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This is the first paper of a series of three, in which we report on numerical simulation studies of geometric
and mechanical properties of static assemblies of spherical beads under an isotropic pressure. The influence of
various assembling processes on packing microstructures is investigated. It is accurately checked that friction-
less systems assemble in the unique random close packing (RCP) state in the low pressure limit if the
compression process is fast enough, higher solid fractions corresponding to more ordered configurations with
traces of crystallization. Specific properties directly related to isostaticity of the force-carrying structure in the
rigid limit are discussed. With frictional grains, different preparation procedures result in quite different inner
structures that cannot be classified by the sole density. If partly or completely lubricated they will assemble like
frictionless ones, approaching the RCP solid fraction ®gcp=0.639 with a high coordination number: Z"=60n
the force-carrying backbone. If compressed with a realistic coefficient of friction u=0.3 packings stabilize in
a loose state with ®=0.593 and 7" =4.5. And, more surprisingly, an idealized “vibration” procedure, which
maintains an agitated, collisional regime up to high densities results in equally small values of Z* while @ is
close to the maximum value ®ycp. Low coordination packings have a large proportion (>10% ) of rattlers—
grains carrying no force—the effect of which should be accounted for on studying position correlations, and
also contain a small proportion of localized “floppy modes” associated with divalent grains. Low-pressure
states of frictional packings retain a finite level of force indeterminacy even when assembled with the slowest
compression rates simulated, except in the case when the friction coefficient tends to infinity. Different micro-
structures are characterized in terms of near neighbor correlations on various scales, and some comparisons
with available laboratory data are reported, although values of contact coordination numbers apparently remain

experimentally inaccessible.
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I. INTRODUCTION

A. Context and motivations

The mechanical properties of solidlike granular packings
and their microscopic, grain-level origins are an active field
of research in material science and condensed-matter physics
[1-3]. Motivations are practical, originated in soil mechanics
and material processing, as well as theoretical, as general
approaches to the rheology of different physical systems
made of particle assemblies out of thermal equilibrium [4]
are attempted.

The packing of equal-sized spherical balls is a simple
model for which there is a long tradition of geometric char-
acterization studies. Packings are usually classified according
to their density or solid volume fraction ®, and the frequency
of occurrence of some local patterns. Direct observation of
packing microstructure is difficult, although it has recently
benefited from powerful imaging techniques [5-7]. The con-
cept of random close packing (RCP) is often invoked [8,9],
although some authors criticized it as ill defined [10]. It cor-
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responds to the common observation that bead packings
without any trace of crystalline order do not exceed a maxi-
mum density ®rep slightly below 0.64 [8].

Mechanical studies in the laboratory have been performed
on granular materials for decades in the realm of soil me-
chanics, and the importance of packing fraction @ on the
rheological behavior has long been recognized [1,11-13].
The anisotropy of the packing microstructure, due to the as-
sembling process, has also been investigated [14,15], and
shown to influence the stress-strain behavior of test samples
[16], as well as the stress field and the response to perturba-
tions of gravity-stabilized sandpiles or granular layers [17].

Discrete numerical simulation [18] proved a valuable tool
to investigate the internal state of packings, as it is able to
reproduce mechanical behaviors, and to identify relevant
variables other than ®, such as coordination number and
fabric (or distribution of contact orientations) [19-23]. In the
case of sphere packings, simulations have been used to char-
acterize the geometry of gravity-deposited systems [24,25]
or oedometrically compressed ones [26], to investigate the
quasistatic, hysteretic stress-strain dependence in solid pack-
ings [27,28], and their pressure-dependent elastic moduli in a
compression experiment [29,30].

However, in spite of recent progress, quite a few basic
questions remain unresolved. It is not obvious how closely
the samples used in numerical simulations actually resemble
laboratory ones, for which density is often the only available
state parameter. Both simulations and experiments resort to
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certain preparation procedures to assemble granular pack-
ings, which, although their influence is recognized as impor-
tant, are seldom studied, or even specified. One method to
produce dense packings in simulations is to set the coeffi-
cient of intergranular friction to zero [26,27] or to a low
value [28] in the assembling stage, while a granular gas gets
compacted and equilibrated under pressure. On keeping fric-
tionless contacts, this results, in the limit of low confining
stress, in dense systems with rather specific properties
[30,31], related to isostaticity and potential energy minimi-
zation [32]. Examples of traditional procedures in soil me-
chanics are rain deposition under gravity, also known as air
pluviation (which produces homogeneous states if grain flow
rate and height of free fall [33] are maintained constant) and
layerwise deposition and dry or moist tamping. Those two
methods were observed to produce, in the case of loose
sands, different structures for the same packing density [34].
Densely packed particle assemblies can also be obtained in
the laboratory by vibration, or application of repeated “taps”
[35,36] to a loose deposit. How close are dense experimental
sphere packings to model configurations obtained on simu-
lating frictionless particles? How do micromechanical pa-
rameters influence the packing structure? Is the low pressure
limit singular in laboratory grain packings and in what
sense?

B. Outline of the present study

The present paper provides some answers to such ques-
tions, from numerical simulations in the simple case of iso-
tropically assembled and compressed homogeneous packings
of spherical particles. It is the first one of a series of three,
and deals with the geometric characterization of low pressure
isotropic states assembled by different procedures, both with-
out and with intergranular friction. The other two, hereafter
referred to as papers II [37] and III [38], respectively, inves-
tigate the effects of compressions and pressure cycles, and
the elastic response of the different numerical packings, with
comparisons to experimental results. Although mechanical
aspects are hardly dealt with in the present paper, we insist
that geometry and mechanics are strongly and mutually re-
lated. We focus here on the variability of the coordination
numbers, which will prove important for mechanical re-
sponse properties of granular packings, and show that equili-
brated packs of identical beads can have relatively large
numbers of “rattler” grains, which do not participate in force
transmission. We investigate the dependence of initial states
on the assembling procedure, both with and without friction.
We study the effects of procedures designed to produce
dense states (close to RCP), and we characterize the geom-
etry of such states on different scales.

It should be emphasized that we do not claim here to
mimic experimental assembling procedures very closely.
Rather, we investigate the results of several preparation
methods, which are computationally convenient, maintain
isotropy, and produce equilibrated samples with rather differ-
ent characteristics. Those methods nevertheless share some
important features with laboratory procedures, and we shall
argue that the resulting states are plausible models for ex-
perimental samples.
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The numerical model and the simulation procedures (geo-
metric and mechanical parameters, contact law, boundary
conditions) are presented in Sec. II, where some basic defi-
nitions and mechanical properties pertaining to granular
packs are also presented or recalled. Part III discusses the
properties of frictionless packings, and introduces several
characterization approaches used in the general case as well.
Section IV then describes different assembling procedures of
frictional packings and the resulting microstructures. Section
V discusses perspectives to the present study, some of which
are pursued in papers II and III of the series. Appendixes deal
with technical issues, and also present a more detailed com-
parison with some experimental data.

This being a long paper, it might be helpful to specify
which parts can be read independently. On first going
through the paper, the reader might skip Sec. III D, dealing
with a rather specific issue. The properties stated or recalled
in Sec. II C are used to discuss stability issues and isostatic
values of coordination numbers, but they can also be over-
looked in a first approach. Finally, Sec. IV can be read inde-
pendently from Sec. III, apart from the explanations about
equilibrium conditions (in Sec. III B 2) and the treatment of
rattlers (Sec. III E 1). Sections III and IV both have conclu-
sive sections which summarize the essential results.

II. MODEL, NUMERICAL PROCEDURES,
BASIC DEFINITIONS

A. Intergranular forces

We consider spherical beads of diameter a (the value of
which, as we ignore gravity, will prove irrelevant), interact-
ing in their contacts by the Hertz law, relating the normal
force N to the elastic normal deflection / as

Eva
N= &va h3/2 . (1 )
3
In Eq. (1), we introduced the notation

_E
-

where E is the Young modulus of the beads, and v is the
Poisson ratio. For spheres, A, the elastic deflection of the
contact, is simply the distance of approach of the centers
beyond the first contact. The normal stiffness Ky of the con-
tact is defined as the rate of change of the force with normal
displacement as follows:

E=

= 113
Ky= aN _ @hl/z _3" 523,13 N13 )
dh 2 2

Although many geometric features of particle packings do
not depend on the details of the model for contact elasticity,
and could be observed as well with a simpler, linear unilat-
eral elastic model, it is necessary to implement suitable non-
linear contact models to deal with the mechanical properties
in papers II and III [37,38]. Tangential elasticity and friction
in contacts are appropriately described by the Cattaneo-
Mindlin-Deresiewicz laws [39], which we implement in a
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simplified form, as used, e.g., in Refs. [29,41]: the tangential
stiffness K relating, in the elastic regime, the increment of
tangential reaction dT to the relative tangential displacement
increment duy is a function of 4 (or N) alone (i.e., it is kept
constant, equal to its value for T=0).

dT = KTduT,
with
2-2 1-v~
Kr= —"Ky=——FE\ah". 3)
2—-v 2—-v

To enforce the Coulomb condition with friction coefficient
M, T has to be projected back onto the circle of radius uN in
the tangential plane whenever the increment given by Eq. (3)
would cause its magnitude to exceed this limit. Moreover,
when N decreases to N—ON, T is scaled down to the value it
would have had if N had constantly been equal to N—JN in
the past. It is not scaled up when N increases. Such a proce-
dure, suggested, e.g., in [40], avoids spurious increases of
elastic energy for certain loading histories. More details are
given in Appendix A.

Finally, tangential contact forces have to follow the mate-
rial motion. Their magnitudes are assumed here not to be
affected by rolling (i.e., rotation about a tangential axis) or
pivoting (i.e., rotation about the normal axis), while their
direction rotates with the normal vector due to rolling, and
spins around it with the average spinning rate of the two
spheres (to ensure objectivity). The corresponding equations
are given in Appendix B.

In addition to the contact forces specified above, we in-
troduce viscous ones, which oppose the normal relative dis-
placements (we use the convention that positive normal
forces are repulsive).

N’ = a(h)h. (4)

The damping coefficient a depends on %, and we choose its
value as a fixed fraction { of the critical damping coefficient
of the normal (linear) spring of stiffness Ky(h) [as given by
Eq. (2)] joining two beads of mass m as follows:

a(h) = {N2mKy(h). ()

From Eq. (2), a is thus proportional to 44, or to N'©. The
same damping law was used in [41]. Admittedly, the dissi-
pation given by Egs. (4) and (5) has little physical justifica-
tion, and is rather motivated by computational convenience.
We shall therefore assess the influence of { on the numerical
results. The present study being focused on statics, we gen-
erally use a strong dissipation, {=0.98, to approach equilib-
rium faster. This particular value is admittedly rather arbi-
trary: the initial motivation for choosing (<1 is the
computational inefficiency of overdamped contacts with ¢
>1 in the case of linear contact elasticity. Yet we did not
check whether values of 1 or even higher would cause any
problem with Hertzian contacts. In the linear case, the resti-
tution coefficient in a binary collision varies as a very fastly
decreasing function of , and changes of { in the range be-
tween 0.7 and 1 have virtually no detectable effect.
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We do not introduce any tangential viscous force, and
impose the Coulomb inequality to elastic force components
only. We choose the elastic parameters £=70 GPa and v
=0.3, suitable for glass beads, and the friction coefficient is
attributed a moderate, plausible value u=0.3. These choices
are motivated by comparisons to experimental measurements
of elastic moduli, to be carried out in paper III [38].

B. Boundary conditions and stress control

The numerical results presented below were obtained on
samples of n=4000 beads, enclosed in a cubic or parallelipi-
pedic cell with periodic boundary conditions. It is often in
our opinion more convenient to use pressure (or stress) than
density (or strain) as a control parameter (a point we discuss
below in Sec. III). We therefore use a stress-controlled pro-
cedure in our simulations, which is adapted from the
Parrinello-Rahman molecular dynamics (MD) scheme [42].
The simulation cell has a rectangular parallelipipedic shape
with lengths L, parallel to coordinate axes a (1=a=3). L,
values might vary, so that the system has 6N+3 configura-
tional degrees of freedom, which are the positions and ori-
entations of the N particles and lengths L,. Q=L,L,L; de-
notes the sample volume. We seek equilibrium states with set
values (2,)=q=3 of all three principal stresses o,,. We use
the convention that compressive stresses are positive.

It is convenient to write position vectors r;, defining a
square 3 X 3 matrix with L,’s on the diagonal, as

(I1=i=N) r;=L-s,

s; denoting corresponding vectors in a cubic box of unit edge
length. In addition to particle angular and linear velocities,
which read

(1=i=N) v;=L-$;+L-s,,

one should evaluate time derivatives Li. Equations of motion
are written for particles in the standard form, i.e. (F; denoting
the total force exerted on grain i),

(1=i=N) mi§i=I=4_1'Fi» (6)

and the usual equation for angular momentum. Meanwhile,

lengths L, satisfy the following equation of motion, in which
r;; is the vector joining the center of i to the center of j,
subject to the usual nearest image convention of periodic
boundary conditions:

| Q

ML,=—| L2 m(s{)?+ X FPri? | - =3, (7)
L, i i<j L,

Within square brackets on the right-hand side of Eq. (7), one

recognizes the familiar formula [19,43,44] for Qo ,,. o being

the average stress in the sample,

1
a= 5[2 mptf+ S Fﬁ;*)rgf)] . (8)
i i<j
All three diagonal stress components should thus equate the
prescribed values 3, at equilibrium. The acceleration term
will cause the cell to expand in the corresponding direction if
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the stress is too high, and to shrink if it is too low. Equation
(7) involves a generalized mass M associated with the
changes of shape of the simulation cell. M is set to a value of
the order of the total mass of all particles in the sample. This
choice was observed to result in collective degrees of free-
dom L, approaching their equilibrium values under pre-
scribed stress % somewhat more slowly (but not exceedingly
so) than (rescaled) positions s.

The original Parrinello-Rahman method was designed for
conservative molecular systems, in such a way that the set of
equations is cast in Lagrangian form. This implies, in par-
ticular, additional terms in Eq. (6), involving L Such terms
were observed to have a negligible influence on our calcula-
tions and were consequently omitted. Granular materials are
dissipative, and energy conservation is not an issue (except
for some elastic properties, see paper III [38]). Further dis-
cussion of the stress-controlled method is provided in Ap-
pendix C.

