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We study the distribution of domain areas, areas enclosed by domain boundaries �“hulls”�, and perimeters
for curvature-driven two-dimensional coarsening, employing a combination of exact analysis and numerical
studies, for various initial conditions. We show that the number of hulls per unit area, nh�A , t�dA, with enclosed
area in the interval �A ,A+dA�, is described, for a disordered initial condition, by the scaling function
nh�A , t�=2ch / �A+�ht�2, where ch=1 /8��3�0.023 is a universal constant and �h is a material parameter. For
a critical initial condition, the same form is obtained, with the same �h but with ch replaced by ch /2. For the
distribution of domain areas, we argue that the corresponding scaling function has, for random initial condi-
tions, the form nd�A , t�=2cd��dt���−2 / �A+�dt���, where cd and �d are numerically very close to ch and �h,
respectively, and ��=187 /91�2.055. For critical initial conditions, one replaces cd by cd /2 and the exponent
is �=379 /187�2.027. These results are extended to describe the number density of the length of hulls and
domain walls surrounding connected clusters of aligned spins. These predictions are supported by extensive
numerical simulations. We also study numerically the geometric properties of the boundaries and areas.
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I. INTRODUCTION

In this work we obtain some exact results for the coars-
ening dynamics �1� of a nonconserved scalar field in two
dimensions, demonstrating, en passant, the validity of the
dynamical scaling hypothesis for this system. We study the
morphology of the domain structure, which is illustrated in
Fig. 1 for the coarsening of the two-dimensional Ising model
�2dIM� on a square lattice quenched from an equilibrium
state at T0�Tc.

A domain is a region of connected aligned spins. Each
domain has one external perimeter which is called the hull.
The hull enclosed area is the total area within this perimeter,
i.e., the domain area plus the area of any internal subdomain.
The domain perimeter is the total length of the interface
between the chosen domain and the neighboring ones—
including the hull and internal borders. See Fig. 2 for a
sketch explaining these definitions.

The paper deals primarily with the distributions of two
characteristic areas, the domain area and the hull enclosed
area, and their associated lengths, the domain wall perimeter
and the hull length.

Naively, one may imagine that coarsening is basically due
to the coalescence of small domains that form larger ones.
However, in two-dimensional curvature-driven coarsening
coalescence processes are quite unimportant as shown by the
Allen-Cahn result. All the interfaces move with a local ve-
locity that is proportional to the local curvature and points in
the direction of decreasing the curvature; therefore, inter-
faces tend to disappear independently of one another. This is
the reason why we first focused on the statistics of hull en-
closed areas, quantities that depend on the motion of a single
and connected interface, and not on the statistics of the more
natural domain areas. Next we expressed the statistics of the
domain areas in terms of the simpler and more clear statistics
of hull enclosed areas.

Hull enclosed and domain areas have distributions that, at
late times after the quench into the ordered phase, exhibit,
according to the scaling hypothesis, the scaling form
n�A , t�= t−2f�A / t�, where n�A , t�dA is the number of hulls
�domains� per unit area with area in the range �A ,A+dA�.
The argument of the scaling function arises from the fact that
the characteristic length scale is known to grow as t1/2, so the
characteristic area �of hulls and domains� grows as t. The
scaling function f�x� will be different for domains and hulls.
The prefactor t−2 follows from the fact that there is of order
one hull �or domain� per scale area. Our analytical result is
an elegant application of the Gauss-Bonnet theorem and, it
should be emphasized, its simplicity relies on the dimension-
ality of the system being 2. Indeed, in three dimensions, the
time variation of the hull enclosed volume depends on a
characteristic size of the domain. A similar dependence on
the dimension is also observed in the von Neumann’s law for
cellular systems, whose simple form, independent of any lin-
ear size of the system, is also only observed in two dimen-
sions �3,4�.

In this paper we derive these scaling forms from first prin-
ciples �i.e., without recourse to the scaling hypothesis�, and
determine explicitly the scaling functions. Some of our re-
sults have appeared earlier �5�.

Hulls and domain boundary lengths are themselves dis-
tributed quantities related in a nontrivial manner to their cor-
responding areas. In this paper we examine the geometry of
these structures and we derive the number density of hull and
domain wall lengths showing that these distributions also
satisfy scaling.

The organization of the paper is as follows. In Sec. II we
recall known results about the equilibrium distribution of
hull enclosed and domain areas at critical percolation and
critical Ising initial conditions. We also summarize known
results about the equilibrium distribution of domain walls
and hulls and their geometrical relation to their associated
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areas. In Sec. III we derive some generic results that stem
from a number of sum rules and the use of the scaling hy-
pothesis. In Sec. IV we explain the analytic derivation of the
time-dependent hull enclosed and domain area distributions.
These arguments do not rely on any scaling hypothesis but
rather demonstrate its validity. In Sec. V we show our nu-
merical results for the statistics of areas in the 2dIM evolving
with Monte Carlo dynamics. Section VI is devoted to the
analysis, both analytical and numerical, of the geometry of
hulls and domain walls during the dynamics and their rela-
tion to their corresponding areas. Finally, in the Conclusion
we discuss future studies along these lines. We also add two
appendixes in which we describe the algorithm used to iden-
tify and count the hull enclosed areas, and for the sake of
comparison we present the distribution of domain lengths in
the one-dimensional Ising model.

II. EQUILIBRIUM DISTRIBUTIONS

In this section we summarize known results on the equi-
librium hull enclosed and domain area distributions as well
as the number density of perimeters, both at critical percola-
tion and critical Ising conditions in two dimensions, see Fig.
2. These will act as initial conditions for the coarsening dy-
namics.

A. Area distributions

A hull enclosed area is defined as the full interior of a
domain boundary—irrespective of there being other inter-
faces and thus regions of the opposite phase within. The
equilibrium hull enclosed area distributions at percolating
criticality and Ising criticality have been computed by Cardy
and Ziff �6� in two dimensions:

nh�A,0� � �2ch/A2, critical percolation,

ch/A2, critical Ising.
	 �1�

These results are valid for A0�A�L2, with A0 a micro-
scopic area and L2 the system size. Note also that we are
taking an extra factor 2 arising from the fact that there are
two types of hull enclosed areas, corresponding to the two
phases, while the Cardy-Ziff results accounts only for clus-
ters of occupied sites �and not clusters of unoccupied sites�.
nh�A ,0�dA is the number density of hulls per unit area with
enclosed area in the interval �A ,A+dA� �we keep the nota-
tion to be used later and set t=0�. The adimensional constant
ch is a universal quantity that takes a very small value: ch

=1 / �8��3��0.022 972. The smallness of ch plays an impor-
tant role in the analysis of Sec. IV.

The distribution of domain areas—we recall that domains
are clusters of connected aligned spins—at critical percola-
tion is given by �7�

(b)

(a)

FIG. 1. Snapshots of the 2D Ising model at time t=32 Monte
Carlo steps �MCs� after a quench from infinite temperature, T0

→�, to the working temperature T=1.5
0.66Tc. �a� We show the
raw data, where the domain structure as well as the thermal fluc-
tuations within the domains are visible. �b� We show the boundaries
between regions of opposite sign in the configuration to the left,
using a variant of the algorithm in Ref. �2� to make the domain
structure clearer.

R1

R2

FIG. 2. �Color online� A sketch of a configuration with two
concentric and circular interfaces with radius R1 and R2 is shown to
illustrate the definition of hull enclosed and domain areas as well as
hull and domain-wall perimeters. This configuration has two hull
enclosed areas, Ah

�1�=�R1
2 and Ah

�2�=�R2
2, and two domains with

areas Ad
�1�=��R1

2−R2
2� and Ad

�2�=�R2
2. There are two hulls with

length ph
�1�=2�R1 and ph

�2�=2�R2, and two domain walls with
length pd

�1�=2��R1+R2� and pd
�2�=2�R2.
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nd�A,0� �
2cdA0

��−2

A��
, with �� =

187

91
� 2.055. �2�

Of course, the constants cd and A0 are not separately defined

by this relationship, only the ratio cdA0
��−2. In practice it is

convenient to choose cd to be the value appearing in the
domain area distribution at general times—see Eq. �9�. The
quantity A0 can be interpreted as a microscopic area, and will
be introduced at various points as a small-area cutoff. The

quantity A0
��−2 in Eq. �2� sets the units in such a way that

�nd�=A0
−2. This result is also valid in the limit A0�A�L2.

In equilibrium at Tc, Stella and Vanderzande �8� computed
the number density of domains with area A,

nd�A,0� �
cdA0

�−2

A� , with � =
379

187
� 2.027 �3�

in the large A limit. Janke and Schakel �9� confirmed this
claim numerically finding ��2.0269. Motivated by the
Cardy-Ziff result for hull enclosed areas, we conjecture that
the prefactor cd in Eq. �3� is the same cd �up to terms of order
ch

2� as that appearing in the prefactor 2cd for critical percola-
tion. We discuss this point in detail at the beginning of Sec.
IV B, and we check this hypothesis numerically in Sec. V.

We find it useful to include the small-area cutoff, A0, in
these number densities, transforming the denominators to
�A+A0�2 or �A+A0��,�� for hull enclosed and domain areas,
respectively.

B. Perimeter distributions

One can equally study the length of hulls �external perim-
eters� and domain walls �including external and internal
boundaries�.

The number density nh�p ,0� of hulls with length p, de-
fined as the number of spins on the hull, at the critical point
of the 2dIM was computed by Vanderzande and Stella �10�,

nh�p,0� �
cph

p0
�h−3

�p + p0��h
, with �h =

27

11
� 2.454. �4�

The value of the constant cph
was not estimated. As far as we

know there is no analytic prediction for the number density
of domain walls at critical Ising conditions that should have
the same functional form though with a possibly different
exponent �d and a different constant cpd

. p0 is a microscopic
length that we define as p0

2=A0.
For critical percolation, the number density of hulls with

given perimeter was obtained by Saleur and Duplantier �11�,

nh�p,0� �
cph
� p0�

�h�−3

�p + p0��h�
, with �h� =

15

7
� 2.143, �5�

compatible with the numerical study �12�. Again, the numeri-
cal value of the constant cph

� is not known. As far as we
know, the analog of Eq. �5� for domain walls at critical per-
colation is not known, though we expect the same functional
form with different constant cpd

� and exponent �d�.

In Sec. VI we show numerical results for the equilibrium
perimeter length number densities of critical Ising and infi-
nite temperature configurations.

C. Fractal properties

Several authors studied the fractal properties of areas and
perimeters in critical Ising and critical percolation equilib-
rium conditions using different analytic methods that include
conformal invariance and renormalization group and Cou-
lomb gas techniques �8,10,11,13,14�. Many numerical stud-
ies �9,12,15–17� confirmed and complemented the results in
these analytic works. These works focused on the fractal
dimensions of the domain area, Dd, and of the hull length,
Dh. In two dimensions these exponents are linked to the dis-
tribution exponents � and �h as �7�

Dd =
2

� − 1
, Dh =

2

�h − 1
, �6�

and similarly for the primed quantities.
We concentrate on the fractal properties of geometric

structures by comparing the area of the clusters to their as-
sociated perimeter. This approach was used by Cambier and
Nauenberg �18�, who studied domain walls in the 2dIM—
with internal and external border—at equilibrium below, but
near Tc, and found

A � p1.43. �7�

The proportionality constant is not given. In Sec. VI we re-
visit the geometric properties of the clusters at Tc and the
corresponding one at very high temperature as well as their
zero temperature evolution.

