes of
the cell are denoted as L�, parallel to coordinate axes � �1
���3�. L�’s vary simultaneously with the grain positions
and orientations until the mechanical equilibrium of all par-
ticles with the prescribed values 	� of all three diagonal
components 
�� of the Cauchy stress tensor, 1���3, are
obtained. One then has

	� =
1

���
i

mivi
�vi

� + �
i�j

Fij
���rij

���	 . �5�

Here �=L1L2L3 is the sample volume, rij
���’s are the coordi-

nates of vector rij joining the center of bead i to the one of its
contacting neighbor j �with the nearest image convention of
periodic cells�, and Fij

���’s are those of the corresponding con-
tact force. This force is actually exerted by i onto j, so that
the convention used is that tensile stresses are negative. Ve-
locities vi of grain centers comprise, in addition to a periodic
field, an affine term corresponding to the global strain rate.
Equations of motion for dimensions L� are written in addi-
tion to the ordinary equations for the dynamics of a collec-
tion of solid objects, and they drive the system towards an
equilibrium state in which condition �5� is obeyed. In the
present study we always impose isotropic stresses, i.e., hy-
drostatic pressures P: 	�= P for �=1, 2, 3.

C. Dimensionless parameters

In addition to including friction coefficient � and viscous
dissipation parameter �, the important dimensionless control
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parameters for sphere packings under given pressure P are
the reduced stiffness 
 and the inertia parameter I. 
 is cho-
sen such that the typical contact deflection h is proportional
to 
−1,


 = 
 Ẽ

P
�2/3

, �6�

a correspondence which can be made accurate thanks to the
relation

P =
z��N


�a2 , �7�

between pressure P=tr 
= /3 and the average normal force
�N
 in the contacts. Equation �7� is exact provided h�a in
all contacts and intercenter distances are taken equal to the
diameter a. Here z denotes the coordination number, equal to
z=2Nc /n, with Nc the total number of force-carrying con-
tacts in the packing. Rattlers, in proportion x0, have no such
contact. We refer to the force-carrying network—the packing
devoid of its rattlers—as the backbone, and to z*, which
simply relates to z as z= �1−x0�z*, as the backbone coordi-
nation number. With brackets denoting averages over all
force-carrying contacts, one has

�h3/2

a3/2 =

�

z�
3/2 .

The limit of rigid grains is approached as 
→�.

 can be used to determine whether the material within

the grains is likely to be imposed stresses beyond its elastic
limit. The maximum pressure, at the center of a Hertzian
contact between spheres of diameter a, carrying a normal
force N, is �30�

pmax =
2 � 31/3

�

Ẽ2/3

a2/3 N1/3.

Under pressure P, corresponding to 
 by Eq. �6�, when the
average normal force in contacts is �N
, one can deduce from
Eq. �7�

pmax

Ẽ
=

2 � 31/3

�2/3�z��1/3
 N

�N

�1/3


−1/2. �8�

Likewise, the maximum shear stress �max, which is reached
inside the grains near the contact region will be �30� �for �
=0.3�

�max

Ẽ
= 0.31

pmax

Ẽ
. �9�

Equations �8� and �9� show that very high stress levels, up to
a non-negligible fraction of elastic modulus E, are reached if

 is not large enough. With our choice of material parameters
for glass beads, we get 
−1/2�0.051 for P=10 MPa and

−1/2�0.11 for P=100 MPa, while the numerical prefactor
is only slightly lower than 1 ��0.8� if z�=4 �a typical value�
in Eq. �8�. Such high stresses are very likely to entail particle
breakage or plastic strains �according to the materials the
grains are made of�.

In our simulations we set our lowest pressure level for the
simulation of glass beads to 1 or 10 kPa, corresponding to

�181 000 and 39 000 with the elastic properties of glass.
This enables us to explore the entire experimental pressure
range, and to approach the large 
 limit too. Up to the maxi-
mum pressure value 100 MPa, we assume elastic contact be-
havior, but one should be careful on comparing the numeri-
cal results in the higher pressure states �P�10 MPa� to
experimental ones.