Equations (6) and (7), with global degrees of freedom L,
slower than particle positions, lead to dynamics similar to
those of a commonly used procedure in granular simulation
[45]. This method consists in repeatedly changing the dimen-
sions of the cell by very small amounts, then computing the
motion of the grains for some interval of time. A “servo
mechanism” can be used to impose stresses rather than
strains [30]. Our approach might represent a simplification,
as it avoids such a two-stage procedure. It should be kept in
mind that we restricted our use of Eq. (7) to situations when
changes in the dimensions of the simulation cell are very
slow and gradual. The perturbation introduced in the motion
of the grains, in comparison to the more familiar case of a
fixed container, is very small.

C. Rigidity and stiffness matrices

We introduce here the appropriate formalism and state the
relevant properties of static contact networks. It is implied
throughout this section that small displacements about an
equilibrium configuration are dealt with to first order (as an
infinitesimal motion, i.e., just like velocities), and related to
small increments of applied forces, moments, and stresses. In
the following we shall exploit the definitions of stiffness ma-
trices KV [Eq. (18)] and K® to discuss stability properties
of packings. The corrections to the degree of force indeter-
minacy due to free mechanism motions, as expressed by re-
lations (19) or (20), will also be used.

The properties are stated in a suitable form to the periodic
boundary conditions with controlled diagonal stress compo-
nents, as used in our numerical study.

1. Definition of stiffness matrix

We consider a given configuration with bead center posi-
tions (r;, 1 =i=n) and orientations (6;, 1 =i=n), and cell
dimensions (L,, 1=a=3). The grain center displacements
(u;), ==, are conveniently written as

u,-=ﬁ,-—

m

. ri’

with a set of displacements u; satisfying periodic boundary
conditions in the cell with the current dimensions, and the

PHYSICAL REVIEW E 76, 061302 (2007)

elements of the diagonal strain matrix € express the relative
shrinking deformation along each direction, €,=—AL,/L,.
Gathering all coordinates of particle (periodic) displacements
and rotation increments, along with strain parameters, one
defines a displacement vector in a space with dimension
equal to the number of degrees of freedom Ny;=6n+3,

U= ((ﬁi’Aei)ISiSn’(Ea)ISaSB)' (9)

Let N, denote the number of intergranular contacts. In every
contacting pair i-j, we arbitrarily choose a “first” grain i and
a “second” one j. The normal unit vector n;; points from i to
J (along the line joining centers for spheres). The relative
displacement ou;; is defined for spherical grains with radius
R as

ij>
in which r;; is the vector pointing from the center of the first
sphere i to the nearest image of the center of the second one
Jj- The normal part 5u§>( of du;; is the increment of normal
deflection h;; in the contact. Equation (10) defines a 3N,
XNy matrix G, which transforms U into the 3N -dimensional
vector of relative displacements at contacts du.

su=G-U. (11)

In agreement with the literature on rigidity theory of frame-
works [46] (-G is termed normalized rigidity matrix in that
reference), we call G the rigidity matrix.

In each contact a force F; is transmitted from i to j, which
is split into its normal and tangential components as F;;
=N;mn;;+T;;. The static contact law (without viscous terms)
expressed in Egs. (1) and (3), with the conditions stated in
Sec. I A, relates the 3N .-dimensional contact force incre-
ment vector Af, formed with the values AN;;, AT;; of the
normal and tangential parts of all contact force increments,
to du.

Af=K- su. (12)

This defines the (3N, X 3N,) matrix of contact stiffnesses /.
K is block diagonal (it does not couple different contacts),
and is conveniently written on using coordinates with n;; as
the first basis unit vector. In simple cases the 3 X 3 block of
K corresponding to contact i,j, K;; is diagonal itself and
contains stiffnesses Ky(h;;) and (twice in three dimensions)
Ky(h;) as given by Egs. (2) and (3) as follows:

Ky(hy)) 0 0
0 0 Kylhy)

More complicated nondiagonal forms of C;;, which actually
depend on the direction of the increments of relative dis-
placements in the contact, are found if friction is fully mo-
bilized (which does not happen in well-equilibrated configu-
rations), or corresponding to those small motions reducing
the normal contact force. The effects of such terms is small,
with our choice of parameters, and is discussed in paper III
[38].

External forces F; and moments I'; (at the center) applied
to the grains, and diagonal Cauchy stress components 3, can
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be gathered in one N-dimensional load vector F*' as fol-
lows:

F = ((F,T) 2= (A2 ) 120=3), (14)

chosen such that the work in a small motion is equal to
Fe'.U. The equilibrium equations—the statements that con-
tact forces f balance load F*'—is simply written with the
transposed rigidity matrix, as

F="G-f. (15)

This is of course easily checked on writing down all force
and moment coordinates, as well as the equilibrium form of
stresses,

a3,=> Firs. (16)

i<j

As an example, matrices G and "G were written down in
[47] in the simple case of one mobile disk with two contacts
with fixed objects in two dimensions, the authors referring to
-G as the “contact matrix.” The same definitions and ma-
trices are used in [48] in the more general case of a packing
of disks.

Returning to the case of small displacements associated
with a load increment AF®™', one may write, to first order in
U,

AF*=K - U, (17)

with a total stiffness matrix K, comprising two parts 50) and
g(”, which we shall, respectively, refer to as the constitutive
and geometric stiffness matrices. K" results from Eq. (11),
(12), and (15).

K''="G-

's
I

(18)

5<2) is due to the change of the geometry of the packing. Its
elements (see Appendix B), relative to their counterparts in
g('), are of order F/KyR~h/R, and therefore considerably
smaller in all practical cases. The constitutive stiffness ma-
trix is also called “dynamical matrix” [31,41]. One advan-
tage of decomposition (18) is to separate out the effects of
the contact constitutive law, contained in K and those of the
contact network, contained in G. G is sensitive in general to
the orientations of normal unit vectors n;; and to the “branch
vectors” joining the grain centers to contact positions—
which reduce to Rn;; for spheres of radius R. I=((2), on the
other hand, unlike G, is sensitive to the curvature of grain
surfaces at the contact point [49,50].

2. Properties of the rigidity matrix

To the rigidity matrix are associated the concepts (familiar
in structural mechanics) of force and velocity (or displace-
ment) indeterminacy, of relative displacement compatibility,
and of static admissibility of contact forces. Definitions and
properties stated in [32] for frictionless grains straightfor-
wardly generalize to packings with friction.

The degree of displacement indeterminacy (also called
degree of hypostaticity [32]) is the dimension k of the kernel
of G, the elements of which are displacement vectors U,
which do not create relative displacements in the contacts:
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Su=0. Such displacements are termed (first-order) mecha-
nisms. Depending on boundary conditions, a grain packing
might have a small number k, of “trivial” mechanisms, for
which the whole system moves as one rigid body. In our
case, attributing common values of U to all grains gives kg
=3 independent global rigid motions.

The degree of force indeterminacy H (also called degree
of hyperstaticity [32]) is the dimension of the kernel of 'G,
or the number of independent self-balanced contact force
vectors. If the coordinates of f are regarded as the unknowns
in system of equations (15), and if F*' is supportable, then
there exists a whole H-dimensional affine space of solutions.

From elementary theorems in linear algebra one deduces a
general relation between H and & [32],

Ny+H=3N +k. (19)

An isostatic packing is defined as one devoid of force and
velocity indeterminacy (apart from trivial mechanisms). Ex-
cluding trivial mechanisms (thus reducing Ny to Ny—k), and
loads that are not orthogonal to them, one then has a square,
invertible rigidity matrix. To any load corresponds a unique
set of equilibrium contact forces. To any vector of relative
contact displacements corresponds a unique displacement
vector.

With frictionless objects, in which contacts only carry
normal forces, it is appropriate to use N.-dimensional contact
force and relative displacement vectors, containing only nor-
mal components, and to define the rigidity matrix accord-
ingly [32]. Then Eq. (19) should be written as

Ny+H=N, +k. (20)

In the case of frictionless spherical particles, all rotations are
mechanisms, hence a contribution of 3 to k. Thus one may in
addition ignore all rotations, and subtract 3n both from Ny
and from k, so that Eq. (20) is still valid. In such a case, the
rigidity matrix coincides (up to a sign convention and nor-
malization of its elements) with the one introduced in
central-force networks, trusses, and tensegrity structures
[51]. Doneyv er al., in a recent publication on sphere packings
[52], call rigidity matrix what we defined as its transpose Tg.

D. Control parameters

The geometry and the mechanical properties of sphere
packings under given pressure P depends on a small set of
control parameters, which can be conveniently defined in
dimensionless form [23,53]. Such parameters include friction
coefficient w and viscous dissipation parameter ¢, which
were introduced in Sec. 1T A.

The elastic contact law introduces a dimensionless stiff-
ness parameter k, which we define as

E 2/3
K=<F> . (21)

Note that x does not depend on bead diameter a. Under
pressure P, the typical force in a contact is of order Pa. It
corresponds to a normal deflection i such that Pa?

~EVah®? due to the Hertz law (1). Therefore, k sets the
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scale of the typical normal deflection % in Hertzian contacts,
as h/a~1/k.

In the case of monodisperse sphere packings in equilib-
rium in a uniform state of stress g, pressure P=trg/3 is
directly related to the average normal force (N). Let us de-
note as ® the solid fraction and z the coordination number
(z=2N,/n). As a simple consequence of the classical formula
for stresses recalled in Sec. IT B [Eq. (8) in the static case, or
Eq. (16)], one has, neglecting contact deflections before di-
ameter a,

7®(N)

P= ,
ma*

(22)

whence an exact relation between P and contact deflections,

<h3/2> T
232 = D32

The limit of rigid grains is approached as k— . k can reach
very high values for samples under their own weight, but
most laboratory results correspond to levels of confining
pressure in the 100 kPa range. Experimental data on the me-
chanical properties of granular materials in quasistatic con-
ditions below a few tens of kPa are very scarce (see, how-
ever, [54] and [55]). This is motivated by engineering
applications (100 kPa is the pressure below a few meters of
earth), and this also results from difficulties with low confin-
ing stresses. Below this pressure range, stress fields are no
longer uniform, due to the influence of the sample weight,
and measurements are difficult (e.g., elastic waves of mea-
surable amplitude are very strongly damped).

We set the lowest pressure level for our simulation of
glass beads to 1 kPa or 10 kPa, which corresponds to «
=181 000 and «=39 000. Such values, as we shall check,
are high enough for some characteristic properties of rigid
sphere packings to be approached with good accuracy. Upon
increasing P, the entire experimental pressure range will be
explored in the two companion papers [37,38].

Another parameter associated with contact elasticity is the
ratio of tangential to normal stiffnesses (constant in our
model), related to the Poisson ratio of the material the grains
are made of. Although we did not investigate the role of this
parameter, several numerical studies [41,56] showed its in-
fluence on global properties to be very small.

The “mass” M of the global degrees of freedom is chosen
to ensure slow and gradual changes in cell dimensions, and
dynamical effects are consequently assessed on comparing
the strain rate € to intrinsic inertial times, such as the time
needed for a particle of mass m, initially at rest, accelerated
by a typical force Pa%, to move on a distance a. This leads to
the definition of a dimensionless inertia parameter,

I=émlaP. (23)

The quasistatic limit can be defined as /— 0. I was success-
fully used as a control parameter in dense granular shear
flows [57-59], which might be modeled on writing down the
I dependence of internal friction and density [60,61].

The sensitivity to dynamical parameters / and { should be
larger in the assembling stage (as studied in the present pa-
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per) than in the subsequent isotropic compression of solid
samples studied in paper II [37], for which one attempts to
approach the quasistatic limit. In the following we will as-
sess the influence of parameters u, k, I, and { on sample
states and properties.

III. LOW-PRESSURE ISOTROPIC STATES
OF FRICTIONLESS PACKINGS

A. Motivations

Numerical samples are most often produced by compres-
sion of an initially loose configuration (a granular gas) in
which the grains do not touch. If the friction coefficient is set
to zero at this stage, one obtains dense samples, which de-
pend very little on chosen mechanical parameters. These
frictionless configurations are in a particular reference state
which was recently investigated by several groups [31,52].
We shall dwell on such an academic model as assemblies of
rigid or slightly deformable frictionless spheres in mechani-
cal equilibrium for several reasons. First, we have to intro-
duce various characterizations of the microstructure of
sphere packings that will be useful in the presence of friction
too. Then, such systems possess rather specific properties,
which are worth recalling in order to assess whether some of
them could be of relevance in the general case. Frictionless
packings also represent, as we shall explain, an interesting
limit case. Finally, one of our objectives is to establish the
basic uniqueness, in the statistical sense, of the internal state
of such packings under isotropic, uniform pressures, pro-
vided crystallization is thwarted by a fast enough dissipation
of kinetic energy.

B. Assembling procedures
1. Previous results

Since we wish to discuss a uniqueness property, we shall
compare our results to published ones whenever they are
available. Specifically, we shall repeatedly refer to the works
of O’Hern, Silbert, Liu, and Nagel [31], and of Doneyv,
Torquato, and Stillinger [52], hereafter, respectively, abbre-
viated as OSLN and DTS. Both are numerical studies of
frictionless sphere packings under isotropic pressures.

OSLN use elastic spheres, with either Hertzian or linear
contact elasticity. They control the solid fraction ®, and
record the pressure at equilibrium. Their samples (from a few
tens to about 1000 spheres) are requested to minimize elastic
energy at constant density. For each one, pressure and elastic
energy vanish below a certain threshold packing fraction ®,
which is identified to the classical random close packing den-
sity. Above @, pressure and elastic constants are growing
functions of density. OSLN report several power-law depen-
dences of geometric and mechanical properties on ®—®,
which we shall partly review.

DTS differ in their approach, as unlike OSLN (and unlike
us) they use strictly rigid spherical balls, and approach the
density of equilibrated rigid, frictionless sphere packing
from below. They use a variant of the classical (event-
driven) hard-sphere molecular dynamics method [44,62], in
which sphere diameters are continuously growing, the
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Lubachevsky-Stillinger (LS) algorithm [63,64], to compress
the samples. DTS’s approximation of the strictly rigid sphere
packing as the limit of a hard sphere glass with very narrow
interstices (gaps) between colliding neighbors (contact forces
in the static packing are then replaced by transfers of mo-
mentum between neighbors), and their resorting to linear op-
timization methods [32,65], enable them to obtain very ac-
curate results in samples of 1000 and 10 000 beads.

DTS expressed doubts as to whether numerical “soft”
(elastic) sphere systems could approach the ideal rigid pack-
ing properties, and both groups differ in their actual defini-
tion of jamming and on the relevance and definition of the
random close packing concept. Relying on our own simula-
tion results, we shall briefly discuss those issues in the fol-
lowing.