III. SOME GENERAL RESULTS

A number of general properties of hull enclosed and do-
main areas as well as hull and domain wall perimeters can be
easily derived just by using the scaling hypothesis and two
sum rules. We summarize them here.

A. Scaling

At long times, and irrespective of the initial condition, the
total number of domain and hull enclosed areas per unit area,
Nd,h�t�=�0

�dAnd,h�A , t�, should scale as R−d�t� in d dimen-
sions, with R�t� a characteristic length scale usually associ-
ated to the “typical” domain radius. For pure ferromagnetic
coarsening, R�t����dt�1/2 from which it follows that Nd,h�t�
� t−1 in d=2. Since characteristic areas scale as R2�t�� t, the
scaling hypothesis implies that the domain and hull enclosed
area distributions have the forms nd,h�A , t�= t−2fd,h�A / t�.

In Sec. IV we present arguments that the initial distribu-
tions of hull enclosed and domain areas determine the forms
of these distributions at late times. In particular, the initial
forms are modified in a rather simple way at later times, such
that the scaling forms are already suggested by the initial
conditions. In the following we outline the consequences of
this line of argument and defer detailed analysis to Sec. IV.
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Let us first discuss domains with critical Ising initial con-
ditions. Retaining the initial form �3�, but including an extra
time-dependent factor to satisfy the desired scaling form at
large times, the expression for nd�A , t� is

nd�A,t� �
cd��d�t + t0���−2

�A + �d�t + t0��� �8�

at long times. Here, t0 is a microscopic time, and �d is a
phenomenological parameter with the dimensions of a diffu-
sion constant. Setting t=0 one recovers Eq. �3� provided
A0=�dt0 and A�A0. Indeed, t0 is defined through this re-
quirement while A0 is the by now usual microscopic area.
For large t, t0 can be neglected and the conventional scaling
form is recovered.

For infinite temperature initial conditions we propose

nd�A,t� �
2cd��d�t + t0����−2

�A + �d�t + t0����
�9�

that also satisfies the scaling form asymptotically.
One can easily check that the obvious generalization of

Eq. �1� including time

nh�A,t� �
�2�ch

�A + �ht�2 �10�

also has the desired scaling form. The constant �h is another
phenomenological parameter. Its value will turn out to be
very close to �d. The factor 2 in the brackets in Eq. �10�
takes into account the two types of initial condition.

We remark that in Eq. �10� we do not explicitly include a
short-time cutoff t0, while it is necessary in Eqs. �8� and �9�
to connect smoothly to the initial condition.

Scaling can also be used to predict the time dependence of
the number density of hull and domain wall lengths. It yields

nd,h�p,t� �
cpd,ph

���d,ht�1/2 + p0��d,h−3

�p + ��d,ht�1/2 + p0��d,h
�11�

with the constant and exponent values depending on the ini-
tial condition and whether we are studying hulls or domain
walls. This form is based on the assumption that the charac-
teristic perimeters evolve in time as ��d,ht�1/2.

B. Sum rules

We now present two exact sum rules which provide useful
input for the analysis of nd,h�A , t�. These sum rules apply at
all times t	0, for any initial condition, and for any working
temperature.

The first sum rule follows from the fact that the total
domain area, per unit area of the system, is unity since each
space point �or lattice site� belongs to one and only one do-
main. This gives

�
0

�

dAAnd�A,t� = 1. �12�

The second sum rule follows from the fact that the total
number of hull enclosed areas, Nh�t�, is equal to the total

number of domains, Nd�t�, since each domain can be associ-
ated with a unique hull, namely the hull that forms its exter-
nal boundary. This yields

Nd�t� 
 �
0

�

dAnd�A,t�

= �
0

�

dAnh�A,t� 
 Nh�t� . �13�

Equations �1� and �2� and their generalization describing
the time dependence, have been shown to hold for large ar-
eas �A�A0� only and the number density can take a different
form at small values of A. From the constraints �12� and �13�,
using Eqs. �8�–�10�, we shall derive approximate relations
between the constants cd, ch, �d, �h, �, and �� expected to
hold at any working temperature T. These relations are exact
to first order in the small quantity ch.

For the number densities of hulls or domain walls with
given perimeter we have only one sum rule. The total num-
ber density must equal the number density of domains and
hull enclosed areas:

Npd,ph
�t� 
 �

0

�

dpnd,h�p,t� = Nd�t� = Nh�t� . �14�

1. Critical Ising initial conditions

The constraint on the total area �12� using Eq. �8� for the
number density of domain areas yields

cd = �� − 2��� − 1� � 0.02745 �15�

where the numerical value was obtained for �=379 /187. If
one takes into account that the minimal area is A0 �and not 0�
the result is slightly different and it varies, though very
weakly, with t. Indeed, the value of cd decreases from cd
= ��−2���−1�2�−1 /� at t=0 to cd= ��−2���−1� at t� t0

=A0 /�d. Inserting �=379 /187 gives

0.02745 
 cd 
 0.02760, �16�

a rather narrow interval. Note that cd computed using Eq.
�15� is quite close to the analytical result for ch, namely ch

an

=1 /8��3�0.022 97. Indeed, cd−ch
an�0.004 48 �which is

order ch
an /5� where we used the minimum value of cd and the

analytical value of ch.
We now consider the sum rule �13�, at times t=0 and t

�A0 /�h, distinguishing the integral over the full interval
�0,�� from the one that takes into account the finite minimal
area �A0 ,��. We denote by A1 the lower limit of the integra-
tion interval. We also include a small-area cutoff A0 in the
hull enclosed area number density, nh�A ,0��ch / �A+A0�2.

At time t=0 we find

cd = ch�� − 1�
�A1 + A0��−2

A0
�−2 . �17�

Using now the expressions for cd derived above we relate ch
to �:
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ch = � �� − 2� � 0.026 74, A1 = 0,

2�� − 2�
�

� 0.026 39, A1 = A0. � �18�

These values are quite close to the analytic one ch
an

�0.022 97. The relative difference is �ch−ch
an� /ch

an�0.164
�A1=0� and �ch−ch

an� /ch
an�0.149 �A1=A0�. Note that using

the sum rules we overestimate the value of ch. We can then
expect to have overestimated the value of cd, too. This re-
mark will be important when comparing to numerical data.

Finally, we can evaluate condition �13� at late times, t
�A0 /�h, using the conjecture �8� for nd and the result
nh�A , t��ch / �A+�ht�2 deduced from scaling in Sec. III A
and to be shown analytically in Sec. IV A. In this case we
find, independently of A1,

�d

�h
=

cd

ch

1

�� − 1�
. �19�

This equation can be used to relate the two factors �d and �h.
Indeed, replacing cd and ch by their expressions as functions
of � one finds

�d

�h
= �1, A1 = 0,

2�−2 � 1.019, A1 = A0.
	 �20�

If, instead, we use cd as derived above and the analytic ch,
ch

an=0.022 972 we find

1.164 

�d

�h

 1.170. �21�

Since we derived Eq. �19� using the sum rules, it seems more
appropriate to use the values of cd and ch obtained from the
same relations. The values of �d and �h are then very close
and consistent with the relation that we shall find in the next
section using the approximate equation for the evolution of
domain areas �while Eq. �21� yields a too large value for �d�.

The condition Nph
�t�=Npd

�t�=Nh�t�=Nd�t� implies

cph
= − ch�1 − �� ,

cpd
= cd

1 − �

1 − �
, �22�

for critical Ising initial conditions.

2. Infinite-temperature initial conditions

The infinite-temperature initial conditions turn out to be,
after just a few time steps, equivalent to critical percolation
ones—see the numerical evidence in Sec. V A. The sum
rules yield, in this case,

cd =
��� − 2���� − 1�

2
� 0.029, �23�

ch =
cd

��� − 1�
� 0.027, �24�

�d

�h
=

cd

ch��� − 1�
= 1, �25�

where, for simplicity, we present results obtained with A1
=0 only.

The conditions Nph
�t�=Npd

�t�=Nh�t�=Nd�t� imply

cph
� = − 2ch�1 − �h��, cpd

� = 2cd

1 − �d�

1 − ��
, �26�

for critical percolation.

IV. STATISTICS OF AREAS: ANALYTIC RESULTS

Our analytic results are obtained using a continuum de-
scription of domain growth in which the nonconserved order
parameter is a scalar field, ��x� , t�, defined on a
d-dimensional space. For a review in this problem, see �1�.
Its evolution is determined by the time-dependent Ginzburg-
Landau equation or model A dynamics,

�
���x�,t�

�t
= �2��x�,t� −


V���

��x�,t�

+ ��x�,t� . �27�

The potential V is a symmetric double well, with
V��→ ±��=� and two minima at ±�0. � is a Gaussian dis-
tributed random scalar field with zero mean and correlation

���x�,t���x��,t��� = 2kBT�
d�x� − x���
�t − t�� . �28�

This white noise introduces thermal agitation. T is the tem-
perature of the thermal bath, kB is the Boltzmann constant,
and � is the friction coefficient. From now on we set the
units in such a way that kB=�=1. The low-temperature or-
dering dynamics from a disordered initial condition corre-
sponds to the growth of ordered domains of the two equilib-
rium states, ��x� , t�= ±�0, separated by interfaces. Using the
evolution equation �27� at zero temperature, Allen and Cahn
showed that in any dimension d the velocity, v, of each ele-
ment of a domain boundary is proportional to the local inter-
facial mean curvature, � �1,19�,

v = −
�h

2�
� . �29�

�h is a material constant with the dimensions of a diffusion
constant, and the factor 1 /2� is for later convenience. The
velocity is normal to the interface and points in the direction
of reducing the curvature. The dynamics is then purely cur-
vature driven at zero temperature.

Temperature fluctuations have a twofold effect. On the
one hand they generate equilibrium thermal domains that are
not related to the coarsening process. On the other hand they
roughen the domain walls thus opposing the curvature driven
growth and slowing it down. Then Eq. �29� is no longer
valid. However, it has been conjectured and verified numeri-
cally that, at least for averaged dynamic quantities well de-
scribed by the scaling hypothesis, all temperature effects are
captured by introducing a T dependent �h parameter. We
shall use this working hypothesis in the analytic part of our
paper and we shall put it to the test numerically.
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The number density of hull enclosed or domain areas at
time t as a function of their initial distribution is

n�A,t� = �
0

�

dAi
�A − A�t,Ai��n�Ai,ti� �30�

with Ai the initial area and n�Ai , ti� their number distribution
at the initial time ti. A�t ,Ai� is the hull enclosed/domain area,
at time t, having started from an area Ai at time ti.