Dynamical effects are assessed on comparing the strain
rate �̇ to intrinsic inertial times, such as the time needed for a
particle of mass m, initially at rest, accelerated by a typical
force Pa2, to move on a distance a. This leads to the defini-
tion of a dimensionless inertia parameter:

I = �̇�m/aP . �10�

The quasistatic limit can be defined as I→0. I is a conve-
nient parameter to describe internal states and write down
constitutive laws for granular materials in dense shear flow
�33–37�.

D. Initial states

The present paper is devoted to the study of the influence
of quasistatic pressure changes to granular packings as-
sembled by different means, as described in paper I �1�. Four
different states were prepared under low pressure, and some
of their basic characteristics are recalled in Table I. Such
state variables are monitored in the following as a function
of pressure in isotropic compression or pressure cycles. In
addition to solid fraction �, proportion of rattlers x0, and
backbone �or force-carying structure� coordination number
z*, Table I provides some global information on force distri-
butions. Z�2� is characteristic of the width of the distribution
of normal forces:

TABLE I. Isotropic states �
�39 000 for A and C and 
�181 000 for B and D� for different assembling
procedures.

Procedure � z*
x0

�%� Z�2� M1 M2

A 0.6370±0.0002 6.074±0.0015 1.3±0.2 1.53 0 0

B ��0=0.02� 0.6271±0.0002 5.80±0.007 1.95±0.02 1.52 0.016 0.018

C �vibration� 0.635±0.002 4.56±0.03 13.3±0.5 1.65 0.135 0.181

D 0.5923±0.0006 4.546±0.009 11.1±0.4 1.58 0.160 0.217
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Z�2� =
�N2

�N
2 . �11�

M1 and M2 are the average levels of friction mobilization
�i.e., �T�

N � for contacts carrying normal forces, respectively,
larger and smaller than the average �N
.

In paper I we also recorded other geometric data, in par-
ticular pair correlation functions and distributions of near
neighbor gaps h. The latter can be expressed as gap-
dependent coordination numbers, defining z�h� as the aver-
age number of neighboring beads around a central one, sepa-
rated by an interstice smaller than h. z�0� thus coincides with
the contact coordination number. Due to the rattlers, the pro-
portion of which—see Table I—can exceed 10% of the total
number of grains, such geometric data are, however, some-
what ambiguously defined: the positions of the rattlers are
not fixed by the rigid backbone. Thus one may define zI�h�,
on using the arbitrary positions obtained at the end of the
simulation, when the packing first equilibrates within the
prescribed numerical tolerance. One then has zI�0��z �recall
z counts only force-carrying contacts� if the equilibrium state
is accurately computed because there are very few contacts
bearing a normal force below tolerance. In an attempt to
define more intrinsic geometric data, we defined zII�h� in
paper I �1� as the gap-dependent coordination number in the
configuration obtained once all rattlers are pushed against the
backbone, in random directions. In their new position, the
rattlers now have three contacts with the backbone �except in
the rare case when inter-rattler contacts are obtained�. It was
argued in paper I that the resulting structure was likely to
resemble, to some extent, granular assemblies under gravity,
when the weight of the grains is very small in comparison to
the local stress. zII�0� can be regarded as a geometric defini-
tion of a contact coordination number �it is, in general,
slightly larger than z*=z / �1−x0��.

III. NUMERICAL RESULTS

We first specify the numerical compression procedure in
Sec. III A, then describe the effects of an isotropic compres-
sion and a pressure cycle in terms of global variables �Sec.
III B� as well as local geometry �Sec. III C�. We then test the
simplest prediction scheme for the evolution of coordination
number, that of homogeneous strain at the microscopic level,
in Sec. III D.