2. Frictionless samples obtained by MD

Our numerical results on packings assembled without
friction are based on five different configurations of n
=4000 beads prepared by compression of a granular gas
without friction. First, spheres are placed on the sites of an
fec lattice at packing fraction ®=0.45 (below the freezing
density ®=0.49 [66]). Then they are set in motion with
random velocities, and left to interact in collisions that pre-
serve kinetic energy, just like the molecules of the hard-
sphere model fluid studied in liquid state theory [44,66]. We
use the traditional event-driven method [62], in a cubic cell
of fixed size, until the initial crystalline arrangement has
melted. Then, velocities are set to zero, and the molecular
dynamics method of Sec. II is implemented with an external
pressure equal to 10 kPa for glass beads (x=39 000). En-
ergy is dissipated thanks to viscous forces in contacts, and
the packing approaches an equilibrium state. Calculations are
stopped when the net elastic force on each particle is below
1074a?P, the elastic contributions to the stress components
equal the prescribed value P with relative error smaller than
10~ and the kinetic energy per particle is below 1078 Pa3.
On setting all velocities to zero, it is observed that the
sample does not regain kinetic energy beyond that value,
while the unbalanced force level does not increase. We have
thus a stable equilibrium state. This is further confirmed by
the absence of mechanism in the force-carrying contact net-
work, apart from the trivial free translational motion of the
whole set of grains as one rigid body. From Eq. (18), mecha-
nisms coincide with “floppy modes” of the constitutive stiff-
ness matrix g(l) (i.e., the elements of its kernel). The geo-
metric stiffness Iz((z), as checked in Appendix B, is a very
small correction (compared to those of 5(1) the elements of
matrix K@ are of order x7!).

In the following, such configurations assembled without
friction will be referred to as A states. In order to check for a
possible influence of the assembling procedure on the final
configurations, we simulated another, similar sample series,
denoted as A’, for which the LS algorithm was used to bring
the solid fraction from 0.45 to 0.61, before equilibrating at
the desired pressure with Hertzian sphere molecular dynam-
ics.

Observed geometric and mechanical characteristics of A
and A’ states are reported below and compared to other pub-
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lished results, in particular, those of OSLN and DTS. We
also state specific properties of rigid frictionless sphere pack-
ings, to which A configurations at high « are close. Unlike
OSLN, we use pressure or stiffness level « as the control
parameter. The state OSLN refer to as “point J,” which ap-
pears as a rigidity threshold ®=®, if solid fraction ® is used
as the control parameter, is approached here as x— .

3. Compression rates and duration of agitation stage

Molecular dynamics is not the fastest conceivable route to
minimize the sum of elastic and potential energies, and the
MBD approach does not necessarily find the nearest minimum
in configuration space. For that purpose, the direct conjugate
gradient minimization approach, as used by OSLN, which
involves no inertia and follows a path of strictly decreasing
energy in configuration space is the best candidate.

However, the time scales involved in the MD simulations
can be compared to experimental ones. In simulations, A
configurations approach their final density within a few tens
of time 7=\/m/(aP), and come to their final equilibrium with
a few hundreds of 7. Comparable laboratory experiments in
which dense samples are assembled are sample preparations
with the pluviation or rain deposition technique, in which
grains are deposited at constant flow rate under gravity, with
a constant height of free fall [33,34,67,68]. Such an assem-
bling technique produces homogeneous samples. Grains are
first agitated near the free surface, and then subjected to a
quasistatic pressure increase as pouring proceeds. The rel-
evant pressure scale corresponds therefore to the weight of
the agitated superficial layer of the sample being assembled
[67], typically of the order of 10 diameters, hence P
~10 mg/a* and 7~ a/(10g), about 3X107s for a
=1 mm. Approximating the compaction time by the time
needed to renew entirely the agitated superficial layer, we
obtain a few times 1072 s if this time is to be of order 107, as
in our simulations. This corresponds to a fraction of a second
to fill up a 10-cm-high container, a value within the experi-
mental range. The main conclusion from this crude analysis
is that laboratory assembling processes are rather fast, with
typical compaction times similar to those of our simulated
isotropic compression procedure.

On the other hand, the LS procedure followed by DTS,
which we used to produce our A’ samples, unavoidably in-
volves many collisions and a considerable level of agitation
while particle diameters grow at a prescribed rate. In prac-
tice, kinetic energy actually increases on implementing the
LS algorithm: receding velocities after a collision have to be
artificially increased in order to make sure particles that are
continuously growing in diameter actually move apart after
colliding [63,64]. Velocities have to be scaled down now and
then for computational convenience, a feature the actual
compacting process, depending on the ratio of growing rate
to quadratic velocity average, is sensitive to. In our imple-
mentation there were typically 110 collisions per sphere in
the range 0.49=®=0.58 (the most dangerous interval for
crystal nucleation [66,69]), and 90 collisions for 0.58<=®
=0.61. DTS report using expansion rates of 107, while ours
started as 1072, in units of the quadratic mean velocity.
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Consequently, the order of simulation results, from the
fastest, least agitated case to the slowest one is as follows:
first the OSLN results, then our A, followed by our A’ series,
and finally the simulations by DTS (who used a slower
implementation of the LS method than our A’ one).

C. Energy minimization and density
1. What is ‘jamming”?

In spite of a long tradition of studies on the geometry of
sphere assemblies, the connection between mechanical equi-
librium and density maximization has seldom been stressed.
This property was presented, in slightly different forms, in
the mathematics [70] and physics [32,52] literature. It is
worth recalling it here, as the purpose of this work is to
discuss both geometric and mechanical properties of such
particle packings. This connection is simply expressed on
noting that configurations of rigid, frictionless, nonadhesive
spherical particles in stable equilibrium under an isotropic
confining pressure are those that realize a local minimum of
volume in configuration space, under the constraint of mu-
tual impenetrability. It is no wonder then that the isotropic
compaction of frictionless balls is often used as a route to
obtain dense samples [27,30]. In DTS [52] and in other
works by the same group [65,71], the authors use a definition
of strictly jammed configurations of hard particles as those
for which particles cannot move without interpenetrating or
increasing the volume of the whole system. Their definition
is therefore exactly equivalent to that of a stable equilibrium
state with rigid, frictionless grains under an isotropic confin-
ing pressure.

If we now turn to elastic, rather than rigid, spherical par-
ticles, with Hertzian contacts as defined in Sec. II, then stable
equilibrium states under given pressure P are local minima
of the potential energy defined as (H denotes the Heaviside
step function)

2EVa
W=PQ + E I_\a/’l?j/zH(hij) . (24)

I=i<j=n 5

As stiffness parameter « increases, the second term of Eq.
(24) imparts an increasing energetic cost to elastic deflec-
tions h;;, and the solution becomes an approximation to a
minimum of the first term, with impenetrability constraints,
i.e., a stable equilibrium state of rigid, frictionless balls. The
value of « is an indicator of the distance to the ideal, rigid
particle configuration, and it is arguably more convenient to
use than the density, used by OSLN, because it does not vary
between different samples. OSLN had to adjust the density
separately for each sample in order to approach the limit of
rigid grains, so that the pressure approached zero, corre-
sponding to a rigidity threshold. Their definition of jamming
is based on a local minimum of elastic energy, and therefore
also coincides with ours: a jammed state is a stable equilib-
rium state.

2. Solid fractions

Our A configurations have a solid fraction @
=0.6370+0.0015 (indicated error bars correspond through-
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FIG. 1. (Color online) Solid fraction ® versus n~"/2. Blue dotted
line: average value, with standard deviation indicated as error bars,
according to OSLN’s results, extrapolated to n— . Black round
dots with error bars: our A samples for n=4000 and other, very
similar results for n=1372. Square dot: A" samples with n=4000
(this point has a smaller error bar).

out the paper to one sample-to-sample standard deviation).
We shall check below that the small density difference be-
tween k=39 000 and k— o is much smaller than the statis-
tical uncertainty on ®. OSLN performed a careful statistical
analysis of finite size effects and uncertainty on @, leading to
estimates shown on Fig. 1. Figure 1 also shows another MD
data point we obtained for n=1372. Our ® values coincide
with OSLN’s estimation of size-dependent averages and
fluctuations, once it is extrapolated to larger sample sizes (or,
possibly, our configurations are very slightly denser). Our A’
samples exhibit higher densities than A ones, @
=0.6422+0.0002—a fairly small difference, but clearly
larger than error bars.

DTS do not report @ values very precisely, but mention
solid fractions in the range 0.625-0.63 [[52], p. 7], on ex-
cluding the volume of rattlers, particles that transmit no
force. This entails 0.639=®=0.644 once those inactive
grains, which represent about 2.2% of the total number, are
taken into account. LS-made samples were shown in [10] to
jam, depending on the compression rate, over the whole solid
fraction range between 0.64 and the maximum value
m/(3\2) corresponding to the perfect fcc crystal. The final
values of the solid fraction therefore correlate with the dura-
tion of the agitation stage in the assembling procedure. The
RCP density is traditionally associated with a minimization
of crystalline order. In the next section we check for indica-
tions of incipient crystalline order in A and A’ samples.

D. Traces of crystalline order

The possible presence of crystal nuclei, the fcc and hcp
lattices (the former the more stable thermodynamically), and
hybrids thereof being the densest possible arrangements, is a
recurring issue in sphere packing studies. A recent numerical
study of crystallization dynamics in the hard sphere fluid is
that of Volkov et al. [66], in which the authors used several
indicators and measures of incipient crystalline order that we
apply here to A and A’ states. First, bonds are defined as
(fictitious) junctions between the centers of neighboring
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TABLE 1. Indicators of possible incipient crystalline order in states A and A’ at k=39 000. Z is the
coordination number of first neighbors, Z. the “crystalline bond” coordination number, Q4 and Q16OC the
global and (average) local order parameters, Q16°chr its average value within crystalline regions, x. the
fraction of “crystalline” particles, and (n.) the mass average of the number of particles in a “crystalline
cluster.” First neighbors are defined here as those closer than distance d.=1.35a or d.=1.40a, near the first

minimum in g(r).

State d,/a z Ze, Q6 e g Xer (ner)

A 1.35 12.36+0.03 2.91+0.06 (1.7+0.3)X 1072 0.392+0.001 0.417+0.003 0.080+0.005 19.8
A’ 1.35 12.50£0.02 3.13+0.11 (1.9£0.5)X 1072 0.398+0.0005 0.420+0.002 0.104+0.006 54.8
A 1.40 13.11x£0.02 2.94+0.06 (1.6£0.3)X 1072 0.370+0.001 0.394+0.002 0.083+0.006 22.8
A’ 1.40 13.20£0.02 3.16+0.11 (1.8+0.3)X 1072 0.377+0.0006 0.397+0.003 0.103+0.006 64.5

spheres if their distance is smaller than some threshold, often
chosen as corresponding to the first minimum in pair corre-
lation function g(r) [about 1.4a in our case (see Sec.
IIT F 1)]. Then, a local order parameter is associated to each
grain i, as

4m " 12
loc - ™ A "\ |2
=| — , 25
0= 777 Z It (25)
in which §;,,(i) is an average over all neighbors j of i num-
bered from 1 to N,(i), the number of bonds of i,

Ny (i)

0 El Y (), (26)

n;; denoting as usual the unit vector pointing from the center
of i to the center of j.

Q4 and Qg, in particular, have been used to distinguish
different local orders [7,66,69]. In the sequel we use the
average QF° of Eq. (26) over all grains, as well as a global
parameter Qg, defined on taking the average over all bonds
within the sample, instead of those of a particular grain i in
Eq. (25). The values of those parameters are given in Table 1.
Global Qg4 values are small in large samples, because they
tend to average to zero in the presence of randomly oriented
polycrystalline textures. They can be used nevertheless to
observe crystallization in samples of ~10 000 beads, as they
finally reach values comparable to the perfect crystal one
[69].

Next, following [66], we normalize the set (G;,,(1))_j=m=
on multiplying, for any given / and i, each of its 2/+1 com-
ponents by an appropriate common factor thus obtaining
(71m(0))_1=m=s> such that

élm(i) =

m=[

> gm@)?=1. (27)

m=—1

If the values g, (i) are viewed as the components of a 2/
+ I-dimensional local order parameter, then g;,,(i) might be
viewed as its “phase” or “angular” part, characteristic of the
choice of a direction, rather than of the intensity or extent
with which the system is locally ordered. Then a bond is
termed crystalline if it joins two particles for which those
“phases™ are sufficiently correlated (the star indicates com-
plex conjugation).

m=l

> GnD3()| = 0.5. (28)
=1

A particle is said to be in a crystalline configuration if at
least seven of its bonds [out of 12.5-13 (see Table 1)] is
“crystalline,” according to definition (28) with /=6. One may
check how numerous those particles are and whether they
tend to cluster in crystalline regions. Table I contains those
various indicators, as observed in samples of type A and A’
at the largest studied stiffness level. Order parameters have a
very small value, indicating as expected a large distance to
crystal order. Only a small fraction of bonds and grains are
declared “crystalline” according to the above definitions.
However, it does transpire from the data of Table I that A’
states are consistently more “ordered” than A ones, with a
small, but systematic difference for all listed indicators (see
also Appendix D).

Most notable is the increase of the size of “crystalline”
regions. A direct visualization of those domains, as we
checked, shows that they are quite far from perfectly or-
dered, but reveals some local tendency to organization in
parallel stacked layers, and to the formation of two-
dimensional (2D) triangular lattice patterns within the layers.
Luchnikov et al. [69] report simulation of 16 000 particle
samples of the hard sphere fluid evolving towards crystalli-
zation at constant density (between ®=0.55 and ®=0.6), as
monitored by the global Q4 parameter and the distribution of
local Q¢ values. They observed, like Volkov et al. [66], that
several thousands of collisions per particle were necessary
for a significant evolution to take place, which is compatible
with our observation of a detectable, but very small tendency
with about 100 collisions per particle with our A’ samples.

ng’c and Ql{’c, as defined in Eq. (25), were also used by
Aste et al. [7] to characterize local arrangements, in an ex-
perimental study of sphere packing geometry by x-ray to-
mography. These results rely on observations of large
samples of tens to hundreds of thousands of beads, although
not isotropic. Particles are classified according to the pair of
values Q16°°(i), QL"C(i). We compared the geometry of our
numerical samples of similar density to those experimental
data, with the result that although the most frequently ob-
served values of Q16°°(i) and QLOC(i) were quite close to ex-
perimental ones in dense samples, and the proportion of hcp-
like particles were similar, fcc-like local environments were
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TABLE II. Percentages x; of grains having i contacts in A and A’ configurations, on ignoring the rare contacts with or between rattlers

(I), or on fixing the rattlers onto the backbone with small (randomly oriented) forces (II).