A. Hull enclosed areas

In two dimensions �20� we can immediately deduce the
time dependence of the area contained within any finite hull
by integrating the velocity around the hull,

dA

dt
= � vdl = −

�h

2�
� �dl = − �h. �31�

In the second equality we used the zero-temperature Allen-
Cahn equation �29�, and in the final one we used the Gauss-
Bonnet theorem. Integrating over time, with initial time ti,
we find

Ah�t,Ai� = Ai − �h�t − ti� . �32�

Therefore

nh�A,t� = �
0

�

dAi
�A − Ai + �h�t − ti��nh�Ai,ti�

= nh�A + �h�t − ti�,ti� . �33�

In deriving this result we have implicitly assumed that a
single domain cannot split into two, and that two domains
cannot coalesce. A little thought shows that neither process is
possible for two-dimensional curvature-driven growth since
both processes require that two parts of a single domain
boundary �for splitting� or parts of two different domain
boundaries �for coalescence� come together and touch. But it
is clear that the curvature-driven dynamics always acts to
prevent this happening, since the velocities of the domain
boundaries at the incipient contact point are in opposite di-
rections.

The initial distributions, nh�Ai , ti�, are given by the Cardy-
Ziff results displayed in Eq. �1�—assuming, in the case of a
quench from infinite temperature, that the system rapidly sets
into the critical percolation condition �see Sec. V A�. For t
� ti one immediately recovers the results in �5�,

nh�A,t� =
2ch

�A + �ht�2 , T0 → � , �34�

nh�A,t� =
ch

�A + �ht�2 , T0 = Tc, �35�

in the limit A0�A�L2, i.e., for hull enclosed areas much
larger than microscopic areas but much smaller than the area
of the system.

Equations �34� and �35� have the expected scaling forms
nh�A , t�= t−2f�A / t� corresponding to a system with character-
istic area proportional to t or characteristic length scale

R�t�� t1/2, which is the known result if scaling is assumed
�1�. Here, however, we do not assume scaling—rather, it
emerges from the calculation. Furthermore, the conventional
scaling phenomenology is restricted to the “scaling limit”
A→�, t→� with A / t fixed. Equations �34� and �35�, by
contrast, are valid whenever t is sufficiently large and A
�A0. This follows from the fact that, for large t, the forms
�34� and �35� probe, for any A�A0, the tail �i.e., the large-A
regime� of the Cardy-Ziff results, which is just the regime in
which the latter is valid. The restriction A�A0 is needed to
justify the use of Eq. �29�, which breaks down when the
reciprocal of the curvature becomes comparable with the
width of a domain wall.

The averaged area enclosed by a hull is then given by

�A��t� =
� dA�A�nh�A�,t�

� dA�nh�A�,t�
�36�

� �ht �37�

with a time-independent prefactor that behaves as �A0
2 ln L2�

for large system sizes. The reason for the divergent prefactor
in the infinite size limit is that a site can belong to several
hulls.

B. Domains

For the domains we need to write an evolution equation
and derive, at least approximately, the area at time t,
Ad�t ,Ai�, of a domain with initial area Ai. We shall show that
the time-dependent number density of domain areas is in-
deed given by our guess, Eqs. �8� and �9�, for the two classes
of initial conditions.

Our strategy is to exploit the smallness of the parameter
ch�0.023. Although ch is a constant, we can exploit a formal
expansion in ch in the following sense. Since the total num-
ber of hulls per unit area is proportional to ch, the number of
interior hulls within a given hull is also proportional to ch,
and so on. This means that, in dealing with domains we need
consider only the first generation of interior hulls, since the
number of “hulls within hulls” is smaller by a factor ch. With
this approach, only one approximation—a kind of mean-field
one on the number of first-generation hulls within a parent
hull �see below�—is necessary.

The same line of reasoning shows that, in a hypothetical
theory in which ch can be treated as variable, the distinction
between hulls and domains will disappear in the limit ch
→0. In this limit, therefore, the exponents � and �� must
both approach the value 2, i.e., we can formally write �=2
+O�ch� and ��=2+O�ch�. Furthermore, due to the factor 2
that appears in Eq. �34� but not in Eq. �35�, the ratio
���−2� / ��−2� must approach the value 2 in the limit ch

→0. The actual value of this ratio is 187 /91=��=2.055, not
very far from 2. Indeed the difference is of order ch as
expected.

We can use the same line of argument to discuss cd, ch,
�d, and �h. Since in the �hypothetical� limit ch→0, hulls and
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domains become identical, it follows that in this limit one
must have cd→ch and �d→�h, i.e., cd=ch+O�ch

2�, and �d

=�h�1+O�ch��. All of these results are consistent with the
relations �15� and �19� derived from the sum rules �12� and
�13�.

1. The evolution of domain areas

Take a hull with enclosed area Ah at time t. This hull is
also the external border of a domain, which may itself con-
tain one or more “first level” subdomains whose external
borders form the internal border �which may be discon-
nected� of the original domain. These external borders of the
first level subdomains are themselves “first-generation” hulls
lying within the parent hull. These interior hulls can them-
selves have interfaces in their bulk separating domains of the
reversed phase �higher generation hulls�, see Fig. 3 where we
show a sketch with this structure.

Let us call ��t� the number of first-generation hulls within
the parent one. It is clear that ��t� is semipositive definite,
monotonically decreasing as a function of time and reaching
zero at a given instant tmax, when all interior hulls disappear
and Ad=Ah thereafter. One can estimate tmax from 0
=Ah

int�tmax�=Ah
int�ti�−�h�tmax− ti�, which yields tmax− ti

=Ah
int�ti� /�h where the index int indicates that we are study-

ing here the first generation hull with maximal initial area
�all others having already disappeared�. It is clear that tmax
− ti is smaller but of the order of Ah�ti� /�h, where we re-
placed Ah

int�ti� by the initial area of the parent hull,

�tmax − ti� �
Ah�ti�

�h
. �38�

We wish to write a differential equation for the time evo-
lution of the parent domain area. It is clear that, at first order
in dt,

Ad�t + dt� = Ad�t� − �hdt + ��t��hdt , �39�

where the second term in the right-hand side represents the
loss in area due to the inward motion of the external domain
wall while the last term is the gain in area due to the outward

motion of the first-generation internal domain walls. This
gives

dAd�t�
dt

= − �h�1 − ��t�� . �40�

Differently from hull enclosed areas that always decrease
in size as time passes, domain can either diminish ��=0�,
increase ���1�, or conserve ��=1� their area in time.

2. The number of first-generation interior hulls

We cannot, of course, know the exact number of first-
generation hulls falling within a selected hull with enclosed
area Ah. We can, however, estimate it with an upper bound
obtained by counting all interior hulls and averaging over all
parent hulls using nh�A , t� derived in Sec. IV A. Thus, we
expect

��t� � ���t��Ah�t�,

���t��Ah�t� � Ah�t��
0

Ah�t�

dAnh�A,t�

=
chAh

2�t���h�t − ti� + A0�−1

�Ah�t� + �h�t − ti� + A0�
, �41�

where we include a small area cutoff, A0, in the denominator
of nh and, for concreteness, we use the hull enclosed area
distribution for critical Ising initial conditions. This equation
can be further simplified if one uses that at time t the hull
enclosed area we are interested in is given by

Ah�t� = Ah�ti� − �h�t − ti� . �42�

�We call here Ah�ti� the initial area of the hull.� Then

���t��Ah�t� =
ch�Ah�ti� − �h�t − ti��2

��h�t − ti� + A0��Ah�ti� + A0�
. �43�

Note that, although we overcounted the interior hulls by in-
cluding second-generation, third-generation, etc. hulls, the
number of these is of order ch

2 ,ch
3 , . . ., respectively, so this

treatment is exact to leading order in ch except for the re-
placement of ��t� by its average over all first-generation hulls
of the same area.

The most interesting cases are such that Ah�ti��A0, oth-
erwise the hull and domain areas are just identical or very
similar. In these cases ���ti��Ah�ti�

�chAh�ti� /A0. Expression
�43� has the following limiting values:

���t��Ah�t� � � chAh�ti�
�h�t − ti� + A0

, Ah�ti� � �h�t − ti� ,

ach, Ah�ti� � �h�t − ti� .
�

We used Ah�ti��A0 in the last case, and a is a numerical
constant of the order of Ah�ti�. The result is a very small
quantity, of the order of ch, in both cases. The remaining
mathematical possibility, Ah�ti���h�t− ti�, is not realized be-
cause Ah�t� cannot be negative.

While ��t� vanishes at tmax, see Eq. �38�, ���t��Ah�t� is dif-
ferent from zero at all times. Thus, Eq. �43� cannot be used

R1

R2

R3

R4

FIG. 3. �Color online� Sketch of a configuration with four cir-
cular hulls and domains. The parent hull has radius R1. There are
two first-generation hulls with radius R2 and R3 and one second-
generation hull with radius R4. �=2 in this example. The interior
border of the external domain is disconnected and has two
components.
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beyond the limit tmax when all internal hulls have already
disappeared and it is no longer correct to replace ��t� by
���t��Ah�t�.

The analysis of infinite temperature initial conditions is
identical to the one above with ch replaced by 2ch. Thus,
���t��Ah�t� is expected to take twice the value it takes for
critical Ising initial configurations.

We have checked the accuracy of this approximation nu-
merically by counting the number of first generation internal
hulls falling within each parent hull at different times. Figure
4 shows the results for the zero-temperature evolution of the
2dIM starting from T0→� and T0=Tc initial conditions.
While at very short times one sees deviations between the
numerical data and analytic prediction, the agreement be-
tween the two becomes very satisfactory for times of the
order of t=64 MCs and longer, as shown in the figure.

3. The instantaneous domain area

If we now replace ��t� by ���t��Ah�t� given in Eq. �43�, it is
quite simple to integrate the differential equation �40�. One
finds

Ad�t� = Ad�ti� − �h�1 + 2ch��t − ti� +
chA0

2

2�Ah�ti� + A0�

���1 +
�h�t − ti�

A0
�2

− 1	 + ch�Ah�ti� + A0�ln

��1 +
�h�t − ti�

A0
� .

Setting t= ti one recovers Ad�t�=Ad�ti� as required. In the
natural cases in which Ah�ti��A0 and for long times such
that �h�t− ti��A0, this expression can be rewritten as

Ad�t� = Ad�ti� − �h�1 + 2ch −
ch

2

�h�t − ti�
Ah�ti�

��t − ti�

+ chAh�ti�ln�1 +
�h�t − ti�

A0
� . �44�

The factor in the second term

�d�t� 
 �h�1 + 2ch −
ch

2

�h�t − ti�
Ah�ti�

� �45�

is a very weakly time-dependent function. Since t can take
values between the initial time, t= ti, and the maximum time
before the first-generation hull itself disappears, tmax= ti
+Ah�ti� /�h, �d�t� varies within the interval,

�h�1 +
3ch

2
� 
 �d�t� 
 �h�1 + 2ch� . �46�

These bounds are indeed very close. As expected from the
analysis of the sum rules, see Sec. III, �d takes a slightly
higher value than �h; it equals �h plus a small correction of
order ch �in practice, 1.035�h
�d
1.046�h using the ana-
lytic value for ch�.