A. Numerical procedure

The results presented below pertain to equilibrium con-
figurations at variable isotropic pressure P, obtained by a
stepwise compression �decompression� process in which P,
within the controlled stress scheme described in Sec. II B, is
increased �decreased� by a factor of �10. In each pressure
step a condition of slow enough strain rate was enforced, so
that the inertia parameter, as defined by Eq. �10� with the
currently imposed pressure level, was kept below a maxi-
mum value: I�10−3 for compression, I�10−4 for decom-
pression. Such values were chosen to ensure independence of
the results on dynamical parameters I and �. It was observed

that a decompression process requested more care, due to its
greater instability. Whereas a compression of the sample be-
yond its equilibrium density will be strongly opposed, at
growing P, by elastic forces in the network, too large an
expansion, as P decreases, might cause the contact network
to break apart, resulting in a dynamical process similar to
assembling a granular gas, when the externally applied pres-
sure finally drives the system back to a denser equilibrium
configuration. Such events might entail a significant remoul-
ding of the contact network and large departures from equi-
librium conditions. This should of course be avoided in a
procedure designed to model a quasistatic evolution, as close
as possible to the limit of small strain rates.

Configurations are deemed equilibrated when, defining
�F=10−4 Pa2 as a small tolerance on forces and �E
=10−7 Pa3 as a small tolerance on energies, the four follow-
ing conditions are simultaneously satisfied:

�1� Each coordinate of the total force on each grain is
smaller than �F.

�2� Each coordinate of the total moment on each grain is
smaller than �Fa.

�3� All stresses have their prescribed values with a rela-
tive error smaller than �F:

�� = 1,2,3�
�
�� − P�

P
� �F

�4� The kinetic energy per grain is smaller than �E.

To distinguish between the backbone and the rattlers, the
same method is applied as presented in paper I �1�.

Such procedures were applied to samples A–D below,
with P ranging from its smallest value 1 kPa �for B and D,
corresponding to 
�181 000�, or 10 kPa �for A and C, cor-
responding to 
�39 000�, up to 100 MPa �
�84�, and then
back to its initial low value. Letters A–D will hereafter de-
note pressure-dependent configuration series. Although ini-
tial states A and B were assembled with coefficients of fric-
tion lower than the chosen value �=0.3, we study quasistatic
compressions with �=0.3 for all sample series. We regard
the smaller friction levels applied to configurations A and B
in the assembling stage as models for lubricated grains, and
assume that the lubricant ceases to operate once solid par-
ticles finally touch one another, as in equilibrated packings
and during quasistatic compression tests. As a reference for
comparisons with other states, and because it was studied in
the literature �10,38�, we also prepared another configuration
series we denote as A0, obtained from the initial A state on
compressing a frictionless system �thus series A and A0 share
the same initial low-pressure state, but differ as soon as P is
altered�.

All results are averaged over five samples of n=4000
beads, and error bars correspond to one standard deviation.

B. Evolution of global state variables

Figures 1 and 2 display the evolution of solid fraction �,
backbone coordination number z*, and rattler fraction x0 in
sample series A–D in the pressure cycle. Figure 1 shows that
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the solid fraction change with pressure is almost perfectly
reversible: the data points corresponding to the compression
and decompression parts of the pressure cycle are almost
indistinguishable. More precisely, once the pressure had re-
turned to its lowest value in samples A–C, the packing frac-
tion was observed to have changed by very small amounts,
below 2�10−4. The loosest state, D, undergoes a slight com-
paction. Yet, this effect apparently decreased as the maxi-
mum prescribed value for parameter I was changed from
10−4 to 10−5 upon unloading �the reported results correspond-
ing to this latter value�. Our model material thus differs from

sands, which are reported to respond to such cycles with
notable irreversible density increases �2,3�. It should be
noted, though, that we are using a contact model without
plasticity or particle damage, which, as argued on evaluating,
in Sec. II C, the maximum pressure and shear stress in the
grains near contact points with Eqs. �8� and �9�, is quite
unrealistic for the highest pressure levels simulated. Stress
concentrations in contacts between angular particles like
sand grains, with corners or asperities �30,39�, are more se-
vere than between smooth objects and should enhance the
effects of anelastic material behavior within the grains. The
smallness of irreversible compaction in our simulations sug-
gests that such macroscopic behavior, in sands, originates in
contact mechanics rather than in collective effects. The re-
versibility of the response to the pressure cycle is, however,
only apparent, as the coordination number does not return to
its initial value.