PHYSICAL REVIEW E 76, 061302 (2007)

State X0 X1 X2 X3 Xyq X5 X6 X7 Xg X9 X10 X11
A (D) 1.3 0 0 0 11.1 23.2 28.4 22.6 10.3 2.8 0.3 0.02
A () 1.8 0 0 0 11.6 22.5 28.2 22.3 10.6 2.8 0.3 0.01
A (D) 0 0 0 1.1 10.7 22.7 28.2 229 10.9 3.1 0.3 0.02
A'(IT) 0 0 0 1.7 10.9 21.9 28.2 22.5 11.4 3.1 0.3 0.01

exceptional in simulations, whereas a few percent of the
spheres were classified in that category in the experimental
results. Quantitative results are given in Appendix D. Nucle-
ation of crystalline order is strongly sensitive to sample his-
tory and boundary conditions [66].

E. Properties of force networks
1. Identification and treatment of rattlers

The rattlers are defined as the grains that do not partici-
pate in carrying forces and remain, therefore, free to “rattle”
within the cage formed by their force-carrying, rigidly fixed
neighbors. We refer to the network of contacting grains that
carry forces as the backbone. The backbone is the structure
formed by nonrattler grains. The fraction x, of rattlers at «
=39000 is x,=0.013+0.002 in A samples, and it is slightly
higher, x,=0.018+0.002 in A" ones. DTS report x,=0.022,
and hence once again our A’ results are closer to theirs. The
proportion of rattlers increases slightly for stiffer contacts
(higher « values).

Distinguishing between the backbone and the rattlers re-
quires some care, as very small forces on the backbone might
be confused with forces below tolerance between rattler and
backbone grains, or between two rattlers. We apply the fol-
lowing simple procedure. First, we regard as rattlers all
spheres having less than four contacts: less than three con-
tacts implies a mechanism, and only three is impossible if
forces are all strictly compressive. We also discard from the
backbone all spheres with only forces smaller than the toler-
ance. Then, all the contacts of eliminated spheres being also
removed, other spheres might (although this is an extremely
rare occurrence) have less than four contacts, so the proce-
dure is iterated (twice at most is enough in our samples,
although one such sweep is usually enough) until no more
rattler is detected. We found this method to work correctly
for n=4000 and =39 000. If one eliminates too many par-
ticles, the identified backbone might become floppy (hypo-
static). We check, however, that its constitutive stiffness ma-
trix remains positive definite, thereby avoiding such a pitfall.
The proportion of rattlers is likely to increase for stiffer con-
tacts (higher k).

The presence of rattlers complicates the analysis of geo-
metric properties of static packings, because their positions
are not determined by the equilibrium requirement. The rat-
tlers are free to move within a “cage” formed by their back-
bone neighbors, and there is no obvious way in principle to
prefer one or another of their infinitely many possible posi-
tions. This renders the evaluation of geometric data such as

pair correlations somewhat ambiguous. Moreover, rattlers,
although scarce in frictionless packings, can be considerably
more numerous in frictional ones (see Sec. IV). We therefore
specify whether the results correspond to direct measure-
ments on the configurations resulting from the simulations,
with rattlers floating in some positions resulting from com-
paction dynamics, or whether rattlers have been fixed, each
one having three contacts with the backbone (or some previ-
ously fixed other rattler). To compute such fixed rattler posi-
tions with MD, we regard each backbone grain as a fixed
object, exert small isotropically distributed random forces on
all rattlers, and let them move to a final equilibrium position
(assuming frictionless contacts). A third possibility is to
eliminate rattlers altogether before recording geometric data.
These are three choices referred to as I, II, and III in the
sequel, and we denote observed quantities with superscripts
I, II, or IIT accordingly.

Packings under gravity, if locally in an isotropic state of
stress, are expected to be in the same internal state and to
exhibit the same properties as the ones that are simulated
here. In such a situation, individual grain weights are locally,
within an approximately homogeneous subsystem, domi-
nated by the externally imposed isotropic pressure. There is
no rattler under gravity, but some grains are simply feeling
their own weight, or perhaps that of one or a few other grains
relying on them. Such grains are those that would be rattlers
in the absence of gravity. Instead of freely floating within the
cage of their backbone neighbors, they are supported by the
cage floor. The situation should therefore be similar to that of
our samples after all rattlers have been put in contact with
the force-carrying structure (treatment II), except that the
small external forces applied to them are all directed down-
wards.

2. Coordination numbers

Table II gives the distribution of local coordination num-
ber values among the spheres for A and A’ states at
=39000. In this table, x; is the proportion of grains with i
contacts.

If rattlers are stuck to the backbone (method II), one
records slightly changed proportions of spheres with n=3
contacts, to which values observed within samples under
gravity should be compared. Distributions of local coordina-
tion numbers observed by DTS coincide to the data of Table
IT within 1%. We attribute this small difference to the influ-
ence of contact deflections of order x'a in the MD results,
while the DTS results are closer to ideally rigid packings
(approached as open gaps tend to zero).
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3. Isostaticity

We now discuss how the isostaticity property [32,72-78]
of equilibrium states of rigid, frictionless spheres, influences
high « configurations of type A.

Isostaticity is a property of the backbone, i.e., the force-
carrying contact network, in equilibrium packings of rigid,
frictionless spheres. It means that such networks are both
devoid of hyperstaticity (force indeterminacy) and of hypo-
staticity (displacement indeterminacy), apart from possible
trivial motions in which all force-carrying grains move as
one rigid body. These two properties have different origins
[32], and are not valid under the same assumptions. The
absence of hyperstaticity (#=0 with the notations of Sec.
II C) results from the generic disorder of the packing geom-
etry. It would hold true for arbitrarily shaped rigid particles
interacting by purely normal contact forces whatever the sign
of those forces, and it applies to the whole packing, whatever
the contacts the rattlers might accidentally have with the
backbone. The absence of hypostaticity property (except for
trivial mechanisms, k=k;), on the other hand, is only guar-
anteed for spherical particles with compressive forces in the
contacts, and it applies to the sole backbone.

Due to the isostaticity property, the coordination number
should be equal to 6 in the rigid limit on the backbone. If N,
is the number of force-carrying contacts, then the global
(mechanical) coordination number is z=2N,/n (possible con-
tacts of the rattlers are discarded), and the backbone coordi-
nation number is defined as z*z[ZNC/n(l =x0)]=2/(1=xy).
Z*, rather than z, has the limit 6 as k— +%. In A samples
(k=39 000) one has 7' =6.074+0.002 (and hence z=5.995),
the excess over the limit z =6 resulting from contacts that
should open on further decreasing the pressure.

The isostaticity property can be used to evaluate the den-
sity increase due to finite particle stiffness. To first order in
the small displacements between P=0 (or k=+% ) and the
current finite pressure state A, one might use the theorem of
virtual work [32], with the displacements that bring all over-
laps h;; to zero, and the current contact forces. Such motions
leading to a simultaneous opening (/;=0) of all contacts are
only possible on networks with no hyperstaticity, because
there is no compatibility condition on relative normal dis-
placements [32]. This yields an estimate of the increase of
the solid fraction A® over its value @ in the rigid limit, as

1 AD
Q 7 ] b

This equality can be rearranged using the Hertz contact law
(1) to relate N;; to h;;, and relation (22). We denote as Z(a)
the moment of order « of the distribution of normal forces
N;;, normalized by the average over all contacts,

ij
(N

Z(a) = e

(30)

Equation (29) can be rewritten as
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FIG. 2. (Color online) Probability distribution function P(f) of
normalized contact forces f=N/(N) in A and A’ configurations at
high «. The dashed line is the fit proposed by DTS: P(f)=[3.43f>
+1.45-1.18/(1+4.71)Jexp(=2.25f).
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In the isostatic limit, which is approached at large «, the
force distribution and its moments are determined by the
network geometry, and we observed Z(5/3)=1.284. Taking
for z and ® the values at the highest studied stiffness level «
(k=39 000), this enables us to evaluate the density change
between those configurations and the rigid limit as Ad
=1.15X107*. As announced before this is smaller than the
statistical uncertainty on ®, and hence this does not improve
our estimation of the solid fraction ®, of the packing of rigid
particles (k=+ ). Recalling k'=(P/E)?3, Eq. (31) means
that the macroscopic relation between pressure and density
has the same power-law form [Po(Ad)¥?] as the contact
law (N« h??). This was observed by OSLN. It would hold,
because of the isostaticity property in the rigid limit, for
whatever exponent m in the contact law, the prefactor of the
macroscopic relation P o (AD)™ involving Z(1+1/m), a mo-
ment of the geometrically determined force distribution.

As a consequence of Eq. (31), one can simply relate the
bulk modulus of frictionless packings to the pressure, as ob-
served by OSLN too, a property which will be used and
discussed in paper III [38], which deals with elasticity of
packings.

4. Force distribution

The force distribution we observe in A samples at high «
values approaches the one of a rigid packing, which due to
isostaticity is a purely geometric property. It is represented in
Fig. 2.

The data presented here are averaged over five samples.
Because of relation (22), all samples prepared at the same
pressure have the same average force, and this restores the
“self-averaging” property, which OSLN observed to be lack-
ing on using solid fraction instead of pressure as the control
parameter. The choice of ® as a state variable, because of the
finite size of the sample causing fluctuations of the threshold
@, where P vanishes, is less convenient in that respect.
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FIG. 3. Pair correlation functions g'(r) and g"(r) versus r/a in A
samples at «=39 000. Both definitions coincide on this scale (only
the peak for r—a™ is slightly different).

Figure 2 also shows that the form proposed by DTS to fit
their data is in very good agreement with our results, except
perhaps for large forces, for which it is a better fit for A’
data—thus providing additional evidence that A’ samples are
closer than A ones to the DTS results.

F. Geometric characterization
1. Pair correlation function

Pair correlations should preferably be measured either
with method I or method II, as there is no reason to eliminate
rattlers before studying geometric properties. Comparisons
between pair correlation functions g'(r) and g'(r) (Fig. 3)
show very little difference on the scale of one particle diam-
eter. Results of Fig. 3 are very similar to other published
ones (e.g., in DTS), with an apparent divergence as r— a and
a split second peak, with sharp maxima at r=a\3 and r
=2a.

The pair correlation function should contain a Dirac mass
at r=a in the limit of rigid grains, which broadens into a
sharp peak for finite contact stiffness. The weight of this
Dirac term or peak in the neighbor intercenter distance prob-
ability distribution function 477%r2g(r)=24(r2/ a®)dg(r) is
coordination number z, and the shape of the left shoulder of
the peak at finite « is directly related to the force distribution
P(N),

35,/ [ @2
ENad ENad
(for 6> 0)g(a-0) = Sl ( e )

48D (a - 8)° 3

This explains the observation by OSLN [31] of the width of
the g(r) peak decreasing approximatively as A®, while its
height increases as (A®)~!, as the threshold density @, is
approached from above. The form of the distribution of con-
tact forces, which is determined by the geometry of the iso-
static backbone, remains exactly the same for all small
enough values of A®, with a scale factor proportional to
AD3?, due to Eqgs. (22) and (31). _

The sharp drop of g(r) at r=a\3 and r=2a was found by
DTS to go to a discontinuity in the rigid particle limit. This
can be understood as follows. Each sphere has a number of
first contact neighbors (z on average) at distance r=a if the
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FIG. 4. (Color online) Coordination number of near neighbors
function of interstice 4. The power-law regime extends to smaller
and smaller / values as k increases.

grains are rigid, and a number of second contact neighbors
(i.e., particles not in contact with it, but having a contact with
at least one of its first contact neighbors). Such second con-
tact neighbors will make up for a significant fraction of par-
ticles with their centers at a distance r = 2a, but none of them
can be farther away. Furthermore, this leads to a systematic
depletion of the corona 2a<r<2a+48 (with 0<5<a) by
steric exclusion.

2. Near neighbor correlations

As r—a®, pair correlations are conveniently expressed
with the gap-dependent coordination number z(%). z(h) is the
average number of neighbors of one sphere separated by an
interstice narrower than 4. z(0) is the usual contact coordi-
nation number z. Function z(h) has three possible different
definitions z', z"", and z™™ according to the treatment of rat-
tlers. All three of them were observed to grow as z(0)
+Ch%® for h smaller than about 0.3a, constant C taking
slightly different values for z', z'', and "™ z'(h) is equal to
2 for h=0, and is very well fitted with the value C=11
found by DTS [[52], Fig. 8]. z(h) deviates from this power
law dependence corresponding to the rigid limit for small %,
of the order of the typical overlap 7!, as shown in Fig. 4.
This power law corresponds to g(r) diverging as (r—a)~%* as
r—at.

Silbert et al., in a recent numerical study of states with
high levels of rigidity [79] (x> 10%), report observing z/(h)
to grow with an exponent closer to 0.5, although somewhat
dependent on the choice of the 4 interval for the fit. How-
ever, this does not contradict our main conclusion that dif-
ferent numerical approaches track the same RCP state in the
rigid limit.

3. Other properties of contact networks

Ignoring rattlers (method III) one may record the density
of specific particle arrangements in the backbone. We thus
find the contact network (joining all centers of interacting
particles by an edge) to comprise a number of equilateral
triangles, such that on average each backbone grain belongs
to 2.04+0.04 triangles. In the rigid limit this gives a Dirac
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term for #=m/3 in the distribution of angles 6 between pairs
of contacts of the same grain. Tetrahedra are, however, very
scarce (as observed by DTS), involving about 2.5% of the
beads, and pairs of tetrahedra with a common triangle are
exceptional (five such pairs in five samples of 4000 beads).
Pairs of triangles sharing a common base are present with a
finite density, which explains the discontinuous drop at r
=a3 of g(r), this being the largest possible distance for such
a population of neighbor pairs.

G. Conclusions

We summarize here the essential results of Sec. III, about
frictionless packings.