The coefficient in front of the logarithm, chAh�ti�, is
O�ch�. The sum rules, imply ch=cd+O�ch

2�. Neglecting the
higher-order correction we can then replace ch by cd. The
same applies to Ah�ti�, which equals Ad�ti� plus a term O�ch�
that we can equally neglect. Thus Ah�ti��Ad�ti�
Ai. In this
way we obtain

Ad�t,Ai� 
 Ai − �d�t − ti� + cdAi ln�1 +
�h�t − ti�

A0
� .

Inserting this result into Eq. �30�, including the microscopic
area A0 as a small-area cutoff in the denominator of Eq. �1�,
then gives

nd�A,t� 
 cdA0
�−2�1 + cd ln�1 +

�d�t − ti�
A0

�	�−1

� �A + �d�t − ti� + A0�−�, �47�

where we have replaced �h by �d inside the logarithm, which
is correct to leading order in ch. Using the fact that cd is very
small and of the order of ��−2���−1�= ��−2�+O�ch

2�, as im-
plied by the sum rules, we can now exponentiate, correct to
leading order in cd, the logarithm in the curly brackets to
obtain

nd�A,t� 

cd�A0 + �d�t − ti���−2

�A + A0 + �d�t − ti��� . �48�

Finally we set the initial time, ti, to zero and write the mi-
croscopic area, A0, as �dt0 to obtain the expected form �8�,

nd�A,t� 

cd��d�t + t0���−2

�A + �d�t + t0��� , �49�

for the time-dependent number density of domain areas.
The same sequence of steps for infinite-temperature initial

conditions leads to the same form but with cd replaced by 2cd
and � replaced by ��. The effects of temperature are expected
to appear only through the parameters �d and �h once ther-
mal fluctuations are extracted from the analysis.

The averaged domain area is then given by

�A��t� =
� dA�A�nd�A�,t�

� dA�nd�A�,t�
=

1

Nd�t�
�50�

0

10

20

30

40

0 200 400 600 800 1000

Ah(t)/λht

ν

T0 = Tc

T0 = ∞

FIG. 4. �Color online� Comparison between ��t� and ���t��Ah�t�
for the T=0 evolution of the 2dIM with T0→� and T0=Tc initial
conditions. The measuring time is t=64 MCs. The curves are given
by Eq. �41� in the limit t� ti and Ah�t��A0, leading to the func-
tional form ���t��Ah�t�=chx2 / �1+x��chx when x�1, with x
=Ah�t� /�ht and �h=2.1, see Sec. V for an explanation of the choice
of this value.
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� �dt . �51�

V. STATISTICS OF AREAS: NUMERICAL TESTS

To test our analytic results we carried out numerical simu-
lations on the 2D square-lattice Ising model �2dIM� with
periodic boundary conditions using a heat-bath algorithm
with random sequential updates. All data have been obtained
using systems with size L2=103�103 and 2�103 runs using
independent initial conditions.

Domain areas are identified with the Hoshen-Kopelman
algorithm �21� while hull-enclosed ones are measured by
performing a directed walk along the interfaces, in analogy
with the algorithm in �15�. A detailed description of our al-
gorithm is given in Appendix A.

The equilibrium critical Ising initial conditions have one
spanning cluster �since the system is at the limit of the per-
colation threshold�, that grows during evolution. No other
spanning cluster is later formed. By contrast, equilibrium
infinite temperature initial conditions are below the critical
random percolation point in d=2 but often after 2 MC steps
two spanning clusters appear that also grow during evolu-
tion. After 20 MCs roughly 50% of the spins lie typically on
these clusters. This implies that we need to simulate a large
number of independent samples to obtain a good statistics.

It is important to note that the dynamics of the discrete
model includes processes that are not taken into account in
the continuous model, as given in Eq. �29�, for which we
derived our analytical results. Some of these processes are
the fission of a big domain into two smaller ones �that usu-
ally occurs by cutting a thin bottle neck that joined them�, or
the coalescence of two domains to form a bigger one. How-
ever, we shall prove that these processes are not important
and the dynamics of the discrete model is well described by
the analytic results.

A. Initial conditions

We used three types of initial conditions: equilibrium at
infinite temperature, T0→�; equilibrium at the critical point,
T0=Tc; equilibrium within the high-temperature phase, T0
=Tc+�T with �T�0.

We mimicked an instantaneous quench from T0→� by
using random initial states with spins pointing up or down
with probability 1 /2. Assigning site occupation to up spins
and vacant sites to down spins the infinite temperature initial
condition can be interpreted as a percolation problem at p
=0.5 and thus below the random percolation transition pc
=0.5927 in a square bidimensional lattice. Even if initially
away from criticality, in a few MC steps the hull enclosed
area distribution becomes the one in Eq. �1�, as shown in
panel �a� of Fig. 5. The initial distribution lacks large areas,
there being almost none with A�103, and the tail of nh falls
off too quickly well below the critical percolation curve. In a
few time steps large structures appear and the tail of the
distribution approaches the expected form at critical percola-
tion. Simultaneously, the weight at small areas diminishes
and the curve progressively gets flatter. This effect can also
be seen in Fig. 25 where we display data for perimeter

lengths. In panel �b� of Fig. 5 we display our numerical re-
sults for the domain area distribution, which are compatible
with the form �2�. It is intuitively clear why this must be so.
If the system is coarse grained on the domain typical scale,
R�t�, it will look completely disordered. When R�t� is large
compared to the lattice spacing, the disorder will be that of
continuum percolation, for which the critical density is one
half by symmetry in two dimensions �22,23�. It follows that
the coarsening system will be asymptotically at percolative
criticality, i.e., the dynamics self-tunes the system to perco-
lative criticality in two dimensions �provided R�t� remains
much smaller than the system size�. The data show that, as
far as the hull and domain area distributions are concerned,
this only takes a few Monte Carlo steps in practice. During
these few steps many small domains coalesce to form larger
ones meaning that the dynamics is dominated by processes
that are not taken into account by Eq. �29�. This argument
also shows that the domain distribution in the scaling limit
indeed has the predicted A−�� tail. It is interesting to remark
that the system approaches the percolative critical state not
by increasing p �indeed, the magnetization during the coars-
ening process initially remains close to zero�, but by decreas-
ing the value of pc, from 0.5927 to 0.5, as the correlation
between spins increases.

We can look at this from another perspective in the con-
text of the continuum model. Consider a random field ��x��,
symetrically distributed with respect to zero, with bounded
variance and two-point correlator C�r�= ���x����x� +r��� with
r= �r��. The zero contour lines of this field can be imagined to
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FIG. 5. �Color online� Early evolution of the infinite tempera-
ture initial condition. �a� In a few MC steps the hull enclosed area
distribution reaches the one of critical percolation �1�, whose slope,
−2, is shown by the straight line �6�. �b� The domain area distribu-
tion. The straight line is the power-law decay A−2.055 �10�.
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divide the plane into regions of black and white with each
contour line forming a boundary between black and white
regions. Provided that C�r� falls off faster than r−3/4 for large
r, this problem is known to belong to the standard percola-
tion universality class �23�. If we now identify ��x�� with the
order parameter field when well-defined domain walls �the
zero contour lines� have formed, we see that the resulting
domain structure corresponds to critical percolation.

In the plots we use a double logarithmic scale that serves
as a first check of the power-law decay of the probability
distributions but it is not accurate enough to examine the
value of the constants ch and cd. We delay the presentation of
a very precise test of these parameters to Sec. V B where we
analyze the time evolution of the distribution functions.

We obtained the initial states for the coarsening dynamics
at the critical temperature, T0=Tc, and at T0=Tc+�T �see
Fig. 6� after running 103 Swendsen-Wang algorithm steps.
We checked that the systems are well equilibrated after these
runs. The distribution of hull enclosed and domain areas at
Tc are consistent with the analytic forms—not shown.

B. Coarsening at zero temperature

1. Hull enclosed areas

In Fig. 7 we show the time-dependent hull enclosed area

distribution in double logarithmic scale, at seven different
times, following a quench from T0→�. The figure shows a
strong time dependence at small areas and a very weak one
on the tail, which is clearly very close to a power law. The
curves at small areas move downwards and the breaking
point from the asymptotic power law decay moves towards
larger values of A for increasing t.

In Fig. 10 �b� we zoom on the small area region �A
�103� where the time dependence is clearer and we scale the
data by plotting ��ht�2nh�A , t� against A /�ht with �h=2.1. We
tried other time-dependent factors but �ht with this particular
value of �h is the one yielding the best collapse of data at
small areas, A0�A��ht. For A larger than the typical value
�ht the time and �h dependence becomes less and less im-
portant. In Fig. 8 we show the data in their full range of
variation in log-log form to test the prediction nh�A , t��A−2

for large A. The data are in remarkably good agreement with
the prediction �34�—shown as a continuous curve in the
figure—over the whole range of A and t. The downward
deviations from the scaling curve are due to finite-size ef-
fects. The latter are shown in more detail in Fig. 9, where we
display the t=16 MCs results for several linear sizes. Finite
size effects appear only when the weight of the distribution
has fallen by many orders of magnitude �7 for a system with
L=103� and are thus quite irrelevant. In the tail of the prob-
ability distribution function �pdf� the numerical error is
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FIG. 7. �Color online� Number density of hull enclosed areas
per unit system area for the zero-temperature dynamics of the 2dIM
at seven times evolving from an infinite temperature initial condi-
tion. The lines represent Eq. �34� with ch=1 /8��3.
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FIG. 6. �Color online� Equilibrium number density of hulls per
unit area for the high-temperature phase of the 2dIM. The distribu-
tions seem power law for small areas, with a temperature-dependent
exponent that approaches 2 when T→Tc. Indeed, data for T=2.3

1.01Tc is almost coincident with Eq. �35�.
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FIG. 8. �Color online� Number density of hull enclosed areas
per unit system area for the zero-temperature dynamics of the 2dIM
evolving from an infinite temperature initial condition. The full line
is the prediction �34� with ch=1 /8��3 and �h=2.1.
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smaller than the size of the data points. The nearly perfect
agreement between the analytical theory and the data is all
the more impressive given that the curvature-driven growth
underlying the prediction �34� only holds in a statistical
sense for the lattice Ising model �24�. Indeed, even at small
values of A /�ht, where the lattice and continuous descrip-
tions are expected to differ most, the difference is only a few
percent, as we shall show below.