As expected, z* increases under a growing confining pres-
sure �Fig. 2�a��: as the particles pack more closely in a
smaller volume, near neighbors come into contact. z* reaches
about 7.3 at the highest pressure in the densest samples, A
and C. Correlatively, an increasing number of rattlers get
trapped as their free volume shrinks, and are recruited by the
force-carrying network. The initially large fraction of rattlers
in states C and D �x0�10% � steadily decreases as P grows
�Fig. 2�b�� and has virtually disappeared at P=100 MPa.

The evolution of coordination numbers on unloading is
more surprising. While low coordination states C and D ex-
hibit a very limited hysteresis effect and eventually retrieve
their initial, low z* values �about 4.6�, with a slightly lower
rattler fraction, samples of types A and B, in which z* was
initially high, lose contacts as a result of the pressure cycle
and end up with z* values below 5 �about 4.8 for A and 4.5
for B�, closer to the C and D ones than to where they started,
with a substantial rise in the population of rattlers. �Let us
recall that samples A and B are regarded in the study of
quasistatic compression as made of frictional beads with �
=0.3, like the others.� The behavior of �frictionless� samples
A0 is of course different, for they cannot be stable at low
pressure below z*=6 �40�. Figure 3 compares the evolutions
of z* in the A and A0 series, and shows that z* is very nearly
reversible in the A0 series. The unloading curves in A states
starting at lower pressures, 3.16 and 1 MPa instead of

FIG. 1. �Color online� Evolution of packing fraction as a func-
tion of pressure P in glass bead packings �bottom axis�, or dimen-
sionless stiffness parameter 
−1 �top axis�, in �from top to bottom�
states A �red crosses, continuous line�, C �black square dots, con-
tinuous line�, B �blue asterisks, dotted line�, and D �green open
squares, dotted line�.

(b)(b)(b)(b)

(a)(a)(a)(a)

FIG. 2. �Color online� Backbone coordination number z* �a� and
proportion of rattlers x0 �b� as functions of P or 
−1, same symbols
as in Fig. 1.

FIG. 3. z* versus P or 
−1 in pressure cycle in series A �crosses�
and A0 �dots�, showing reversibility for A0. Shorter cycles �up to
0.316 and 1 MPa� than the one of Fig. 2 are also shown for A.
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100 MPa, also shown in Fig. 3, witness a lower, but signifi-
cant decrease of z* from its initial value z*�6 at the end of
the cycle.

The shape of the force distribution and the mobilization of
friction also change with P, as shown by the evolution of
parameters Z�2�, M1, and M2 in Fig. 4.

As a general rule, the width of the force distribution cor-
relates with the level of force indeterminacy, relative to the
number of degrees of freedom. Contact elasticity tends to
share forces rather evenly because contact force values
should minimize the intergranular elastic energy, subject to
the constraint that they balance the applied pressure �this
elastic energy as a function of forces is written further below
in connection with a discussion of irreversibility in pressure
cycles, and the minimization property is exploited in paper
III �16� to estimate bulk moduli�. More precisely, the incre-
ments of forces due to pressure increases will tend to reduce
the width of the distribution, the faster the less constrained
the minimization, i.e., the larger the degree of force indeter-
minacy. Thus in configurations A, the large coordination
number enables a quick narrowing of the distribution under
growing pressure. In states C, the same tendency is present,
but the evolution is much slower, as there are less possibili-
ties to distribute forces in a more tenuous network while
maintaining equilibrium. However, C samples gain contacts
faster than D ones �Fig. 2�a��, for which the narrowing effect
is even slower. Finally, the extreme case is the situation of

isostaticity, as in the A0 series, in which the distribution of
forces is geometrically determined in the rigid limit of 
→
+�. As, furthermore, the increase of z with P is not very fast
in that case, since z is already large from the beginning, the
shape of the distribution remains nearly constant. A few nor-
mal force probability distribution functions at different pres-
sure levels are shown in Fig. 5.