1. Uniqueness of the RCP state

Our numerical evidence makes a strong case in favor of
the uniqueness of the simulated rigid packing state made
with frictionless spheres under isotropic pressure. Specifi-
cally, we observed quantitative agreements with other pub-
lished results [31,52] in the coordination numbers, the force
distributions, the pair correlations, and the frequency of oc-
currence of local contact patterns, even though different nu-
merical methods have been used. The small remaining dif-
ferences in solid fraction, proportion of rattlers, and
probability of large contact forces all correlate with the du-
ration of agitated assembling stage, which can be measured
in terms of numbers of collisions per grain at a given density.
This duration directly correlates to the packing fraction and
to the small amount of crystalline order in the samples. We
therefore checked in an accurate, quantitative way the tradi-
tional views about random close packing (RCP). The RCP
state can be defined in practice as the unique state in which
rigid frictionless spherical beads assemble in a static equilib-
rium state under isotropic pressure, in the limit of fast com-
pression, so that the slow evolution towards crystallization
has a negligible influence. The Lubachevsky-Stillinger algo-
rithm tends to produce packings with a small but notable
crystalline fraction.

2. Relevance of MD simulations, role
of micromechanical parameters

The uniqueness of the RCP implies that dynamical param-
eters { and I have no influence on the frictionless packing
structures, at least in the limit of fast compression rates.
Standard MD methods compare well with specifically de-
signed methods that deal with rigid particles, and prove able
to approach the rigid limit with satisfactory, if admittedly
smaller, accuracy. Recalling that k=39 000 corresponds to
glass beads under 10 kPa, it seems that laboratory samples
under usual conditions might in principle (if friction mobili-
zation can be suppressed) approach the ideal (rigid particle)
RCP state.

Moreover, the time scales to assemble samples in MD
simulations, if compared to estimated preparation times in
the laboratory with such techniques as controlled pluviation,
have the right order of magnitude. This means that the as-
sembling process is rather fast in experimental practice when
grains are deposited under gravity, which explains why den-
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sities above RCP are not directly obtained. Of course, in
practice, many procedures produce anisotropic states. Aniso-
tropic packings of rigid, frictionless balls, under other con-
fining stresses than a hydrostatic pressure, should differ from
the RCP state, and the numerical simulations of gravity de-
posited packings of frictionless beads of Refs. [24,25] could
be analyzed in this respect. We chose here to study ideal
preparation methods, and we only deal with isotropic sys-
tems.

3. Approach to isostaticity in the rigid limit

We checked that bead packings under typical laboratory
pressures such as 10 kPa might closely approach the isosta-
ticity property of rigid frictionless packings. We showed that
some observations made by O’Hern et al. [31] on pressure or
bulk modulus dependence on density, and on the shape of the
first peak of g(r) were direct consequences of this remark-
able property.

IV. LOW-PRESSURE STATES OF FRICTIONAL
PACKINGS OBTAINED BY DIFFERENT
PROCEDURES

A. Introduction

It is well known that the introduction of friction in granu-
lar packings tends, in general, to reduce density and coordi-
nation number, as observed in many recent numerical simu-
lations (see, e.g., [24-27]), and that frictional granular
assemblies, unlike frictionless ones, can be prepared in quite
a large variety of different states. In the field of soil mechan-
ics, sand samples are traditionally classified by their density
[11-13], which determines behaviors that have been ob-
served in simulations of model systems as well [21,27]. (In-
herent anisotropy of the fabric, i.e., the one due to the as-
sembling process, rather than induced by anisotropic
stresses, is a secondary, less influential state variable
[14,15].) Engineering studies on sands usually resort to a
conventional definition of minimum and maximum densities,
based on standardized procedures [80].

The motivation of the present study is to explore the range
of accessible packing states, as obtained by different numeri-
cal procedures that produce homogeneous and isotropic pe-
riodic samples. We therefore chose to bypass the painstaking
computations needed to mimic actual laboratory assembling
methods, but we argue that our procedures produce plausible
structures with similar properties. One key result is that den-
sity alone does not determine the internal state of an isotro-
pic packing, because the coordination number can vary inde-
pendently.

The A-type configurations obtained without friction in
Sec. IV B are local density maxima in configuration space
(see Sec. III C 1). Hence compaction methods can be re-
garded as strategies to circumvent the mobilization of inter-
granular friction forces. Two such procedures are studied
here, in a simplified, idealized form: lubrication and vibra-
tion. We also simulate, as a reference, a state which can be
regarded as a loose packing limit, at least with a definition
relative to one assembling method and friction coefficient
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TABLE III. Isotropic states of type D, from direct compression of the granular gas at the indicated pressure (rows marked “gas”), or from
gradual, quasistatic compression (rows marked “QS”) of solid samples made at the lowest pressure 1 kPa (or k=181 000). Tests of the
influence of viscous dissipation parameter { and maximum value /,,, of reduced strain rate in compression are also made for configurations

compressed from a granular gas to 10 kPa.

%

Origin P (kPa) 14 Inax () z xg (%) x, (%) Z(2) M, M,

Gas 1 0.98 1073 0.5930+0.0007 4.546+0.009 11.1£0.4 2.39 1.58 0.160 0.217
Gas 10 0.98 1073 0.5946+0.0006 4.59+0.02 10.2+0.2 2.07 1.59 0.159 0.213
Gas 10 0.098 1073 0.5938+0.0008 4.61+0.02 10.9+£0.2 1.79 1.57 0.150 0.194
Gas 10 0.98 107! 0.5931+0.0002 4.60+0.01 10.2+0.7 1.80 1.59 0.159 0.212
QS 10 0.98 1073 0.5931+0.0006 4.641£0.011 10.1+£0.4 2.33 1.46 0.146 0.188
Gas 100 0.98 1073 0.5975+0.001 4.69+0.02 8.9+0.5 1.66 1.61 0.153 0.197
QS 100 0.98 1073 0.5936+0.0006 4.79+0.02 8.6+0.4 2.05 1.40 0.138 0.178

n=0.3; and we prepare, as an interesting limit from a theo-
retical point of view, infinite friction samples.

Assembling procedures are described in Sec. IV B, geo-
metric aspects are studied in Sec. IV C, and contact network
properties in Sec. IV D. Section IV E summarizes the results.

B. Assembling processes for frictional grains

Just like in the frictionless case, for each one of the pack-
ing states, we prepare five samples of 4000 beads, over
which results are averaged, error bars corresponding to
sample-to-sample fluctuations. The equilibrium criteria are
those of Sec. III B 2, supplemented with a similar condition
on moments. To identify rattlers, we use the procedure de-
fined in Sec. IIT E 1, which is adapted to the case of frictional
grains: spheres with as few as two contacts may carry forces
(even large ones, as we shall see) and should not be regarded
as rattlers.

1. Looser packings compressed with final friction coefficient

We used the direct compression of a granular gas in the
presence of friction (w=0.3), another standard numerical
procedure [26-28], in which the obtained density and coor-
dination number are decreasing functions of u [24-27]. This
produces rather loose samples hereafter referred to as D (B
and C ones, to be defined further, denoting denser ones,
closer to A, but arguably more “realistic”). D samples were
made with exactly the same method as A ones (see Sec.
III B 2), except that the friction coefficient u=0.3 was used
instead of w=0. In principle, D configurations should depend
on initial compaction dynamics: increasing the rate of com-
pression could produce denser equilibrated packings, just
like a larger height of free fall, whence a larger initial kinetic
energy, increases the density of configurations obtained by
rain deposition under gravity [67]. We request the reduced
compression rate I, defined in Eq. (23), not to exceed a pre-
scribed maximum value I,,,,. The choice of I,,,=1073 and
£=0.98 yields solid fractions ®=0.5923+0.0006 and back-
bone coordination numbers z*=4.54610.009, with a rattler
fraction xo=(11.1%£0.4)%. These data correspond to P
=1 kPa (or k=181 000). Very similar results are obtained on
using a different, but low enough pressure, such as 10 or
even 100 kPa, as remarked in [41] (where 2D samples were

assembled by oedometric compression), and as indicated in
Table III. However, a quasistatic compression from P
=1 kPa to 10 or 100 kPa produces slightly different states at
the same pressure. The influence of ¢ should disappear in the
limit of slow compression, /— 0. A practical definition of a
(u-dependent) limit of loose packing obtained by direct com-
pression can therefore be proposed as the /— 0 limit of our
D states.

As reported in Table II1I, a value of the damping parameter
ten times as small as the standard one {=0.98 results in quite
similar configuration properties, on compressing a loose
granular gas under P=10 kPa, with I,,,,=107>. So did in fact
faster compressions, with I,,,,=107", keeping £=0.98. The
data of Table III thus suggest that we very nearly achieved
the independence on dynamical parameters that is expected
in the /— 0 limit with our choice of control parameters. We
note, however, that other possible definitions of a random
loose packing, such as the one by Onoda and Liniger [81]
result in different (smaller) solid fractions. Looser arrange-
ments of equal-sized spherical particles can also be stabilized
with adhesive contact forces, e.g., on introducing the capil-
lary attractions produced by the menisci formed by a wetting
fluid in the interstices between neighboring grains [82].

. In addition to packing fraction ®, coordination number
z , fraction of rattlers x,, Table III lists the reduced second
moment Z(2) of the normal force distribution, as defined in
Eq. (30), the proportion of two-coordinated beads (to be dis-
cussed in Sec. IV D), x,, and the average values of ratios
IT||/N (friction mobilization) among contacts carrying nor-
mal forces larger and smaller than the average, respectively
denoted as M; and M,. As a result of some amount of qua-
sistatic compression of the initial assembly, the width of the
force distribution decreases, as witnessed by smaller values
of Z(2) in Table III, and so does the mobilization of friction,
as measured by M, and M,. The effects of compression on
the structure and the forces are further studied in paper II
[37]. On comparing numerically simulated loose packings to
experiments, it should be recalled that samples are assembled
under low pressures in the laboratory: the hydrostatic pres-
sure under a l-cm-thick layer of glass beads is about
0.15 kPa. Numerical configurations under higher confining-
pressures corresponding to mechanical tests in the laboratory
(e.g., sound propagation) are more appropriate models if the
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testing pressure is significantly larger than the initial, assem-
bling pressure—as for the “QS” samples of Table III.

The effects of such proportions of rattlers in granular
packings as reported in Table III have to our knowledge
never been studied in detail. It should be emphasized that
this relatively large population of rattlers does not jeopardize
the global stability of equilibrium configurations, as the stiff-
ness matrix of the force-carrying network is found devoid of
floppy modes (apart from harmless, localized ones associated
with two-coordinated particles, to be discussed in Sec.
IV D).

Our D samples should be compared with the simulations
reported by Zhang and Makse [83], in which loose sphere
packings were also prepared by isotropic compression. Those
authors observed, in some cases, lower packing fractions
than D values, ®=0.57. Their assembling method is, how-
ever, different: they use a strain-controlled procedure, with a
constant compression rate, and then relax the final state at
constant volume. In this approach, the pressure reaches very
high levels, several orders of magnitude as large as the final
value, before samples finally stabilize [[83], Fig. 3]. Zhang
and Makse report some dependence of the final state on the
compressing rate. Once translated into the dimensionless pa-
rameter I we have been using here, strain rates used in [83],
defined with the typical pressure value P=100 kPa, range
between I/=0.1 and /=100. The slowest compression re-
ported in [83] is therefore 100 times as fast as the upper limit
for € we have been enforcing in this work. Viscous forces
also differ between the present simulations and those of Ref.
[83], in which “global damping” terms are used (i.e., forces
opposing the individual motion of particles, rather than rela-
tive motions).

2. Use of low friction coefficients: Imperfect lubrication

One way to limit the effects of friction consists in lubri-
cating the grains, as in the experimental study reported in
[84]. If all intergranular friction could be suppressed in the
assembling procedure, i.e., for perfect lubrication, then the
structure of isotropic packings would be the one denoted as
A, studied in Sec. III. The effect of a small friction coeffi-
cient in the contacts while the grain assembly is being com-
pressed can be regarded as a crude, simplified model for
imperfect lubrication. We made samples, denoted as B, by
compressing the granular gas, just like in the A and D cases,
with ©=0.02. In order to approach the limit of slow com-
pression rates better, we started from D configurations, de-
creased the friction coefficient to u=0.02, and then re-
quested that 7<10™ while the samples got further
compressed to equilibrium under 1 kPa (k=181 000). (In
view of the results in the D case of Sec. IV B 1, we do not
expect the final B state to be sensitive to damping parameter
{.) We observed that this small friction coefficient had a
notable effect on the final solid fraction, as the value ®
=0.6270£2.107* is significantly below the frictionless (A)
result, while the coordination number on the active structure
is slightly reduced, down to Z*=5.7518. 1073, and the frac-
tion of rattlers raised slightly, to x,=(1.95+0.02)%.

3. Dense, frictional packings obtained by shaking

Another practical strategy to obtain dense configurations
is to shake, vibrate, or apply repeated “taps” on granular
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samples [5,35,36]. Such procedures involve the introduction
of kinetic energy into already quite dense assemblies. In or-
der to investigate their possible effects at a limited computa-
tional cost, we avoid the direct simulation of repeated shakes
and adopted the following procedure. Starting from the dense
A configurations (made without friction and described in Sec.
I1I), we first apply a homogeneous expansion, multiplying all
coordinates by a common factor A slightly larger than 1.
With equilibrated A states under confinement level «
=39 000, the chosen value A=1.005 is more than enough to
separate all pairs in contact. Then, in order to mimic, in an
idealized way, the motion set up by a shaking excitation, the
beads are given random velocities (chosen according to a
Maxwell distribution), and interact in collisions which pre-
serve kinetic energy, while the volume of the cell is kept
constant. This “mixing” stage is simulated with the ‘“hard
sphere molecular dynamics” (event-driven) scheme (just like
our initial granular fluids are prepared at ®=0.45, as de-
scribed in Sec. III B 2). It is pursued until each particle has
had n.,;=50 collisions on average. The final preparation
stage is a fast compression: velocities are set to zero, par-
ticles regain their elastic and dissipative properties (as de-
fined in Sec. Il A, with friction coefficient ©=0.3, and vis-
cous dissipation {=0.98), the external pressure P=10 kPa is
applied via the deformable periodic cell, until a final equilib-
rium is reached.

The final state is hereafter referred to as C. Quite unsur-
prisingly, its solid fraction, ®=0.635+0.002, stays very
close to the RCP value obtained in the A state. However, the
coordination number is considerably lower, z*:4.5610.03,
which is as small as the value obtained in the loose (P
=(0.593) D state, while the proportion of rattlers raises to
x0=(13.3%£0.5)%. Remarkably, on comparing states B and C,
the latter has a higher density, but a much lower coordination
number, and a much higher fraction of rattlers.