It is clear that the evolution of the hull enclosed area
distribution follows the same advection law �33�, with the
same value of �h, for other initial conditions. The evolution
from a critical temperature initial condition is shown in panel
�a� of Fig. 10. A fit of the data at small areas yields the value
of the parameter �h that, consistently with the analytic pre-
diction, takes the same value �h=2.1. In the bottom panel,
we compare the time-dependent hull enclosed area distribu-
tions for the initial conditions T0→� and T0=Tc and we
zoom on the behavior of nh�A , t� at small areas, A /�ht
10.
The two solid lines correspond to the numerator in nh being
equal to 2ch for infinite temperature initial conditions and ch
for critical Ising initial conditions. The difference between
the numerical data for the two initial states is clear and it
goes in the direction of the analytic prediction �a factor 2
difference in the constant�. Finally, while the log-log plot in

Fig. 8 suggests that the data are compatible with ch�0.023
this way of presenting the data is not precise enough to let us
quantify the accuracy with which we match the analytic pre-
diction. We test the numerical values of the constant ch in
detail in Sec. V where the numerical error is also estimated.

Moreover, Eq. �34� applies to any T0�Tc equilibrium ini-
tial condition asymptotically. Equilibrium initial conditions
at different T0�Tc show only a different transient behavior:
the closer they are from Tc, the longer it takes to reach the
asymptotic law, Eq. �34�. Equilibrium initial distributions,
for Tc�T0��, are shown in Fig. 6, while Fig. 11 shows an
example of their subsequent evolution. In the latter, both
analytic predictions, for T0=Tc and T0=�, are shown as solid
lines along with data for increasing times after a zero-
temperature quench from T0=2.5. In the first steps, the curve
follows the one for critical initial conditions at small A /�ht
and then departs to reach the one for infinite temperature
initial conditions at large A /�ht. At longer times, the devia-
tion from the critical initial condition line occurs at a smaller
value of A /�ht. Initially the system has a finite, though rela-
tively small, correlation length ��T�. Thermal fluctuations
with linear size of the order of � and also significantly larger
than � exist �see the discussion on the effect of thermal fluc-
tuations in Sec. V C�. Notice that ��T� does not correspond
exactly to the size of geometric domains: thermal fluctua-
tions are not perfectly described by domains of aligned spins,
since not all of them are correlated. At any given temperature
above Tc, fluctuations smaller than ��T� have the same sta-
tistics than those occurring at Tc and are thus described by
Eq. �35�, while domains larger than ��T� are not made of
correlated spins and thus are described by the infinite tem-
perature distribution, Eq. �34�. As time increases, the system
loses memory of the finite-size fluctuations and the
asymptotic state does not differ from the infinite temperature
one. Only when fluctuations exist over all spatial scales does
the asymptotic state differ.

This behavior can be interpreted as follows. At fixed A / t,
shorter times correspond to small areas while longer times
are related to larger areas. Very small areas correspond to
short linear sizes, of the order of the domains in the initial
configurations, and thus reminiscent of critical ones. Instead
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FIG. 10. �Color online� Number density of hulls per unit area
for the zero-temperature 2dIM evolving from critical initial condi-
tions. The initial states are obtained after running 103 Swendsen-
Wang algorithm steps. �a� The full �red� line is Eq. �35� with �h

=2.1 which again yields the best fit of the data at small areas. For
comparison we include with a dotted �blue� line the analytic predic-
tion for an infinite temperature initial condition, i.e., Eq. �34�. �b�
More details on the influence of the initial conditions. The two data
sets correspond to configurations taken at several times after a
quench from T0→� and T0=Tc. The solid lines are the analytic
predictions �34�, blue line, and �35�, red line.
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FIG. 11. �Color online� Effect of the initial condition tempera-
ture on the hull enclosed area distribution. The continuous lines are
the analytic results for equilibrium initial conditions at T0=� and
T0=Tc, bottom �red� and top �blue� lines, respectively. In between,
we present numerical data for two different times given in the key
after the quench from an initial state equilibrated at T0=2.5.
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large areas correspond to long linear sizes that are much
longer than the correlation length and closer to the ones
reached from the infinite temperature initial condition.

2. Domain areas

We now study the domain areas and perform the same
tests as above though focusing on the analytic predictions �8�
and �9�.

In Fig. 12 we display the number density of domain areas
in the scaled form for two initial conditions, T0→� and T0
=Tc, after removing any spanning domain from the statistics.
For comparison, in Fig. 13, the same distributions with the
spanning domains are shown. As done for the hull enclosed
areas we fit the parameter �d by analyzing the behavior at
small areas, A��dt, and we find, once again, that �d=2.1
yields the best collapse of data �see the discussion in Sec.
IV B�. We use the extrapolated value cd=0.025 obtained with
the numerical analysis described in full detail in Sec. V B 3.
Note that we expect the difference between cd and ch to be of
order ch

2, and thus rather hard to observe numerically.
Both sets of figures, 12 and 13, exhibit finite size effects

in the tail of the distributions, where the number of domain
areas has already decreased by several orders of magnitude.
As for the hull enclosed areas, the point where these finite
size effects cause the deviation from the collapsed curve
moves towards the right as the system size increases, becom-
ing less and less relevant. In Fig. 12, large domain areas

�violating the limiting condition A�L2� that would nonethe-
less be accounted for in an infinite system are here removed
since they span the system in one of the directions, leading to
the downward bending of the distribution. On the other hand,
in Fig. 13, when counting these domains, they are chopped
by the system boundaries, thus contributing to the distribu-
tion in a region shifted to the left, accounting for the bumps
seen in the figure.

3. Study of the constants ch and cd

In order to improve the data analysis we followed the
procedure used by Cardy and Ziff, who studied the finite area
scaling of the cumulative distribution between A and 2A �6�.
The method is as follows. For hull enclosed and domain
areas the total number of areas between A and 2A is
Nh,d�A ,2A�=�A

2AdA�nh,d�A��. Using the analytic prediction
for nh one finds 2ANh�A ,2A��ch for large areas at critical
Ising conditions and without the factor 2 at critical percola-
tion. Following Ref. �6�, we assume that there are power-law
finite area corrections and add a term such as aA−b to the
above expressions. From this relation one extracts the value
of ch. Similarly, for domains one can use
�1−��Nd�A ,2A� / ��2A�1−�−A1−��=cd+aA−b at critical Ising
initial and its modified form at critical percolation initial con-
ditions.

In the dynamic case we have
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FIG. 12. �Color online� Number density of domains per unit
area for the zero-temperature 2dIM evolving from T0→� �a� and
T0=Tc �b� initial conditions. In both figures the spanning clusters
have been extracted from the analysis �compare with Fig. 13 where
we include them�. The full �red� line represents Eq. �49�, with cd

=0.025 and ��=2.055 �a�, cd→cd /2 and �=2.027 �b�, and �d=2.1
in both cases.
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FIG. 13. �Color online� The same as Fig. 12, but with the span-
ning domains included in the statistics. Notice that due to the finite-
ness of the lattice, the actual area of these spanning domains are
smaller than the value they would have on an infinite system, gen-
erating the overshoot of the distribution for values of A close to L2.
The larger the system, the more to the right these peaks are
localized.

SICILIA et al. PHYSICAL REVIEW E 76, 061116 �2007�

061116-12



Nh,d�A,2A;t� 
 Nh,d�A,t� − Nh,d�2A,t� = �
A

2A

dA�nh,d�A�,t� .

�52�

Using the predictions for nh,d we find

Nh�A,2A;t� =
2chA

�A + �ht��2A + �ht�
�53�

and

Nd�A,2A;t� =
2cd��dt���−2

1 − ��
��2A + �dt�1−�� − �A + �dt�1−���

�54�

for T0→� and without the factor 2 and with the exponent ��
replaced by � for T0=Tc. To extract the values of the con-
stants ch and cd, we rewrite these forms as

�2A�−1�A + �ht��2A + �ht�Nh�A,2A;t� = ch + a� A

�ht
�−b

�55�

and

��dt�2−���1 − ���Nd�A,2A;t�

2��2A + �dt�1−�� − �A + �dt�1−���
= cd + a� A

�dt
�−b

�56�

and similarly for T0=Tc. a is a constant that takes different
values for different times. In Figs. 14–16 we show the out-
come of this analysis. We use the same scale on the vertical
axis in all plots to compare the accuracy of the results.

In Fig. 14 we show results for the hull enclosed areas. In
the top panel we study equilibrium data at Tc. The extrapo-
lation of the numerical data approaches the analytic predic-
tion for ch within a 2% accuracy. We use the value of the
exponent b proposed by Cardy and Ziff �6�. The estimation
from the approximate use of the sum rules is well above the
analytic prediction and numerical value. In the bottom panel
we test the value of ch in our dynamic prediction by studying
data at three instants, t=16,64,128 MCs, after a critical
Ising initial configuration. In this analysis we use the same
exponent, b=0.875, as in the study of the equilibrium data
and we fit the other parameters, ch and a. The fits of the
time-dependent data to straight lines extrapolate to the same
value that is, however, of the order of 5% off the analytic
prediction. Note the nonmonotonic character of the time-
dependence in the slopes a. One has to keep in mind that the
extrapolated value is very sensitive to the fit, in particular, to
how many data points are considered.

In the analysis of the infinite temperature initial condi-
tions we are forced to use dynamic results to reach, first the
critical percolation situation, and next follow the coarsening
evolution. In Fig. 15 we display this type of data for the
instants given in the key. The prediction from the fit is
slightly different from the analytic result at short times but it
approaches the analytic value, shown with a horizontal line,
at sufficiently long times �look at the t=128 MCs results�. In
conclusion we find

ch � 0.0229 ± 0.0015. �57�

Next we study the constant cd. First we use critical tem-
perature initial conditions using the dynamic results to avoid
the ambiguity introduced by the units restoring constant A0
in equilibrium. In short we find
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FIG. 14. �Color online� Study of ch using finite area scaling
implemented as in �6�. The numerical data correspond to
2ANh�A ,2A� in the equilibrium case and the left-hand side of Eq.
�56� in the dynamic case. �a� Equilibrium distribution of hull en-
closed areas at criticality. The upper horizontal line is the predic-
tions for ch stemming from the use of the sum rule. The lower
horizontal line is the analytic prediction. The intercept of the in-
clined straight line with x=0 is the numerical test of the analytic
prediction. �b� Study of ch during coarsening after a quench from
criticality to zero temperature. Note that the prediction from the fit
is slightly higher than the analytic value, see the discussion in the
text.
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FIG. 15. �Color online� Study of ch during coarsening after a
quench from T0→� to T=0 using finite-area scaling implemented
as in �6�. Note that the prediction from the fit weakly depends on
time.
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cd � 0.0251 ± 0.0015. �58�

Note that this value is slightly higher than ch, in accord with
the prediction from the sum rules and the analytic argument,
and the difference between the two �cd−ch�0.002� is
slightly smaller than the one that is obtained from the sum
rules.

C. Effect of the working temperature

Up to now we have considered quenches to a zero work-
ing temperature. In this section we investigate the effect of
having a finite temperature on the dynamics.