The evolution of force values and friction mobilization on
unloading is more complicated: all three parameters shown
in Fig. 4 first increase, then go through a maximum and end
up, at the initial pressure value, with a value comparable
with the initial one �except for friction mobilization param-
eters M1 and M2 in A systems, because they started at zero�.
In a granular sample controlled in displacements or strains,
rather than stresses, large self-balanced forces can in some
situations remain when the external load that created them is
removed, the simplest example being that of one particle
wedged in a corner �41,42�. Our observations indicate that
such a phenomenon does not take place in a situation of
controlled stress state: all forces are of the order of the av-
erage force, which is related to the current pressure by Eq.
�7�, even though contacts have carried forces that were larger
by orders of magnitude in the past. This suggests that the set
of admissible contact forces, restricted to the intersection of
an H-dimensional affine space �due to equilibrium relations�
with a cone �due to Coulomb inequalities� is bounded. Yet
during unloading many more sliding contacts are observed
than at growing pressure, due to the effects of decreasing
normal force components, and the level of friction mobiliza-
tion is higher �Fig. 4�. Meanwhile, the distribution of normal
forces gets wider. The global influence of the past loading,
with contacts previously carrying larger forces, enhances
force heterogeneities. A related quantity is the elastic energy
stored in the contacts. The total elastic energy per grain w
reads �from Eqs. �1� and �2��

FIG. 4. �Color online� From bottom to top: Z�2�, M1, and M2
versus P or 
−1 in the compression cycle. Symbols as in Fig. 1 for
states A, C, and D. Series A0 represented with �red� dots joined by
a dotted line for Z�2�. Hysteresis loops for Z�2� first decrease then
increase back on unloading and go through a maximum �except for
A0, in which case it is nearly constant�. M1 and M2 behave in a
similar way, with the special circumstance that their initial values
are equal to zero in A states �assembled without friction�.

FIG. 5. From bottom to top, evolution of normalized force dis-
tributions P�f�, with f =N / �N
, with growing pressure in samples A,
C, D, and A0. P values in kPa are 10 �except for D: P=1�, 100, 103,
104, and 105. All four distributions tend to narrow as P grows, but
at very different rates.
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w =
1

n
�
i=1

n

�
j�i
� 32/3

5Ẽ2/3a1/3
Nij

5/3 +
�Tij�2

4KT�Nij�	 .

Once adimensionalized by Ẽa3, we denote it as w̃. On ex-
ploiting Eq. �7� it is conveniently expressed as

w̃ =
32/3�5/3

5

Z̃�5/3�
z2/3�5/3
5/2 . �12�

In Eq. �12�, Z̃�5 /3�, related to force moments, is close to
Z�5 /3�, which can be defined by replacing exponent 2 by
5 /3 in Eq. �11�, with the following slight modification. With
�T defined in Eq. �2� as the constant ratio of tangential to
normal stiffnesses, and with the notation rTN for the ratio �T�

N
in a contact, let us define

Z̃�5/3� =
�N5/3
1 +

5rTN
2

6�T
��

�N
5/3 . �13�

Z̃�5 /3� thus depends on the force distribution and also on
friction mobilization, although for �=0.3 its relative differ-

ence with Z�5 /3� is small �of the order of
5M1

2

6�T
, with M1 as

plotted in Fig. 4�. The energy per particle, w̃, scales as 
−5/2,
which is expected since this is proportional to h5/2 for h
�
−1, the typical normal contact deflection. w̃ is larger for
low coordination numbers �weaker networks�, and larger

force disorder �higher Z̃�5 /3��. �It should be recalled that we
use pressure, rather than strain, as the control parameter,
hence the elastic energy is larger for softer materials.� Thus
in A configurations, w̃ is larger, for given 
, on decompress-
ing, another manifestation of the irreversibility of the cycle.
If we assume that the curve P��� is quasistatically followed
up to the maximum pressure, and then exactly retraced back
on decompressing, this leads to a paradox, as some elastic
energy appears to be gained at no expense. Thus one has to
account for very small irreversible density changes, for en-
ergetic consistency. Such changes in �, between the growing
and decreasing pressure parts of the cycle, are shown in Fig.
6.