We did not thoroughly investigate the influence of param-
eters N and n;, introduced in the preparation procedure, on
the resulting C states. In the following we focus on configu-
rations obtained with the values A=1.005 and n.,;=50. Yet,
we noted that an increase of A to 1.01 entailed only very
slight changes of ® and 2" (which, respectively, decreased to
0.633 and 4.54), and that the suppression of the “mixing”
stage (i.e., setting n.y; to zero) resulted in much higher z*
values (around 5.5). Likewise, we did not check for a pos-
sible effect of { on the final state. Smaller values than the
large one {=0.98 used in our simulations of the final com-
pression stage of C sample preparation are likely to have
analogous effects to an increase of the duration of the agi-
tated mixing stage, and should not increase the final coordi-
nation number.

4. Global state variables: Summary and discussion

Table IV gathers some of the parameters characterizing
the four different packing states studied in the present paper.
(M, and M, were defined in connection with Table III.) From
Table IV, configurations with low coordination numbers (C
and D) appear to exhibit a somewhat wider normal force
distribution [as measured by Z(2)], and a significant mobili-
zation of friction, with typical values of ||T||/N around
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TABLE IV. Isotropic states (k=39 000 for A and C, k=181 000 for B and D) for different assembling procedures.

*

Procedure ) z xg (%) x5 (%) 7(2) M, M,
A 0.6370+£0.0002 6.074+0.0015 1.3£0.2 0 1.53 0 0

B (u1p=0.02) 0.6271+0.0002 5.80+0.007 1.95+0.02 ~107* 1.52 0.016 0.018
C (\=1.005) 0.635+0.002 4.56+0.03 13.3+£0.5 2.64 1.65 0.135 0.181
D 0.5923+0.0006 4.546+0.009 11.1£0.4 2.39 1.58 0.160 0.217

wm/2=0.15 for larger than average normal force components
N (M,), and significantly above w/2 for smaller N values
(M»).

The existence of C states shows that there is no systematic
relationship between density and coordination number, con-
trarily to some statements in the literature [7]. Of course, for
one particular assembling method both quantities will often
vary in the same direction as functions of some control pa-
rameter. For instance, on preparing samples by deposition
under gravity, both density and coordination number are in-
creasing functions of the height of free fall [67]. However,
our results show that different preparation methods might
lead to contrasting results.

Our results about density and coordination number can be
likened to observations made before in numerical models of
sphere packings obtained with geometric construction rules
[85]. The simplest versions of such algorithms [86,87],
which mimic deposition under gravity, add particles one by
one by dropping and rolling them in contact with one or two
previously deposited particles, until they are fixed when they
rely on three contacts. Those produce packings with z=6.
More refined versions thereof [85,88] also involve other,
more collective types of moves. The final configurations then
contain “bridges” or “arches” [89], defined as sets of par-
ticles the final stabilization of which is mutual and collective.
In such arches, each grain relies on three others, but some
pairs mutually rely, in part, on each other. Those “bridged
structures” have much lower coordination numbers, down to
about 4.5.

It is not clear, though, to what extent our configurations,
which were obtained within a full mechanical model, com-
pare to those that result from such approaches. As shown,
e.g., in [90], deposition algorithms based on geometrical
rules are supposed to ensure local stability properties, but the
resulting granular pilings might turn out to be globally un-
stable. Moreover, a description of our packings as a sequence
of arches placed one after another, assuming it is conceiv-
able, would seem to contradict their homogeneity and isot-
ropy: it is rather arbitrary, in isotropic packings, to regard
some particles as “relying” on some others. Such a descrip-
tion was therefore not attempted.

C. Geometric characterization

1. Pair correlation functions

As observed in previous experimental [7] and numerical
[24] results, pair correlation functions present the same fea-
tures at lower densities as at the largest one ®=0.64, in a
weakened form, as shown in Fig. 5.

On comparing those functions for states A-D, we ob-
served what follows.

(I) C samples, obtained from A ones after small rear-
rangements, exhibit pair correlations that only differ in the
detailed shape of the peaks (e.g., below 1.05a), and are in-
distinguishable elsewhere.

(2) In spite of the large number of rattlers in samples C
and D, g'(r) and g"'(r) (as defined in Sec. IIl E) cannot be
distinguished on the scale of Fig. 5.

(3) The depth of the trough between r/a=1.1 and r/a
=1.5 increases with density.

(4) The integral below the peaks correlates with density,
but the height and sharpness of the drop at r/a=+\3 and
r/a=2 correlate with coordination number (which is larger
for B than for C), in agreement with the interpretation of
such features suggested in Sec. III F.

2. Near neighbor coordination numbers

The gap-dependent coordination number z'(/) is shown
in Fig. 6 for samples A-D.

Figure 6 shows that, as might have been intuitively ex-
pected, z(h) correlates with a coordination number for small
h and with density for larger distances, 7 =0.04a. We pref-
erably use definition z!!, which is obtained on bringing the
rattlers in contact with the backbone with small, random

1 12 14 16 1.8 2 2.2

g(r)

o

oL
12 14 16 138 2 2.2

r/a

—_

FIG. 5. Pair correlation functions g(r) [definitions g'(r) and
g"(r) coincide on this scale] for configurations B, C, D.
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FIG. 6. (Color online) Coordination number for neighbors at
distance =<h, z''(h), for configurations A (red, upper dashed line), B
(blue, middle dashed line), C (black, solid line), and D (green,
bottom dashed line).

forces, as explained in Sec. III E. z"(k) can be thought of as
more physically meaningful than z'(%), which directly results
from the simulation of the packing, and is somewhat am-
biguously defined because the positions of the rattlers are not
specified. Functions z''(k) corresponding to B and C states
cross each other for 7=0.02a.

Z'(h) and z"(h) might be fitted by power laws as follows:

Z'(h) =B"+ AjhP,

Z(h) = B+ AphPu. (32)

Figures 7-9 display z'(h)—B" and z"(h)—-B" as functions
of i on logarithmic plots for samples D, B, and C [due to the
influence, at short distance, of contact deflections on z(h)
data, fit parameters B' and B" are a little smaller than z and
Z(0)]. For & values smaller than 107, the lowest limit on the
axis in Figs. 7-9, the gap h is of the same order as elastic
deflections x~!, and we do not observe simple power laws (as
in Fig. 4).

0.1

0.0001
h/a

FIG. 7. (Color online) z'(h)—z (blue) and z"(h)-z"(0) (black)
versus i on a doubly logarithmic plot for D samples at lowest
pressure. The slopes of the corresponding dotted straight lines
(power law fits) are B;=0.51 and B;=0.35 [see Eq. (32)].
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FIG. 8. (Color online) Same as Fig. 7, for B samples. Dotted
lines have slopes B;;=0.56 and B;=0.45.

These figures (on which the corresponding values of z
=71(0) and z'(0) are also provided) show that z' and z" have
quite different 4 dependences. This should be accounted for
on studying the closing of contacts due to compression (see
paper II [37]). As a result of the computation leading to the
equilibrated state, many pairs of neighbors end up separated
by a very small interstice, so that z'—z already reaches values
larger than 0.3 for h=10"*a in samples C and D. 7' then
grows with 4 more slowly than z", with B;>pf;, and a
power-law fit of lesser quality. Exponent Sy, which should
be regarded as a more intrinsic quantity than [;, appears to
correlate with solid fraction. It has the same value 0.6 in
samples C and A (Figs. 9 and 4), decreases to 0.55 in the
intermediate density state B, and to 0.51 for the least dense
one, D. The power-law form of 7T extends to £=0.3 in con-
figuration A, to about 2#=0.2 in configuration B, and only to
0.04 and 0.05 for C and D. Such limited power-law ranges
preclude comparisons with the experimental data of [7].

One has z'(0)=z as a very good approximation, since
contacts carrying no force in the equilibrated state obtained
by MD are very scarce. z/(0), on the other hand, is the geo-
metric coordination number once all rattlers are pushed
against the backbone. It is larger than the mechanical coor-
dination number z. Specifically, because all rattlers, in treat-
ment II, are dealt with as frictionless, one has

10

z(h)—2(0)

0.1

Ll Ll
0.001 0.01 0.1
h/a

0.0001

FIG. 9. (Color online) Same as Fig. 7, for C samples. Slopes of
dotted straight lines: B;;=0.6 and (3;=0.37.
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TABLE V. Percentage x; of grains having i contacts in configurations B, C, and D, on ignoring contacts with or between rattlers (I), or

on fixing them onto the backbone with small, random forces (II).

State X0 X X7 X3 X4 X5 Xg X7 Xg Xg X10
B (1) 1.95 0 0.05 0.5 16.3 26.9 27.5 18.4 7.1 1.4 0.1
c 13.3 0 2.6 15.1 26.5 23.4 13.2 4.8 0.9 0.15 0
D (D) 11.1 0 2.4 13.8 29.1 25.6 13.3 4.0 0.7 0.03 0
B (I) 0 0 0 2.1 15.3 26.5 27.5 18.9 7.8 1.6 0.2
C (I1) 0 0 0 18.9 22.8 27.0 18.6 9.3 2.8 0.5 0.1
D (1) 0 0 0 17.2 25.4 29.0 18.5 7.7 1.9 0.3 0
- 2N,, would imply a mechanism and therefore an instability, and
7(0)=z+6xy- 0’ (33) three-coordinated ones, in the absence of external forces and

in which N,, is the final number of contacts between rattlers
once they are positioned against the backbone. The value of
Z"(0) can be read on Fig. 6. As pointed out in Sec. Il E 1,
they can be compared to coordination number values of
samples under gravity. The results of Silbert et al. [[24],
Figs. 2 and 3], with ©=0.3, correspond approximately with
our D samples: ®=0.59 and z"'(0)=5. The systems simu-
lated in [24] are, however, not isotropic. None of the samples
made under gravity in [24,25] appears to resemble our C
state.

3. Absence of crystalline order, local order parameters

All indicators of incipient crystalline order given in Table
I for frictionless A samples take lower values in states B and
D, while C configurations, due to their geometric proximity,
are close to A ones in this respect. Already scant in dense
configurations assembled without friction, traces of crystalli-
zation are thus negligible in looser ones obtained with fric-
tional beads. Like for A samples, numerical data on configu-
rations around one sphere i, as characterized by the pair

[Q4(i) , Qﬁ(i)], used by Aste et al. [7], are presented for states
B, C, and D and compared to their experimental results in
Appendix D. It is observed that local disordered environ-
ments around one grain are very similar in numerical and
experimental configurations of equal densities, while local
HCP-like arrangements occur with similar (low) frequencies,
and fcc-like ones are present in the laboratory, but not de-
tected in simulations.

D. Properties of force networks
1. Local contact coordination numbers

The distribution of local coordinations is given in Table
V, for both mechanical (I) and geometric (IT) definitions of
contacts, for states B—D. Compared to the A case (Table II),
the distribution is shifted to lower values, with 4 and 5 the
most frequent ones (rather than 6) in low coordinated pack-
ings C and D. Those samples also have quite a large popu-
lation of three-coordinated spheres, and a notable one of di-
valent (two-coordinated) particles. This contrasts with the
frictionless case for which x,=x3=0. Without friction, diva-
lent spheres, from Eq. (20), written with N,=2, N¢=3, h=0,

cohesion, cannot be equilibrated by nonvanishing normal
forces the net effect of which necessarily pushes them away
from the plane defined by the three centers of their touching
neighbors (the nongeneric case with the four sphere centers
within the same plane leading to an instability). Spheres with
three contacts therefore need some mobilization of friction to
transmit nonvanishing forces in an equilibrium configuration,
for tangential components are requested to cancel this net
repulsion. The Coulomb condition then restricts such pos-
sible configurations to flat enough tetrahedra for contact
forces to remain within the friction cone. This explains the
small value of x; in low friction (©=0.02) B samples.

2. Special case of divalent grains

With friction, the small structure formed by one sphere
having two contacts with fixed objects (Fig. 10), due to Eq.
(19), in which the number of degrees of freedom (6) is equal
to the number of contact force coordinates, has a degree of
force indeterminacy equal to its number of independent
mechanisms: H=k. In fact, both numbers are equal to 1. Self-
balanced contact forces (see the first part of Fig. 10) are
oriented along the line joining the two contacts, just like in

FIG. 10. Equilibrium and free motion (mechanism) of one
sphere (marked 1) with two contacts (with particles marked 2 and
3). (a) In the plane of the three centers, normal and tangential com-
ponents of the two contact forces balance along the line joining the
contact points (dotted line). (b) Seen from above, along the direc-
tion of the line of the centers of spheres 2 and 3, sphere 1 can move
and occupy the different positions depicted with dashed lines, its
center describing the dotted circle around the 2-3 axis.
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the corresponding 2D case dealt with in [47], and their am-
plitude is a free parameter (the degree of “wedging” of the
grain in the corner formed by its two neighbors [47]). Such a
possibility requires in practice that the angle, which we de-
note as « (Fig. 10), between the line joining the centers of 1
and 2 and the one joining the contact points be smaller than
the angle of friction, for the total contact force to stay within
the Coulomb cone. In C and D samples, we observed tan «
to be distributed rather evenly between 0 and u, while the
intensity of forces transmitted by divalent spheres ranged
from 0 to a few times Pa’.

The mechanism associated with divalent spheres is a free
rolling motion on the two contacts, the line joining the con-
tact points being the instantaneous axis of rotation, as shown
in Fig. 10(b). In this motion, it is readily checked (see Ap-
pendix E) that the rules given in Appendix B for the evolu-
tion of contact forces in the case of rolling and pivoting
specify that contact forces will remain carried by the line
joining the two contacts, with a constant intensity, as such
contacts move on the surface of the fixed spheres. Such
forces will do no work and the kinetic energy of the mobile
sphere as well as the elastic energy stored in its two contacts
will be kept constant. The equilibrium of the divalent particle
is thus marginally stable, with matrix 5(2) causing zero ac-
celeration to the free motion. However, such a motion does
affect the balance of moments on spheres marked 2 and 3 in
Fig. 10, since the constant force is applied at a point that is
moving on their surface. Therefore the stability of such free
motions, as regards the global contact network, requires
some additional analysis—which is tackled in Appendix E,
where it is concluded that the packing remains stable. Unlike
in frictionless packings [32,91], mechanisms in the presence
of friction do not necessarily lead to instabilities. On build-
ing the constitutive stiffness matrix 5(1) in the samples we
studied, we could check that no other mechanism was
present on the backbone than those rolling motions of diva-
lent spheres. Once some stiffness element is introduced to
impede the free motion of divalent spheres, one can, e.g.,
check that the Cholesky factorization of the stiffness matrix
only involves strictly positive terms on the diagonal.

There can be no contact between two divalent spheres, as
the simultaneous equilibrium of each of them with two
forces carried by the line joining its two contact points, as in
Fig. 10, is impossible.