The arguments in Sec. IV rely on the T=0 Allen-Cahn
equation �29�. Temperature fluctuations have a twofold ef-
fect. On the one hand they generate equilibrium thermal do-
mains that are not related to the coarsening process. On the
other hand they roughen the domain walls thus opposing the
curvature driven growth and slowing it down.

Renormalization group treatments of domain growth dy-
namics �25� have led to the idea that a T=0 fix point controls
the domain growth for all T�Tc, i.e., that thermal fluctua-
tions are irrelevant to the asymptotic dynamics of the order-
ing system, their contribution being limited primarily to the
renormalization of temperature-dependent prefactors.

For the distribution of domain areas and hull enclosed
areas, one may expect that once equilibrium thermal domains
are subtracted—hulls and domains associated to the coarsen-
ing process are correctly identified—the full temperature de-
pendence enters only through the values of �h and �d, which
set the time scale.

The first step then is to identify the temperature depen-
dence of the parameter �d. The simplest and most direct way
to do this is to use the scaling hypothesis and analyze the
behavior of the spatial correlation

C�r,t� 

1

N
�
i=1

N

��si�t�sj�t����r�i−r�j�=r � m2�T�f� r

R�t�
� , �59�

where m�T� is the equilibrium magnetization density and a
�r�L and t0� t. Using R�t����d�T�t�1/2, the T dependence
of �d can be estimated either by collapsing all curves or by
studying the value of r at which C�r , t�=1 /2. The resulting

�d�T� obtained using these two prescriptions is shown in Fig.
17. �d�T� is a monotonically decreasing function of tempera-
ture, starting at �d�T=0�=2.1 and falling off to zero at Tc.
These results are consistent with the evaluation of �d,h�T�
from the analysis of nd,h�A , t�, see below, and it is at variance
with what was previously presented in Ref. �26�.

Assuming that �d vanishes at Tc one can derive the way in
which it does with a simple argument �27�. We require that
the coarsening law for coarsening below Tc, namely R�t�
����T�t�1/2, match critical coarsening at Tc, viz. R�t�� t1/z

with z the dynamic exponent, for T→Tc. Near �but just be-
low� Tc the coarsening length grows as �−a�T�t1/2 as long as
R�t����T� with ��T� the equilibrium correlation length. For
R�t� comparable with ��T�, this has to be modified by a func-
tion of R�t� /� and, since R�t�� t1/z at Tc, we can write

R�t� � �−a�T�t1/2f� t

�z�T�
� . �60�

In the limit ��T�→�, the � dependence must drop out. In
order to cancel the time dependence at large times, one needs
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FIG. 16. �Color online� Study of cd using finite area scaling
implemented as in �6�. cd extracted from time-dependent pdf evolv-
ing at T=0 after a quench from criticality. The numerical value of
cd is roughly the same for all times.
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FIG. 17. �Color online� Top panel: spatial decay of the equal-
time correlation, Eq. �59�, at fixed T=0 and several different times
t. Bottom panel: the T dependence of the parameters �d,h. Two sets
of data points are extracted from the analysis of the correlations
shown in the top panel. The data named half value are obtained
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f�x��x1/2 for x→�. This yields R�t�� t1/z, which fixes the
exponent “a” as a= �2−z� /2, giving ��T���−2a�T���Tc

−T���z−2�. Inserting the exact value �=1 and the numerical
value z=2.15�2� �28� implies

�d�T� � �Tc − T�0.15. �61�

Note that we are matching two nonequilibrium growth
laws—the one below Tc and the one at Tc—not an equilib-
rium and a nonequlibrium one. The data in Fig. 17 are still
far from the critical region where this small power-law decay
should show up.

Finite working temperatures also affect the distribution of
domain areas. In Fig. 18 the raw data at t=128 MCs is
shown for four working temperatures. Upward deviations
with respect to the result of zero working temperature are
prominent in the small-area regions of the figure, and in-
crease with temperature.

In Fig. 19 �a� we display the raw data at the working
temperature T=1.5, for several times. Notice that although
the curves move downwards, the small areas region becomes
time independent. This region also fails to collapse �b� with
the proposed scaling using the temperature dependent values
of �d�T�. The reason is that the distribution counts thermal
equilibrium domains, that is to say, fluctuations that are
present in an equilibrated sample at the working temperature,
but are not due to the coarsening process. Thus, these fluc-
tuations should be identified and eliminated from the statis-
tics. We tried to apply the method introduced by Derrida �2�,
and extended by Hinrichsen and Antoni �29�, to eliminate
thermal domains, but the results were not satisfactory, as not
all of them could be eliminated. Thus, instead of removing
each thermal domain, we tried to directly remove their con-
tribution to the distributions by simulating samples in equi-
librium at the working temperature, starting with a fully
magnetized state, and computing the number density of ther-
mal domain areas. These data are shown with green data
points in Figs. 19 and 20. Surprisingly enough, thermal fluc-
tuations generate areas that are larger than one would have
naively expected. Equilibrium arguments suggest that the av-
eraged area of thermally generated domains scale as AT
��2�T� with ��T� / p0� f−�1−T /Tc�−�, �=1, and f−=0.18
�30�. This estimate yields, for example, AT�4A0 at T=1.5.

In equilibrium at this temperature the average size of the
domains found numerically is �AT��1.5A0. However, the
probability distribution of thermal areas has a non-negligible
weight—as compared to the one of coarsening domains—
that goes well beyond this value. For example, in Figs. 19
and 20 we see that the crossover between the thermal area
distribution and the coarsening area distribution occurs at
A�10A0.

In Fig. 20 we also present data for the dynamic distribu-
tion at three different times, and compared with the analytic
prediction using �d�T� estimated from the analysis of the
global spatial correlation, see Fig. 17. We conclude that the
agreement between analytic prediction and numerical results
is very good in the region in which the thermal domains are
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FIG. 18. �Color online� The number density of hull enclosed
areas after t=128 MCs at the working temperatures T=0.5,1.5,2
and T=Tc.
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FIG. 19. �Color online� The number density of hulls for T
=1.5 after different times �a� and the scaling of these data points
�b�.
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FIG. 20. �Color online� The contribution of thermal domains
obtained by simulating an equilibrated sample at the working tem-
perature T=1.5, along with the evolution of the distribution of do-
main sizes after a quench to the same temperature.
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subdominant, i.e., when the blue dynamic curves deviate
from the green equilibrium one, indeed the regime in which
the analytic calculation is expected to apply.

One can also use the results in Fig. 21 to estimate the
value of �d�T�. Indeed, a fit of the numerical data for areas
larger than the value at which the equilibrium thermal con-
tribution �green points� deviates from the dynamic one,
yields the values of �d�T� �and �h�T�� shown in Fig. 17. This
analysis allows us to extract independent predictions for
�d�T� and �h�T�. We find that the qualitative T dependence is
the same. As regards the absolute values, the numerical data
yield �h�T�
�d�T� on the whole range. Note that the sum
rules suggested �d=�h and the analytic prediction �d=�h
+O�ch�.

VI. STATISTICS OF PERIMETERS AND FRACTAL
PROPERTIES

The analytic argument described in Sec. IV can be ex-
tended to study the distribution of domain wall lengths or
perimeters. In this section we present the analytic prediction
for this function together with numeric results that confirm it.
We study two types of domain boundaries: those associated
to the hulls and those associated to the domains that is to say
that include external and internal perimeters. In the simula-
tions we define the length of the boundary as the number of
broken bonds.

A. Initial conditions

1. Equilibrium at T0=Tc

In equilibrium we find numerically that the domain areas
and their corresponding boundaries are related by �see Fig.
22 where the scatter plots have been averaged to make the
trend clearer�

Ah � ch
�i�p�h

�i�
, with �h

�i� � 1.47 ± 0.1,

Ad ��cd
�i��p�d

�i��
, �d

�i�� � 1.14 ± 0.1 for p � 50,

cd
�i��p�d

�i��
, �d

�i�� � 1.47 ± 0.1 for p � 50,
	

in the whole range of variation. Note that the longest lengths,
p�103–104 may be affected by finite size effects given that
the linear size of the simulating box is L=103. The spanning
clusters are not counted �note that their perimeters would be
severely under estimated due to the periodic boundary con-
ditions�. The exponent �d

�i���1.47±0.1 is consistent with
the result in �18� mentioned in Sec. II C. The constants take
the values ch

�i�=0.15, cd
�i��=0.15, and cd

�i��=0.70. The differ-
ence between the small and large p regimes in the relation
between areas and perimeters for the domains is due to the
existance of holes in the large structures. The small domains
and hulls are just the same objects because the former do not
have holes within.

Numerically, we find that the number densities of hull and
domain lengths at critical Ising conditions are �see Fig. 23�

nh�p,0� � p−�h with �h � 2.48 ± 0.05,

nd�p,0� � �p−�d
�

, �d
� � 2.17 ± 0.05 for p � 50,

p−�d
�

, �d
� � 2.48 ± 0.05 for p � 50.

	
The value of �h is to be compared to the analytic result �h
=27 /11�2.454 �10�. It is interesting to notice that the dis-
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FIG. 21. �Color online� Zoom on the number density of domain
areas at t=128 MCs at three working temperatures given in the key.
The black lines are the equilibrium distributions at T=1.5 and T
=2 and the other lines �pink, blue, and green� represent our analytic
prediction for the coarsening areas.
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in equilibrium at T0=Tc.
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FIG. 23. �Color online� Distribution of domain and hull lengths
in equilibrium at T0=Tc.
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tribution of domain lengths is not a single power law in
constrast to the distribution of domain areas.

2. Equilibrium at T0=�

After a few time steps evolving at T=0 from the infinite
temperature initial condition, we reach critical percolation
conditions.

In Fig. 24, we show the area perimeter relation for hulls,
in equilibrium at T0→� and after a few time steps. The
analysis of this figure and the corresponding one for domains
yields

Ah � ch
�i��p�h

�i��
, with �h

�i�� � 1.12 ± 0.1,

Ad ��cd
�i���p�d

�i���
, �d

�i��� � 1.01 ± 0.1 for p � 50,

cd
�i���p�d

�i���
, �d

�i��� for p � 50.
	

The constants take the values ch
�i��=0.96 and cd

�i���=1.50. The

exponent �d
�i��� cannot be determined numerically since criti-

cal percolation is not accessible exactly.
As we can see in Fig. 25, the initial weight of the number

density at large values of the perimeter is lower than ex-
pected at critical percolation. In a few time steps long perim-

eters develop and the weight reaches the asymptotic power
law at large values of p while it looses weight at small values
of p. This effect is the same as the one observed in the study
of the initial and early times number density of areas, see the
discussion in Sec. V A and Fig. 5. For the hull and domain
length distributions one finds

nh�p,0� � p−�h� with �h� � 2.12 ± 0.05,

nd�p,0� � �p−�d�
�

, �d�
� � 2.01 ± 0.05 for p � 50,

p−�d
�

, �d
� for p � 50.

	
The analytical result for the hull exponent in critical perco-
lation is �h�=15 /7�2.14 �11�.