In the case of A configurations, one even observes a slight
decompaction on decreasing P back to its lowest, initial
value. Although surprising, this phenomenon should be ex-
pected in the rigid limit P→0 or 
→�, because as ex-
plained in paper I, the initial A configuration, which was
assembled without friction, is a local maximum of � subject
to impenetrability constraints. Another conclusion of paper I
�1� is that the only way to increase density in such a sample
is to produce, by enduring agitation or repeated shakes, no-
table traces of crystalline order. This should not happen in a
slow, quasistatic compression experiment with only one pres-
sure cycle. To check for energetic consistency, one may note
in Fig. 6, however, that the change of � is positive at high
pressure. The total energy fed into the system in the cycle is

�w̃ext =
�

6
� ��irr�P�dP

Ẽ�2
, �14�

the integral running over the whole pressure interval of the
compression cycle. Consequently �see Fig. 6� the contribu-
tion of the irreversible increase of � is largely dominant
because it is integrated over a much wider pressure interval.
The small changes in density between the compression and
the decompression curves at the same pressure values are
large enough to explain the change in elastic energy, and that
of potential energy as well when the cycle ends up decreas-
ing the density �which happens for A samples�.

C. Pair correlations and near neighbor distances

The smallness or absence of irreversible compaction in
the pressure cycle implies that the samples do not avoid con-
tact deflections by finding denser packing arrangements.
Thus interparticle correlation patterns should witness favored
near neighbor distances which typically scale like �−1/3.

This is shown for C configurations in Fig. 7: on rescaling
the distance axis, using coordinate r*=r�� /�0�1/3 with �0

the initial low pressure solid fraction, the different g�r�
curves are superimposed. In agreement with the observations
made in paper I �1�, where the relationships between pair
correlation functions and contact networks were discussed, a
closer look on such correlations will reveal differences in the
details of the peaks associated with changes in the coordina-
tion number with �. Figures 8 and 9, respectively, show
functions zI�h� and zII�h� at growing P values, using the cor-
responding change of scale for interstice h, h*

= �� /�0�1/3�a+h�−a.
Those data suggest that the homogeneous shrinking of

distances implied by the rescaling of abscissas on the graphs
of Figs. 7�b�, 8, and 9 is an approximation with some dis-
crepancies at small intergranular distances. Curves corre-
sponding to pressures other than the lowest one on Figs. 8
and 9 start at distance ��� /�0�1/3−1�a�0 and the corre-
sponding values of z�h� on the curve for the lowest pressure
value are the predictions for the coordination number on as-
suming homogeneous shrinking strains. Differences there-

FIG. 6. �Color online� Increment of packing fraction ��irr

gained between the two states of equal pressure, reached at growing
and at decreasing P, in states A �red, crosses� and C �black, square
dots�. Note the scale of density changes ��� of order 10−4�.
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fore show that such predictions, albeit reasonable, are not
exact. In particular, the gradual capture of rattlers by the
force-carrying network as P grows �see Fig. 2�b�� cannot be
adequately described by the homogeneous shrinking assump-
tion: the rattlers will not start carrying forces when one in-
terstice with a backbone grain is closed. The use of definition
zII�h� should in principle improve this kind of prediction:
once positioned against the backbone �with three contacts�,
the rattlers are much more likely to create new contacts bear-
ing nonzero forces when they touch new neighbors. Yet, the
improvement of curve superpositions in Fig. 9 compared to
Fig. 8 is marginal. This suggests that the inaccuracy of the
prediction of coordination numbers is not only due to the
capture of rattlers by the growing backbone, but also stems

from the failure of the assumption of homogeneous shrink-
ing.