3. Degree of force indeterminacy

On the backbone, with n(l1-x,) spheres and N:=6n(1
—xo)+3 degrees of freedom, one has on average z n(1
—x0)/2 contacts and k=3+x,n independent mechanisms,
hence a degree of force indeterminacy (hyperstaticity), from
Eq. (19), given by

*Z — 2 2 —4

o4 T g

with

PHYSICAL REVIEW E 76, 061302 (2007)

* ZXZ
=4 - ——
%o 3(1 —xO)
and
Hk * 2x;
I 34
R o

The backbone is devoid of force indeterminacy (H=0) when
its coordination number is equal to zz . Because of the
mechanisms associated with divalent beads z, is strictly
smaller than 4. Alternatively, one can define a “corrected”
backbone coordination number z*, as written in Eq. (34),
which is equal to 4 in the absence of force indeterminacy. As
to the global mechanical coordination number z; correspond-
ing to the absence of force indeterminacy, its value, given by

Z0=4(1—x0)—%, (35)
is well below 4. From the data of Table V, z; is about 3.45 in
state C and 3.54 for D (while z is close to 4). Although H is
relatively small compared to the number of degrees of free-
dom Ny, the samples with friction and low coordination are
still notably hyperstatic—a conclusion shared by other stud-
ies [24], which we reach here in the slightly different context
of packings in a uniform state of stress. Unlike for friction-
less sphere assemblies, there is actually no special reason to
expect packings with intergranular friction to become iso-
static in the rigid contact limit. The essential difference is
that contact forces can no longer be regarded as enforcing
hard geometric constraints like impenetrability, and hyper-
static configurations do not require exceptional arrangements
or matching of particle sizes as in the frictionless case
[32,74,76,92].

Unlike us, Zhang and Makse [83] speculate that isostatic
packings could be obtained in the limit of slow compressions
of samples with ordinary values of w. This is, however, due
to a divergence of interpretation, rather than a contradiction
in numerical results, since their minimum coordination num-
bers z*, excluding rattlers, are similar to ours, z* =45.
Zhang and Makse could only approach configurations devoid
of hyperstaticity on setting the friction coefficient to infinity
(see Sec. IV D 6 below). The degree of force indeterminacy
per degree of freedom on the backbone is still equal, from
Eq. (34), to 0.141 in D samples and 0.145 in C ones, and
varies very little with compression rate in the range we ex-
plored, which extends to significantly smaller values than the
ones used in [83], as stressed above. It is not obvious
whether special experimental situations might occur in which
real granular assemblies approach vanishing degrees of hy-
perstaticity.

4. Distribution of normal forces

Since the force-carrying structure maintains a nonvanish-
ing degree of force indeterminacy even in the rigid limit for
frictional packings, the force distribution in states B, C, and
D, unlike in A configurations, is no longer a geometrically
determined quantity in the rigid limit.
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FIG. 11. (Color online) Distribution of normal forces, normal-
ized by its average, fzﬁ, in states A (red crosses), B (blue aster-
isks), C (black square dots), and D (green open squares) at the
lowest simulated pressure.

The distribution of normal components of contact forces
(normalized by its average (N)) is shown in Fig. 11 for all
four configurations A, B, C, and D, at the lowest pressure (as
given in Table IV), at the end of the assembling process.

We observe, as in many other numerical [25,72,93,94]
and experimental [95,96] studies, an approximately exponen-
tial decay of P(f) for large values, which is somewhat slower
in states with low coordination number (in agreement with
the values of Z(2) given in Table IV). It should be pointed
out, however, that much larger differences between force dis-
tributions in the four studied states A, B, C, D will appear on
increasing the confining pressure (see [37], paper II). This is
already apparent in the dependence of Z(2) on the previous
history of D samples in Table III.

All probability distribution functions show a local mini-
mum for f— 0, except in state C. Although it was remarked
in past publications [97] that an upturn of the PDF at low
forces, as for C configurations, appeared when packings
were not fully equilibrated, C configurations satisfy equilib-
rium requirements as well as the others.

5. Friction mobilization

As frictionless sphere packings are unstable for 7'<6
[32], a certain level of friction mobilization is required in
states B—D, even under isotropic stresses. In particular, non-
vanishing tangential forces are indispensable to ensure the
equilibrium of grains with 2 and 3 contacts, for which they
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relate to the local geometric configuration, as discussed
above (see, e.g., Fig. 10). Some information about friction
mobilization is given in Table VI.

In Table VI we distinguish between contacts carrying nor-
mal forces larger and smaller than the average. Those two
populations of contacts, as first distinguished in [97,98], as
the “strong” and “weak” networks, are attributed different
roles, especially under anisotropic stresses. We merely use
these categories here to gather information, in a compact,
summarized form, about some aspects of force networks,
which correlate to the force level. Table VI shows that, al-
though three-coordinated particles tend to carry small forces
on average, a notable proportion of them, and of the divalent
ones, participate in the strong “force chains” with larger than
average force levels. Friction mobilization is necessary in the
contacts with such spheres, and reaches similar levels on
average in the whole network. It it larger for contacts carry-
ing small loads.

6. Limit of large friction coefficients

Motivated by the search for an isostatic limit in packings
with intergranular friction, Zhang and Makse [83] assembled
numerical packings with friction coefficients equal to infin-
ity. Then they could get Z =4.15. In order to investigate, in
paper III [38] the elastic properties of tenuous contact net-
works, we also prepared a set of five configurations on com-
pressing a granular gas under P=1 kPa with u=+ and
condition /=0.001. These states, hereafter referred to as Z
configurations, have solid fraction ®=0.5917+0.0008, back-
bone coordination number z =4.068+0.006, proportion of
rattlers  x,=(18.4+£0.5)% and of divalent beads x,
=(6.8+£0.5)%, and H is indeed small in that case, %
=0.031. It seems therefore very plausible that the degree off
hyperstaticity vanishes in this case, as k— %, for slowly as-
sembled packs. In the light of this observation, the absence
of such a limit for finite x can be attributed to sliding friction
destabilizing barely rigid structures, which collapse and tend
to form contacts in excess over the minimum count.

E. Conclusions

We summarize here the most salient results of Sec. IV,
about systems with friction.

1. Diversity of states of equilibrated packings

The variety of inner structures of isotropic bead packings
we have obtained, as summed up in Table IV, shows that the

TABLE VI. For states B, C, and D, at the lowest pressure (see Table IV), proportion X; of contacts carrying normal forces larger than
the average (N), average ratio ”%l for contacts with N>(N) (respectively, N<(N)) M, (respectively, M,). The same quantities with
superscripts (2) and (3) apply to contacts implying spheres of coordination 2 and 3. N, N® are the average normal forces carried by these
two populations of contacts, normalized by Pa®. Note that divalent grains are absent in state B, and the corresponding quantities are therefore

not defined.

State X, M, M, N® x\? m? MY N® X\ MY MY
B 042 0016 0018 n.d. n.d. n.d. n.d. 0.23 0.09 0.02 0.01
c 0.41 0.14 0.18 0.58 0.19 0.14 0.17 024 009 0.13 0.04
D 0.41 0.16 0.22 0.71 0.22 0.16 0.18 026 0.10 0.15 0.05
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solid fraction is not the only variable determining the internal
state of an isotropic equilibrated *packing. In particular, the
backbone coordination number z can vary throughout the
whole interval from about 4.5 to 6 in the rigid limit
(k— +0), in packings with a solid fraction close to the RCP
value. Some systems can be denser than others, but with a
considerably smaller coordination number. Systems com-
pacted by vibration should have smaller coordination num-
bers than systems assembled with low friction coefficients.

2. Geometry and length scales

Geometric characteristics corresponding to length scales
above about 4 or 5% of the particle diameter correlate with
density: this applies to the global shape and the area under
the peaks of pair correlation function g(r), to near neighbor
gap-dependent coordination number z(k), and to local neigh-
bor arrangements around one bead, as measured by the local
order parameters charted in Appendix D.

Features associated with smaller scales, such as z(h) for
h=0.04a or the shapes of the peaks of g(r)—part of which
approach a discontinuity in the rigid limit—correlate with
the coordination number.

Finally, a third, smaller length scale k™ 'a is associated
with contact deflection and vanishes in the rigid limit. On
this scale the geometric properties of the packing depend on
the contact law.

1

3. Role of rattlers

Rattlers represent a significant fraction (above 10%) of
the particles in poorly coordinated systems, although the
packings are stable. The treatment of rattlers—whether they
are left floating in arbitrary positions (I) or gently pushed
against the backbone by small forces (II)—changes geomet-
ric data on the intermediate scale mentioned in the previous
paragraph (Sec. IV E 2), such as the exponent of a power-
law fit of z(h). Treatment II should be preferred if compari-
sons are to be made with packings under gravity. It leads to
the definition of a “geometric” coordination number Z%0),
different from the mechanical one (z).

4. Influence of micromechanical parameters

Our data suggest (Table III) that the states obtained on
isotropically compressing a granular gas no longer depend
on viscous damping parameter { in the limit of slow com-
pression (I—0). If the true value of the friction coefficient is
used at this stage (i.e., without “lubrication”), the resulting
state (our D configurations) can be regarded as a reference,
loose packing limit of this assembling method. Other meth-
ods nevertheless result in lower densities.

5. Force indeterminacy

In samples assembled by isotropic compression, the back-
bone does not lose its force indeterminacy at low pressure,
even in the slow compression limit, except for u— +%. The
degree of force indeterminacy H, decreases to about 14% of
the number of backbone degrees of freedom in poorly coor-
dinated systems with x=0.3. On computing H it is necessary
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to take into account the contribution of divalent grains,
which define localized (harmless) floppy modes. Conse-
quently, the value of the backbone coordination number z
corresponding to H=0 is slightly smaller than 4.

V. DISCUSSION AND PERSPECTIVES

The most surprising feature of our simulation results is
the wide variability of coordination numbers for the same
density in isotropic packings. Most often, dense numerical
samples are obtained on suppressing friction: A-type pack-
ings are simulated, in which the coordination number is high.
C-type systems have about the same density, but a coordina-
tion number as low as in the loosest states D obtained by
direct compression. In order to simulate dense laboratory
samples, should one use A or C configurations? The answer
depends of course on how laboratory samples are assembled.
Our results show that vibrated ones are likely to have smaller
coordination numbers than lubricated ones for the same den-
sity. In paper III, we compare elastic properties of our B and
C states to the ones measured by Jia and Mills [84] on glass
bead samples either compacted by shaking the container or
assembled with a lubricant.

In the x-ray tomography experiments by Aste er al. [6,7],
sphere packings are imaged with a resolution (voxel size) of
about 4% of nominal diameter a, while the diameter distri-
bution extends at least to £0.03a. In spite of serious efforts to
eliminate the influence of size distribution by deconvoluting
correlation data, their estimation of coordination numbers are
well above the upper limit 6 in dense samples, which is, in
principle, impossible under a low pressure. It seems that such
experiments only provide access to the largest of the three
length scales mentioned in Sec. IV E 2, and are thus unable
to distinguish between A-like and C-like microstructures. We
shall see in paper III [38] that measurements of elastic
moduli are much better suited to obtain information on co-
ordination numbers by experimental means.

However, it is first necessary to assess the influence of the
pressure level on the packing inner states. As hinted by the
results of Table III, a quasistatic compression affects the
force distribution and the level of friction mobilization. Elas-
tic properties being usually measured above a certain con-
finement level (typically, a few tens of kPa), the necessary
study of the effects of a quasistatic compression is carried
out in paper 1I [37].

Beyond the elastic properties, which characterize the re-
sponse to small load increments, the quasistatic, elastoplastic
mechanical behavior of packings prepared with different mi-
crostructures should also be studied. Peak deviator strength
and dilatancy normally correlate with initial packing density
[11-13,21,27]. But for one given density, what is the influ-
ence of the coordination number on the stress-strain curves?

Granular systems are often packed under gravity by pour-
ing samples in containers, and such processes, which do not
necessarily produce homogeneous states [33], should be
studied by numerical simulations too, and the analysis of
dynamical effects in the assembling stage should be pursued.
Adhesive contact forces, as in wet granular assemblies [82],
can also greatly affect the preparation of solid granular pack-
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ings [99]. Other perspectives to the present work are the
investigation of the microstructure of polydisperse systems,
and of assemblies of nonspherical particles [100].

APPENDIX A: CONTACT ELASTICITY AND FRICTION

The contact law between spherical elastic bodies, with a
Coulomb criterion for friction applied locally (to the surface
force densities), leads to complicated history-dependent
force-displacement relationships [39,101]. Even in some
cases with no slip anywhere in the contact region, the tan-
gential stiffness K of a contact was shown [102] to depend
on the past history of the contact loading, and to change
according to the direction of the displacement increment.
Strictly speaking, the response of intergranular contacts,
even to arbitrary small load increments, should not be termed
“elastic.” The simplified law we adopted involves a tangen-
tial stiffness K7 depending on the normal deflection /4, but
independent of the current mobilization of friction. This is
the same approximation as used in [29,30]: the value of K is
the correct one in the absence of elastic relative tangential
displacement, when T=0.

However, as stressed in [40], such a model is thermody-
namically inconsistent, for the elastic energy might increase
at no cost. Consider, e.g., quasistatically reducing / at con-
stant duy, thereby, according to this contact model, reducing
normal force N at constant T, without reaching the Coulomb
limit. The recoverable elastic energy stored in the contact is
given by

2
W= gg\,;hsn " lT_,
5 K

(A1)

which grows as K7 decreases, without the external force do-
ing any work, thus implying a net creation of energy. To
avoid such effects, T is rescaled (as advocated by O. Walton
[103]), whenever N decreases to N—AN, down to T[KHN
—AN)/K(N)], before accounting for tangential relative dis-
placement increments. No such rule applies to increasing
normal force cases. Such a procedure was shown by Elata
and Berryman [40] to systematically produce energy dissipa-
tion in cyclic loadings of the contact.

Such peculiarities of the contact law affect the form and,
in fact, the very definition of an elastic response of the con-
tact network, an issue which will be discussed in paper III.

APPENDIX B: TRANSPORT OF CONTACT FORCES
DUE TO PARTICLE MOTION

In molecular dynamics calculations, as well as in static
approaches (as outlined in Sec. I C) one has to relate small
contact force increments in any contact to the small displace-
ments u; and rotations A6; of the grains.