3. General comments on both initial cases

It is interesting to note that the exponents characterizing
the number density of perimeter lengths at the two initial
conditions are significantly different. They are approximately
equal to 2.5 at Tc and 2 at T0→�. This is to be contrasted
with the behavior of the area number densities for which the
exponents were identical for hull enclosed areas and very
close indeed for domains.

The exponents � and � are linked by the fact that each
hull enclosed area or domain area is in one-to-one relation to
its own boundary. Thus, nh�A ,0�dA=nh�p ,0�dp and one
finds

nh�p,0� �
ch�h

�i�

ch
�i� p−1−�h

�i�
, �62�

which implies

�h = 1 + �h
�i�. �63�

These conditions are also satisfied for the primed �T0→��
quantities. Within our numerical accuracy these relations are
respected, for instance,

�h� � 2.12, �h�
�i� � 1.12, T0 → � ,

�h � 2.48, �h
�i� � 1.47, T0 = Tc.

Similarly, for domain areas and domain boundaries one
obtains

nd�p,0� �
cd�d

�i�

cd
�i��−1 p−1−��−1��d

�i�
, �64�

therefore,

�d = 1 + �� − 1��d
�i�. �65�

These relations are satisfied for both �d
�i�� and �d

�i�� as well
as for primed �T0→�� quantities. They are respected by our
measures.

The main sources of error in the determination of the
exponents and the constants in the study of the initial condi-
tions are the following: �i� statistical errors, although we
have a rather good sampling; �ii� the choice of the large
area-perimeter limit that is not perturbed by finite size ef-
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FIG. 24. �Color online� Relation between areas and perimeters
in equilibrium at T0→� and after a few time steps when critical
percolation is approximatively reached.
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fects, and �iii� the fact that the T0→� initial condition is not
exactly at critical percolation. We estimated the magnitude of
the error to be ±0.1 in the � exponents, and ±0.05 in the �
exponents, which correspond to, roughly, less than 10% in
both cases. Within this level of accuracy, the relations be-
tween exponents �65� and �63� are satisfied.

B. Time evolution at zero temperature

1. Hulls

After a quench from T0=Tc, the hull enclosed areas and
their corresponding perimeters, during coarsening at zero
temperature, obey the scaling relations �see Fig. 26�

A

�ht
� �h� p

��ht
��h

, �66�

with

��h
� � 1.37 ± 0.2

�h
� � 0.26

	 for
A

�ht
� 50, �67�

and

��h
� � 1.83 ± 0.2

�h
� � 0.06

	 for
A

�ht
� 10, �68�

and, after a quench from T0→�,

A

�ht
� �h�� p

��ht
��h�

, �69�

with

��h�
� � 1.12 ± 0.2

�h�
� � 0.38

	 for
A

�ht
� 50, �70�

and

��h�
� � 1.83 ± 0.2

�h�
� � 0.057

	 for
A

�ht
� 10. �71�

We note that the relation between area and perimeter exhibits
two distinct regimes. During the coarsening process a char-
acteristic scale A*�t���ht develops such that domains with
area A�A* have the same exponent as in the initial condi-
tion �structures that are highly ramified with � smaller than
two� and domains with A�A* are regular ���2� �as shown
in Fig. 27 the structure of these small domains does not
depend on the initial condition�. This phenomenon is remi-
niscent of an unroughening transition occurring at a velocity
�h. The same features were observed by Grest and Srolovitz
�31� and Fialkowski and Holyst �32� in the study of the do-
main fractal dimension during coarsening.

The hull structures of any size do not have holes, there-
fore the crossover we see is of pure dynamical origin, con-
trasting the idea presented in �33�, where the crossover in the
domains where explained by only geometrical reasons.

Note that we estimated the error in the exponents � to be
±0.2 and thus more important than in the analysis of the
initial conditions. The reason is that the crossover from the
small area to the large area regime is not sufficiently sharp
and the choice of the fitting interval introduces an additional
source of error. Indeed, note that in Eqs. �66� and �69� we did
not use the intermediate regime 10


A
�ht 
50 to fit the power

laws.
In analogy with the derivation in Sec. IV for the time-

dependent number density of domain areas, the time-
dependent number densities of hull and domain-wall lengths
are given by

nh,d�p,t� =� dpi
�p − p�t,pi��nh,d�pi,ti� �72�

with nh,d�pi , ti� the initial condition and p�t , pi� the perimeter
length of a boundary at time t that had initial length pi at
time ti.
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FIG. 26. �Color online� Time evolution of the hull enclosed area
vs perimeter relation for T0=Tc and different times indicated in the
legend.
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Let us here discuss the hull lengths. In this case one can
simply use the exact number density of hull enclosed areas,
nh�A , t��ch / �A+�ht�2 for, say, T0=Tc and Eq. �66� to relate
time-dependent areas to their perimeters on the two regimes
of large and small areas. After a little algebra one derives

��ht�3/2nh�p,t� �
�h

��h
�ch� p

��ht
��h

�−1

�1 + �h
�� p

��ht
��h

��2 �73�

for small areas, A /�ht�10, and

��ht�3/2nh�p,t� �
�h

��h
�ch� p

��ht
��h

�−1

�1 + �h
�� p

��ht
��h

��2 �74�

for large areas A /�ht�50. Note that these expressions satisfy
scaling—see Eq. �11�. Interestingly, the scaling function,

f��x�=x�h
�−1 / �1+�h

�x�h
�

�2 with x= p /��ht reaches a maxi-
mum at

xmax = � �h
� − 1

�h
���h

� + 1�
�1/�h

�

�75�

and then falls off to zero as another power law. There is then
a maximum at a finite and positive value of p as long as
�h

��1, that is to say, in the regime of not too large areas.
The numeric evaluation of the right-hand side yields xmax

= pmax / ���ht��3 which is in the range of validity of the
scaling function f�. The behavior of the time-dependent pe-
rimeter number density for long perimeters is controlled by

Eq. �74� that falls off as a power law f��x��x−�1+�h
��. Al-

though the function f� also has a maximum, this one falls
out of its range of validity.

Above we used the critical Ising parameters. The results
after a quench from T0→� follow the same functional form
with the corresponding primed values of � and � and ch
→2ch.

The power law describing the tail of the number density
of long perimeters is the same as the one characterizing the
initial distribution, since �h

�=�h
�i� and then 1+�h

�=�h. There-
fore, the decay of the time-dependent number density at long
perimeters after a quench from T0=Tc and T0→� are distin-
guishably different with �h�2.5 and �h��2. This is to be
contrasted with the small difference in the area number den-
sities that fall with two power laws that are so close �powers
of 2 and 2.05� that are impossible to distinguish numerically.

In Fig. 28, panels �a� and �b�, we display the time-
dependent perimeter number densities for a system evolving
at zero temperature after a quench from T0=Tc and T0→�,
respectively. Notice that the perimeter length definition we
are using on the lattice can only take even values and thus
when constructing the histogram we have to take into ac-
count the extra factor of 2 in the binning.

In Fig. 29 we display the scaling plot of the number den-
sity of hull lengths and we compare it to the analytic predic-
tion �73� and �74�. The data are in remarkably good agree-
ment with the analytic prediction; the lines represent the
theoretical functional forms for long and short lengths, and
describe very well the two limiting wings of the number
density. The maximum is located at a value that is in agree-
ment with the prediction, Eq. �75�.

2. Domains

We studied the relation between domain areas and their
corresponding perimeters during coarsening at zero-
temperature finding that the scaling forms

A

�dt
� �d� p

��dt
��d

�76�

with

��d
� � 1.16

�d
� � 0.63

	 for
A

�dt
� 50 �77�

and

��d
� � 1.83

�d
� � 0.057

	 for
A

�dt
� 10, �78�

after a quench from T0=Tc and
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FIG. 28. �Color online� The time-dependent number density of
perimeters evolving at T=0 from an initial condition at T0=Tc �a�
and T0→� �b�. Note that the time-dependence is visible in the
whole range of values of p �while in the area number densities the
large area tails were very weakly dependent on time, see Fig. 7�.
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A

�dt
� �d�� p

��dt
��d�

�79�

with

��d�
� � 1.01

�d�
� � 0.52

	 for
A

�dt
� 50 �80�

and

��d�
� � 1.83

�d�
� � 0.06

	 for
A

�dt
� 10, �81�

after a quench from T0→�.
These results are shown in Fig. 30. Note that the large

area results match the behavior of the initial conditions in
both cases, and small domains are much more compact that
the initial ones.

With the same line of argument exposed above we can
analyze the statistics of the domain walls, that is to say, in-
cluding external and internal perimeters. One finds basically

the same results as for the hulls; for critical Ising initial con-
ditions

��dt�3/2nd�p,t� �
�d

��d
�cd� p

��dt
��d

�−1

�1 + �d
�� p

��dt
��d

��� �82�

for small areas and its obvious modification for large areas.
For T0→� one replaces �d and �d by the primed quantities
and cd→2cd. The scaling analysis of the number density of
domain-wall lengths is displayed in Fig. 31 for both initial
conditions. Once again we find a very good agreement be-
tween the analytic predictions and the numerical data.

C. Finite temperature evolution

Once we analyzed the statistics of perimeters in the zero-
temperature dynamics we focus on the effects of a finite
working temperature. We briefly list the results below with-
out presenting the data.

1. The area-perimeter relations

For large areas we find the same exponent as for zero-
temperature coarsening that is also the initial condition ex-
ponent �T0→� or T0=Tc�. This is reasonable since the large
structures are still “unaware” of the coarsening process and
thus retain the form they had in the initial configuration. For
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FIG. 29. �Color online� Scaling of the time-dependent number
density of hull lengths evolving at T=0 from an initial condition at
T0=Tc �a� and T0→� �b�. The solid black lines represent the theo-
retical prediction valid for A /�ht�10 and for A /�ht�50. The
agreement between theory and numerical data is again very impres-
sive. The small grey line in panel �a� represents the slope in panel
�b�, showing that in contrast with domain size distribution, perim-
eter distribution is very sensitive to initial conditions. The isolated
data points that lie above the scaling function correspond to re-
versed, isolated spins within a bulk of the opposite sign that give
rise to a perimeter length p=4 �four broken bonds�. The area num-
ber densities also showed this anomalous behavior for A=1.
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evolving at T=0 after a quench from T0=Tc �a� and T0→� �b�. In
both cases �d=2.1.
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small areas, instead, we see domain walls roughening due to
thermal agitation but it is hard to extract the value of the
exponent �� with sufficient accuracy.

2. Perimeter number densities

The scaling of the perimeter number densities and the
functional form for the scaling function predicted analyti-
cally describe the numerical data with high precision once
the values of the exponents �, the prefactors �, and the pa-
rameter � are modified to take into account thermal agitation
�for absolute area values larger than A�10A0, this value
limits the range of areas where the effect of thermal fluctua-
tions is larger than the ones of coarsening�. The analytic
prediction is very accurate in the region of small coarsening
domains, A /�d,ht�10 and A�10A0 where the maximum is
located, and in the region of large coarsening domains,
A /�d,ht�10 and A�10A0, for both domains and hulls and
the two initial conditions.