D. Can one predict the changes in coordination number?

The results of the prediction of the coordination number,
assuming all distances uniformly shrink, are shown in Fig.
10 for systems A and C under growing pressure. The agree-
ment is very good in state A �except at high pressure, where
z is slightly underestimated�, and fair in state C. For C con-
figurations, the prediction was done separately for both z and
zII�0�, showing a somewhat better accuracy at low pressure
in the second case. Unfortunately, the mechanically impor-
tant coordination number is zI�0�=z rather than zII�0�.

To evaluate P as a function of �, one needs to account for
two phenomena: the increase of the elastic normal deflection
in the contacts that already existed at the lowest pressure,
and the creation of new contacts due to the closing of open
interstices. Both effects are evaluated with the assumption of
homogeneous rescaling of all distances according to the den-
sity change, respectively exploiting the previous measure-
ments of the distribution of sphere overlaps �related to that of
normal forces�, and of the function z�h� �with no significant
difference in accuracy in using zI or zII�. The predicted values
of z, although not very accurate for small changes of zI at
low pressures, globally capture the marked growing trend

FIG. 7. Pair correlation functions at P=10, 100, 1000, 104, and
105 kPa in configurations C at growing pressure, without �top� and
with �bottom� rescaling distance r as r*=r�� /�0�1/3.

FIG. 8. �Color online� Gap-dependent neighbor coordination
number zI�h� versus rescaled interstice h*= �� /�0�1/3�a+h�−a at
different P �same as in Fig. 7� in states A �red�, C �black�, and D
�green�.

FIG. 9. �Color online� Same as Fig. 8 for definition zII�h� of the
gap-dependent neighbor coordination number.

FIG. 10. �Color online� Predictions for z=zI�0� in samples A and
C, and for zII�0� in samples C, based on the homogeneous shrinking
assumption.
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above 1 MPa. The predictions of density increases are com-
pared with the simulation results in Fig. 11, showing good
agreement �with a slight underestimation at high pressure�.
The prediction of P is understandably more accurate than
that of the coordination number because it is not very sensi-
tive, at first, to errors in the estimation of the density of
newly created contacts, which initially carry very small
forces.

One may also attempt to predict the decrease of coordi-
nation number in the decompression part of the pressure
cycle. Such a prediction is based on the distribution of par-
ticle overlaps �or contact deflections�, rather than near neigh-
bor distances. The relevant information is therefore the nor-
mal force histogram for the highest pressure level, as shown,
e.g., in Fig. 5. However, this is a rather crude approximation,
which leads to large errors for the coordination number
variation with density, as shown in Fig. 12, and very poor
predictions indeed for the coordination number relationship
to the decreasing pressure, as apparent in Fig. 13.

Such an assumption of homogeneous expansion proves in
particular unable to provide a correct estimate of the proper-
ties at low density or pressure, as it ignores the requirement
of mechanical rigidity. We are not aware of a simple predic-
tion scheme that would be able to provide a reasonably ac-

curate description of the reduction of coordination number in
the A state on reducing the confining pressure.

IV. DISCUSSION

The effect of a compression on the four series of isotropic
packings we have been studying can be broadly summarized
as the closing of additional contacts and the gradual reduc-
tion of the characteristic disorder of granular systems, as
witnessed by the narrowing of the force distribution �Figs. 4
and 5�. Geometric changes conform to the homogeneous
shrinking assumption on large scale, and the resulting pre-
dictions for the near-neighbor distances and the coordination
numbers are reasonable, if not very accurate, approximations
�Figs. 10 and 11�, even though they cannot correctly account
for the recruitment of rattlers �Fig. 2�b�� by the growing
backbone. It proves difficult to accurately estimate small z*