Increments A(N;n;;) and AT;; of the normal and tangen-
tial parts of the force in the contact between grains i and j
have two different origins: they stem from the contact law, as
written down in Sec. II, and also from the motion of the
particle pair. As the grains move, so does the deformed con-
tact region, and therefore the resulting contact force changes.
The relevant formulas are derived and written below for
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small increments in the static case. For dynamical computa-
tions, displacements are to be replaced by velocities, and
increments by time derivatives.
The normal force variation is simply
A(N;n

ij»>

with

An;; = e ||(1 n;®ny)-(4;-
L

while AN; is related by the Hertz law to the variation in the
normal deﬁecnon of the contact.

For the tangential reaction we introduce the decomposi-
tion

-ery, (B2

AT; = AT + AT

Increments with superscript (1) are associated, via the con-
tact law, to the relative displacement of the contact point,
which defines the constitutive part of the stiffness matrix
discussed in Sec. I C, and superscript (2) labels increments
of kinematic origin. We assume that the magnitude of the
contact force is unchanged in the absence of relative dis-
placement at the contact (du,;;=0), and thus we write
AT(z)

AG; X T, (B3)

l]’

A0;; denoting the rotation of the contact region. A6; can be

spht in a rolling part AG( ) , orthogonal to n;;, and a pivoting

one, AG( ) , along n;;. Aﬁii is determined by the incremental

change i in n;.

R
As to the pivoting part AB( )it is natural to equate it to the
average rotation of the two partlcles around the normal di-
rection as follows:

AGP = —n -(AG;+Af)n;;. (B5)

This choice is such that the rotation of the contact force
coincides with the rotation of the pair in contact if both ob-
jects move together like one rigid body (a condition of ob-
jectivity [49]).

Injecting Eq. (B2) into Egs. (B4) and (B5), one readily
obtains the appropriate formula for AT; ,

@ _ n;;
AT;; J)]_l

_[T ( i lli—é r;

rl'j

1

With the notations of Sec. II C, the contribution of contact
i,j to the 3 X3 diagonal block of 5(2), which expresses the
dependence of F$* on displacement u; is the nonsymmetric
tensor
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TABLE VII. Most frequent values [Q4(i),Q6(i)] observed in the measurements of [7] in a dense sample
(©=0.640+0.005, called sample F in [7]), and fraction (dis.) of local configurations within interval

(Q410.05,Q610.05) obtained in experiments and in numerical simulations with similar densities: A, A’, and

C.
Sample d, (04.06) dis. (%) fee (%) hep (%)
Aste et al. 1.1 (0.23, 0.44) 31 6 4
Dense 1.2 (0.16, 0.45) 38 4 12
®=0.640 1.3 (0.13, 0.42) 43 1 17
(F in [7]) 1.4 (0.10, 0.38) 47 3 13
A 1.1 (same 32 <1072
A 1.2 values 37 <1072
A 1.3 as 43 <1072
A 1.4 above) 46 <1072 12
A’ 1.1 (same 31 <1072 5
A’ 1.2 values 40 <1072
A’ 1.3 as 45 <1072 10
A’ 1.4 above) 48 <1072 15
C 1.1 (same 31 <1072
C 1.2 values 37 <1072 5
C 1.3 as 43 <1072 8
C 1.4 above) 46 <1072 13
Ni; n; T 1 L
(1-n;®ny)+ ~ Mm@ = —F@ — =%y 5, (C1)
i Tij Ly L

In general, the geometric stiffness matrix 5(2) is thus not
symmetric, except in frictionless sphere packings, which are
analogous to central force networks. We also note that terms
of order N/R or ||T||/R in K® correspond to terms of order
Ky or K7 in 5“), which are always very much larger.

In the frictionless case, 5(2) is a symmetric, negative ma-
trix if forces are repulsive, as discussed by Alexander [91].
Any mechanism on the backbone leads to an instability: the
potential energy of the externally applied load is strictly de-
creasing in that motion. This destabilizing effect can also be
directly established in the rigid case, as shown in [32]. This
is the reason why stable packings of frictionless spheres in
equilibrium under some externally applied load are devoid of
mechanisms involving the backbone.

In general, stiffness matrices were discussed by Kuhn and
Chang [49], and by Bagi [50]. Those authors gave general
results for 5(2) with particles of arbitrary shapes, which co-
incide with ours in the case of spherical balls.

APPENDIX C: STRESS-CONTROLLED
MOLECULAR DYNAMICS

It might be noted that the original Parrinello-Rahman
equations slightly differ from ours. First, Eq. (6) is written
down with an additional term

Then, Eq. (7) is written with a different stress tensor ar, the
definition of which involves a particular reference value L
of the cell dimensions, for which the volume is (). 1=7Ts
related to the Cauchy stress tensor % by

Q

i _I'E'TL_I'TL_I.
O = =0

L (C2)

[B]

Lo-

Ie=

a7 is a symmetric tensor known as the second Piola-Kirchhoff
stress tensor [104] (also called thermodynamic tension by
some authors [105,106]). Tensor ar can be used to express the
power P/{), of internal forces, per unit volume in the refer-
ence (undeformed) configuration.

The metric tensor G =TLO_1 TI;LL(_,l expresses the dis-
tance between current points as a function of their coordi-
nates in the reference configuration. The difference between
G and the unit tensor defines the Green-Lagrange strain ten-
sor [104] e as

1
e=-3G-D (C3)
Then ar is such that, for whatever strain history
P=Qme. (C4)
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TABLE VIII. Same as Table VII for experimental samples of lower densities, one with &
=0.626+0.008 (called sample D in [7]), another with ®=0.596+0.006 (called sample B in [7]), to which
values obtained in simulated samples B and D, of similar densities, are respectively compared.

Sample d, (04.06) dis. (%) fee (%) hep (%)
Aste ef al. 1.1 (0.25, 0.44) 28 4

1.2 (0.19, 0.44) 35 2 7
d=0.626 1.3 (0.15, 0.40) 42 1 11
(D in [7]) 1.4 (0.11, 0.36) 46 1 8
B 1.1 (same 30 <1072 2.7
B 1.2 values 38 <1072 7.6
B 1.3 as 43 <1072 10
B 1.4 above) 46 <1072 10
Aste et al. 1.1 (0.30, 0.45) 24 3 1
Loose 1.2 (0.23, 0.44) 32 2 3
®=0.596 1.3 (0.16, 0.38) 37 1 5
(B in [7)) 14 (0.14, 0.35) 43 2 5
D 1.1 (same 24 <1072 1.0
D 1.2 values 32 <1072 4.4
D 1.3 as 37 <1072 6.1
D 1.4 above) 43 <1072 7.5

If the last term of Eq. (7) is replaced by (L§)?/QqL,, and
if Eq. (C1) is used instead of Eq. (6), then, in the case when
interparticle forces derive from a potential V, function of
particle positions r; and orientations, the system of equations
conserves the total energy

H:EEmiéi'TI=J'1=4-éi+521iwf+V+EM'TLJ:IE”V
QO
e (CS)

Such equations would tend to impose a constant Piola-
Kirchhoff stress.

Granular assemblies are, however, dissipative systems,
and energy conservation is not a crucial issue as in molecular
systems. In practice, we observed that omission of the extra
term of Eq. (C1) as well as control of Cauchy, rather than
Piola-Kirchhoff stresses, did not affect the approach to equi-
librium configurations. Yet, on considering small motions
and elastic properties close to an equilibrium configuration,
one may prefer dealing with external forces deriving from a
potential. We note that this is indeed the case if we use Egs.
(C1) and (7) with an isotropic %, 2=P1, in which case the
external stress control is associated with potential energy P}
[instead of the last term in Eq. (C5)].

APPENDIX D: COMPARISON OF LOCAL BOND ORDER
PARAMETERS WITH EXPERIMENTAL
OBSERVATIONS

Although the samples were not isotropic, owing to the
role of gravity in the preparation stage, and not perfectly

homogeneous, because of lateral walls, the x-ray tomography
experiments by Aste er al. [7] provided an unprecedented
wealth of results on the geometry of sphere packings. The
local arrangement of neighbors around one bead were clas-
sified according to the values taken by the pair
[QL"C(i),Qlé"C(i)], for different choices of the distance d,. that
defines the bonds. For each sample and choice of d,, the
proportion of spheres having the most frequent range of val-
ues (0,%0.05,04%0.05) corresponding to some typical dis-
ordered arrangement was recorded, as well as the frequency
of occurrence of values (0.191+0.05,0.574+0.05) and
(0.097+0.05,0.485+0.05), respectively, corresponding to
fce-like and hep-like local ordering. Those values are com-
pared to the ones we observed in numerical samples of simi-

lar density in Tables VII and VIII [we kept the same (Q4 , Qﬁ)
couple].

The fraction of beads with the typical disordered configu-
ration of neighbors (marked dis. in the tables) are very close
in numerical packings and in the experimental one of the
same densities, and the frequency of occurrence of hcp-like
local environments also compares well, although it does not
seem to share the same dependence on the threshold distance
d, defining bonds. However, the small fraction of fcc-like
beads observed in the laboratory is absent in the simulations.
Many circumstances can be invoked to explain these differ-
ences, including of course the different packing history of the
numerical and experimental samples, which in the latter case
involves gravity and anisotropy. It can be remarked once
again that A’ samples are a little more ordered than A ones
(with slightly larger fractions of hcp-like local configura-
tions), from which C samples are quite indistinguishable, as
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the quantities measured here do not depend on whether pairs
of neighbors are actually in contact.

APPENDIX E: ANALYSIS OF THE FREE MOTION
OF DIVALENT SPHERES

We first give here the appropriate formulas to describe the
free motion of divalent grains, then report on numerical sta-
bility tests.

The equations are specialized to the case of equal-sized
spheres of diamater a, as in all the simulations reported in
the present paper. Let i denote the label of the divalent grain
in contact with its neighbors labeled j and k. The line joining
the centers of j and k is parallel to unit vector e, defined as

”nik - nij” |

and the distance D of the center of i to this line is
-
D = a\‘”l - (e N nij)2.

wy denoting the angular velocity of the center of i about this
axis, the translational velocity of i, in its free motion de-
picted on Fig. 10, will be

Vi: wth, (El)

the unit vector t being orthogonal to the plane containing the
centers of i, j, and k as follows:
_ny X Ny

I x n |

Its angular velocity will be
Qi = 2(,()0e . (EZ)

With such a choice, the instantaneous velocity of the (mate-
rial) contact points between i and j, or between i and k sat-
isfy

a a
v+ Q; X En,-j=v,-+ﬂi>< En,-k=0,

as requested in a relative motion which is a combination of
rolling and pivoting.

It is easy to check that the rules defined in Appendix B
ensure that the tangential components of the contacts i, j and
i, k rotate with the contact points around the axis joining the
centers of k and j with angular velocity w,. In other words,
the geometric stiffness matrix K@ does not determine
whether the mechanism associated with a two-coordinated
bead is stable.

We check for stability with numerical means, as follows.
Starting from an equilibrium configuration, we first choose
the potentially dangerous mechanisms, those involving rela-
tively large contact forces, of the order of the average normal
force or even larger. Thus, grains j and k undergo significant
changes in the moment of the contact force with the mobile
grain i. Then one such mobile divalent bead is attributed a
velocity and an angular velocity according to Egs. (E1) and
(E2), with a value of w, small enough for the centrifugal
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FIG. 12. (Color online) Examples of trajectories of mobile di-
valent grains in the plane orthogonal to vector e. All trajectories
begin at x=D, y=0. Continuous lines depict the results obtained on
ignoring contact creation, which end up, in two cases out of the four
represented, in instabilities (black lines), while complete circles are
observed in the other, stable ones (red). Dots mark the same trajec-
tories, which are in practice arrested by other contacts when contact
creation is taken into account.

acceleration to be negligible (equal to 107*[[F;|[). The evo-
Iution of the whole packing under constant stress is then
simulated with MD. Such numerical experiments were per-
formed with the most fragile packings, D samples under low
confining pressures. In all cases studied, as expected, the
motion of the mechanism entails very slow changes in the
configuration, if any. The mobile grain maintains a constant
angular velocity while nearly exactly following its circular
trajectory for a long time, with hardly any change in kinetic
energy. These calculations are rather slow and costly, and we
therefore limited our investigations to 10 tests for 2 pressure
levels in the D series, P=1 kPa and P=10 kPa. At the lowest
pressure P=1 kPa, corresponding to k==181 000, these mo-
tions were often observed to lead to a small rearrangement of
the packing, in which kinetic energy spreads over all degrees
of freedom, a significant fraction of the contacts, up to 25%,
go through a sliding stage, the contact network is slightly
modified, and the system restabilizes in a slightly different
configuration, with a small density increase (typically of or-
der 107). In other cases, the freely moving grain stops when
it collides with a third grain other than the two with which it
is maintaining contact. The system then finds a new equilib-
rium configuration without rearranging; only a few contacts
temporarily reach a sliding status. On repeating similar tests
at a larger confining pressure, P=10 kPa (still close to the
rigid limit), the occurrence of this second scenario became
much more frequent than the first, which was never observed
in the 10 tests performed.

The difference between stable and unstable cases is better
appreciated on redoing the tests with a modified MD calcu-
lation method, in which only the initially existing contacts
are taken into account. Thus one only investigates the prop-
erties of the preexisting contact network. If it breaks, the
system globally falls apart, and nearly all contacts in the
packing eventually open. This is the unstable case. In the
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stable case the mobile particle can turn several times around
the line of centers of its two contacting neighbors without
notable changes in kinetic energy and the contact network is
maintained. This behavior is illustrated in Fig. 12, which
displays trajectories of mobile grains in the plane orthogonal
to e.

Note that such a procedure reveals instabilities that are
prevented by the appearance of a third contact of the mobile
grain, and hence overestimates the frequency of occurrence
of unstable configurations. Eight out of ten such tests led to
an instability in D samples under 1 kPa. This proportion fell
to two out of ten under 10 kPa.

Two possible conclusions may be drawn. On the one hand
we may deem the D configurations under low pressures im-

PHYSICAL REVIEW E 76, 061302 (2007)

perfectly stabilized, as some free motions might eventually
cause configurational changes. Or, since anyway the evolu-
tion is so slow, it may be pointed out, on the other hand, that
the slightest amount of dissipation in rolling would stop the
free motion. In realistic systems the velocity of a free-rolling
motion always decays in time.

Since the obtention of stable, equilibrated states in which
all divalent grains have been made three coordinated would
be computationally very costly, and as the occurrence of
small instabilities related to such mechanisms appear to de-
crease fastly under growing confinement, we adopted the
second attitude and regarded D and C configurations with a
few percent of divalent particles as acceptable equilibrium
states.
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