VII. CONCLUSIONS

In this paper we studied the statistics and geometry of hull
enclosed and domain areas and interfaces during the non-
equilibrium dynamics of curvature driven pure coarsening in
two dimensions. The analytical part of our work relies on the
Allen-Cahn equation derived from the continuous Ginzburg-
Landau field theory in two dimensions while the numerical
part of it dealts with Monte Carlo simulations of the 2dIM.
Our main results are the following:

�i� We proved scaling of the various number densities
studied.

�ii� We derived the exact number density of hull enclosed
areas and hull lengths; we obtained approximate expressions
for the number density of domain areas and domain-wall
lengths.

�iii� The geometrical properties and distribution of the
time-dependent large structures �by large we mean much
larger than the average ones� are the ones of critical continu-
ous percolation �for all initial conditions equilibrated at T0
�Tc� and critical Ising �for T0=Tc�. The long interfaces re-
tain the fractal geometry imposed by the equilibrium initial
condition and the scaling function of all number densities
decay as power laws.

�iv� Instead, small structures progressively become regu-
lar and the area perimeter relation is A� p2.

�v� We took into account the effects of a finite working
temperature by correctly eliminating purely thermal fluctua-
tions and thus correctly identifying the coarsening structures.
The temperature effect thus amounts to introducing the tem-
perature dependence in the prefactor in the growth law,
R�t�����T�t�1/2. ��T� is a monotonically decreasing function
of T that vanishes at Tc.

It is important to stress that our analytic results rely on the
use of the Allen-Cahn result for the velocity of an almost flat
interface. Thus, they would be expected to hold only in a
statistical sense and for large structures in the lattice model.
Surprisingly, we found with numerical simulations that the
number density area distributions in the 2dIM match the ana-
lytic predictions for very small structures, and even after a
few MC steps evolution of a critical Ising initial condition
for which rather rough interfaces exist.

Using the Allen-Cahn result and a variety of numerical
measurements we verified the well-known result for pure
coarsening with nonconserved order parameter: there is a
characteristic growing length that increases in time as t1/2.
The mesoscopic analysis presented here allows us to demon-
strate that the reason for the growth of the characteristic
length is the disappearance of small structures.

Our analytic results hold only in two dimensions. In Ap-
pendix B we summarized the behavior of the distribution of
domain lengths in the Ising chain. As expected from scaling
arguments, this quantity scales with the typical domain
length, R�t�� t1/2 but the form of the scaling function is very
different from the one in two dimensions: the pdf vanishes at
zero scaling argument �x=0�, it then increases linearly to
reach a maximum and then falls off to zero exponentially. On
the other hand, we cannot extend the analytic argument to
dimensions higher than two since the hull enclosed volumes
no longer decrease with time in a manner that does not de-
pend on their own volume �20�.

This paper and �5� open the way to a number of related
studies. For instance, it would be interesting to extend the
analysis presented here to dynamic clusters of correlated
spins �droplets�, that are known to describe thermal fluctua-
tions close to the transition �see �34,35� for a review�. These
droplets are smaller than the geometric clusters in which they
are embedded because some of the neighboring parallel spins
are discarded �by a temperature-dependent criteria� for not
being correlated �remember that even at infinite temperature,
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FIG. 31. �Color online� Scaling of the time-dependent number
density of domain-wall lengths evolving at T=0 from an initial
condition at T0=Tc �a� and T0→� �b�. The solid black lines repre-
sent the theoretical prediction valid for A /�ht�10 and for A /�ht
�50. The origin of the isolated data points is the same as in Fig. 29.
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where all spins are uncorrelated, there are domains of paral-
lel spins�.

Two-dimensional coarsening with conserved order param-
eter is another problem that deserves a careful study along
these lines.

In �5� we include a preliminary analysis of the hull and
domain structure in the finite temperature dynamics of the
bidimensional random bond ferromagnetic Ising model after
a quench from infinite temperature. In such a disordered case
a finite working temperature is necessary to help the inter-
faces depin from pinning centers in the quenched disordered
potential through thermal activation. We first computed the
typical domain radius that scales the time-dependent spatial
correlation, C�r , t�� f�r /R�t��, in the scaling regime. Due to
the presence of quenched disorder R�t� strongly depends on
temperature and the strength of randomness and it is slower
than the simple square root behavior of the pure Ising case.
We then showed numerically that the number density of hull
enclosed and domain areas scale as R4�t�nh,d�A , t�
�g�A /R2�t�� for areas satisfying 10−1�A /R2�t� and that are
smaller than the cutoff set by finite size effects. The effect of
a nontrivial typical radius R�t� determined by the quenched
disorder can be tested in the intermediate regime, say 10−1

�A /R2�t��101, where the quality of the scaling plot is ex-
cellent. The scaling function g�x� does not depend on the
disorder strength satisfying the hyperscaling hypothesis �1�.
For smaller areas, say A /R2�t��10−1, the contribution of
thermal domains with domain walls roughened by disorder is
important. We shall give more details on the domain mor-
phology of the quenched disordered coarsening problem in a
separate publication �36�.

These results give an idea of the richness and complexity
of coarsening phenomena even in the absence of quenched
randomness. We expect them to be of help in understanding
the fluctuating dynamics of even more complex situations,
such as spin-glasses and glassy problems �37�, in which the
mere existence of a domain growth of two competing equi-
librium phases is not even established.
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APPENDIX A: ALGORITHM USED TO IDENTIFY HULL
ENCLOSED AREAS

In order to obtain the size of each hull in an L�L system,
a biased walk along the interior border of each domain is
performed, with the hull enclosed area being updated at each

step. This algorithm is related to, but different from the
Grossman-Aharony proposal.

Labelling. The N sites are initially indexed from 0 to N
−1 �top-left=0� while the domains �geometric, Coniglio-
Klein, etc.� are identified and labelled by the Hoshen-
Kopelman algorithm �21�. By construction, all sites in each
domain receive the �unique� label corresponding to the
smaller index among its spins.

Starting point. The putative starting site for the walk is the
spin whose index identifies the cluster. In some cases �for
example, when the cluster crosses a border�, it may not be
the leftmost and/or topmost site, as it should in order to be
counted correctly by the implementation of the algorithm
below. Although such domains may be excluded from the
statistics, for finite sizes the introduced bias is unacceptable.
Thus, before starting, we try to find another site in the same
cluster above or to the left of the original spin, where a new
starting site may be found. Once this first site is correctly
identified, we assign a height y0.

The walk. From the starting point, we try to turn clock-
wise around the domain border. Viewed from the incoming
direction, the attempted move is performed in the sequence:
left, front, right, and backwards. For the sake of notation, we
label the four directions with the indices shown in the Table
I. Thus, for example, if the previous step was 0, the at-
tempted order will be 1, 0, 3, and 2.

The area. The first step sets the area to the value A1=y0
+1. As the walk proceeds, both and area and the height are
updated, Ai+1=Ai+�A and yi+1=yi+�y �in this order�, where
�A and �y depend also on the former direction �see Table I�.
At the end of the walk, when the departure site in reached, if
the last direction is 1, we increase A by −y. Care should be
taken when the starting point has right and bottom neighbors
belonging to the same cluster �but not the bottom right diag-
onal�, because in this case the walk should only be finished
after the second time the starting point is visited.

APPENDIX B: THE ONE-DIMENSIONAL CASE

For the sake of comparison we present in this appendix
results for the domain size distribution in the one-
dimensional Ising chain. The 1D ferromagnet with nearest-
neighbors interactions is given by the Hamiltonian

H = − J�
i

sisi+1 �B1�

where the spins are si= ±1 and J�0. The system evolves
through heat bath dynamics, where each spin tries to align
with its local field �with a temperature-dependent probabil-
ity�.

We measure the domain length distribution at time t,
n�� , t� �1
�
L� after quenching the system from T0→� to
a final, working temperature, T. There is no finite static criti-
cal temperature and the system orders ferromagnetically only
at T=0. At all finite temperatures a completely disordered
initial condition starts evolving in a coarsening regime in
which regions of finite length order and subsequently crosses
over to equilibrium in the paramagnetic phase. Differently
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from the higher-dimensional case where domain growth is
driven by interfacial tension, in d=1 coarsening is driven by
the diffusion of domain walls and annihilation when they
meet.

In the infinite temperature initial condition the spins are
uncorrelated and n�� ,0�=2−�, while in equilibrium, the nor-
malized distribution is also exponential as it corresponds to
the distribution of domains of a paramagnet in a field:
n�� ,��=r�1−r��−1, with r= �1+exp�2���−1 �38�.

During the coarsening regime, the distribution of domain
sizes obeys the scaling behavior

n��,t� = ���t��−1f� �

���t��� �B2�

where the time-dependent average length is ���t��=2��t
�39,40�, independently of temperature and saturates at
������=1 /r after a time that roughly grows as exp�4 /T�, see
Fig. 32. At zero working temperature the universal function
f�x� is given by �39–42�

f�x� = ��x , x � 1,

exp�− Ax + B� , x � 1,
	 �B3�

where the constants are known exactly: A=1.3062 and B
=0.597 �40�, see Fig. 33. Differently from higher dimen-
sions, here as large clusters coalesce, there is no formation of
small clusters �compared with the typical cluster�. This fact

TABLE I. Incremental area contribution for each step during the
oriented walk along the domain border. The values depend both on
the present �t� and former steps �t−1�. On the right we show the
labelling of the four possible directions.

t − 1 t ∆A ∆y

0 0 0 1

0 1 0 0

0 2 y + 1 −1

0 3 y + 1 0

1 0 −y 1

1 1 −y 0

1 2 0 −1

1 3 1 0

2 0 −y 1

2 1 −y 0

2 2 0 −1

2 3 0 0

3 0 0 1

3 1 1 0

3 2 y + 1 −1

3 3 y + 1 0

2
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FIG. 32. �Color online� The average domain length at finite
temperature, ��t�=2��t, independently of temperature in the
domain-growth regime before saturation.
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FIG. 33. �Color online� Collapsed distributions of the �rescaled�
probability distribution of domain lengths after a quench to T=0 for
L=105 and times t=23, . . . ,29. All data collapse onto an universal
curve whose tail is exponential �40�. Inset: the distribution for short
length scales where the universal function is f�x�
�x. Notice that
the average domain length is different from the typical one.
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is at the origin of the dip in the pdf close to � / ���=0 �see
Fig. 34�.

At finite working temperatures, because of the thermal
fluctuations, small clusters are created at a constant

temperature-dependent rate. As, say, one spin flips within a
domain not only there is a new domain with length �=1, but
the host domain has been cut in two pieces of relative much
shorter length. Thermal agitation thus decreases the depth of
the dip. When x�1, f�x� is still well fitted by Eq. �B3�. In
the opposite regime, x�1, instead thermal fluctuations di-
minish the dip and the behavior deviates from the linear
scaling function, as can be seen in Fig. 35.
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