increases, to which, as will be studied in �16� �paper III�,
shear moduli of poorly coordinated packings are especially
sensitive. The changes in the forces and the mobilization of
friction are not appropriately described by such a simple
model. On assessing the performance of the homogeneous
shrinking approximation, one thus retrieves the classification
of length scales introduced in paper I ��1�, Section IV E 2�.
Global changes on scales above about 0.05a appear to abide
by the homogeneous strain assumption, hence the superposi-
tion of pair correlation functions in Fig. 7�b�. Pair correla-
tions between neighbors at smaller distances �or details of
the peaks of g�r�� are only approximately predicted on res-
caling all distances by the same factor �as appears in Figs. 8
and 9�; and small distances of the order of 
−1 �contact de-
flections related to forces� do not abide by this homogeneity
of strain. Otherwise, on rescaling coordinates by a factor 1
−�, where 
−1���1, one would replace any contact de-
flection h by �a+h, which for ��
−1would result in a much
stronger narrowing of the force distribution than the one ob-
served. This assumption of homogeneous strain �or affine
displacements� will be further tested on dealing with elastic
moduli in paper III �16�.

The effects of a pressure reduction are more surprising.
Although the evolution of solid fractions departs very little

FIG. 11. �Color online� � versus P or 
−1 in samples A �red�
and C �black�. Dots: measurements. Dotted lines: predictions based
on the homogeneous shrinking assumption from the initial state of
lowest pressure.

FIG. 12. �Color online� Coordination number z versus � at de-
creasing P in samples A �red� and C �black�. Dots: measurements.
Dotted lines: predictions based on the homogeneous expansion as-
sumption from the initial state of highest pressure.

FIG. 13. �Color online� Coordination number z versus decreas-
ing P �or 
−1� in samples A �red� and C �black�. Dots: measure-
ments. Dotted lines: predictions based on the homogeneous expan-
sion assumption from the initial state of highest pressure.
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from reversibility �Figs. 1 and 6�, large initial correlation
numbers in configurations A and B do not survive a pressure
cycle �see Figs. 2�a� and 3�. Such effects are not predicted by
the simple assumption of homogeneous expansion, which
grossly fails to reproduce the evolution of coordination num-
ber and density on reducing the confining pressure �Figs. 12
and 13�. The memory of larger stresses, upon decompressing,
imparts wider force distributions and larger friction mobili-
zations in some pressure range �Fig. 4�, while such reduc-
tions of coordination numbers take place. It should be ex-
pected that decompression is less predictible because it is an
evolution towards a larger disorder, and small differences
can be amplified in the process. This contrasts with the com-
pression phase, in which, for instance, the differences be-
tween configurations A and C tend to disappear. Density dif-
ferences are recovered on decreasing P, with the additional
phenomenon that new internal states at low pressure are thus
being prepared, which also differ from the initially as-
sembled ones. While this phenomenon escapes the currently
available modeling schemes, it can be noted that configura-
tions with a high coordination number, for nearly rigid grains
�low pressure or high stiffness parameter 
�, are extremely
rare, since each contact requires a new equation to be satis-
fied by the set of sphere center positions. Equilibrium states
of rigid, frictionless, sphere assemblies, which are the initial
states for configuration series A, apart from the motion of the
scarce rattlers, are isolated points in configuration space, be-

cause of isostaticity, as discussed in paper I �1�. As the pres-
sure cycle, at the microscopic scale, is not reversible, due to
friction and to geometric changes, one should not expect
such exceptional configurations to be retrieved upon decreas-
ing the pressure.

We thus conclude that the internal state of granular pack-
ings, in addition to the assembling process, the effect of
which was studied in paper I �1�, varies according to the
history of stress intensities, even though, unlike in cohesive
materials �43,44�, and in contrast with changes in stress di-
rections, such loading modes only entail very small irrevers-
ible strains. Such commonly used characteristics of granular
packings as coordination number, force distribution, and fric-
tion mobilization level are sensitively affected by their com-
pression history, while strains and density changes remain
very small after the assembling stage. In particular, large
coordination numbers associated with an ideally successful
suppression of friction in the sample preparation stage seem
even more unlikely to occur generally in isotropic sphere
assemblies close to the RCP density, because they do not
survive compression cycles. Elastic properties are studied in
paper III �16�, where we relate them to the microstucture of
such states, thereby allowing for compararisons of numerical
results to experimental ones. As possible developments of
the present study, one may simulate the effects of irreversible
contact deformation, due to material plasticity or particle
breakage.
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