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The energetics of the stochastic process has shown the balance of energy on the mesoscopic level. The heat
and the energy defined there are, however, generally different from their macroscopic counterpart. We show
that this discrepancy can be removed by adding to these quantities the reversible heat associated with the
mesoscopic free energy.
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I. INTRODUCTION

This Rapid Communication demonstrates the relations be-
tween the “mesoscopic heat” which came out in the context
of the energetics of a single realization of stochastic pro-
cesses �1� �the stochastic energetics, for short� and the
�usual� heat that can in principle be measured experimentally
by calorimetric techniques or be calculated from microscopic
theories or simulations.

The method of stochastic energetics has been applied to
analyze the energetic aspects of various ratchet models �see a
review �2,3� and the references therein�. More recent appli-
cations are about the fluctuation theorem �FT� �4–6�, the
steady-state thermodynamics, �7�, as well as the breaking of
fluctuation-dissipation �FD� relation �8,9�. The experimental
assessment of heat and work from the fluctuation of Brown-
ian particle is also achieved �6,10�. The basic idea of ener-
getics of a single stochastic trajectory has been extended to
the chemical reaction �11� �the list is not complete�.

However, along a particular trajectory of stochastic pro-
cess, almost nothing has been discussed about the explicit
relation between the heat in the conventional thermodynam-
ics and the “heat” defined by the stochastic energetics. �Here-
after, we systematically use the quotation mark, “heat,” etc.,
to mean those concept of stochastic energetics.� The “heat”
satisfies the first law, or the energy balance together with the
suitably defined “energy” on the mesoscopic level. The work
defined there satisfies the second law, that is, the positivity of
the averaged irreversible work, through Jarzynski’s nonequi-
librium work relation �12�. The energetics on the mesoscopic
level thus shows a thermodynamic structure which is proper
to this level of description. What is still missing is the link
between this framework and the conventional thermodynam-
ics, in which the heat has been measured by using a micro-
scopic mediums �liquid and/or gas molecules or conduction
electrons, etc.�. If the “energy” appearing in the stochastic
model, such as the Langevin equation, originates simply
from an external field �e.g., of optical tweezers �10�� or from
a nonentropic restoring force �e.g., of a brass-wire holding a
pendulum �6��, then the “heat” can be identified with the heat
in the conventional thermodynamics. Contrastingly, the dis-
crepancy between the “heat” and the conventional heat arises

when the “energy” contains the entropic contribution due to
those microscopic degrees of freedom projected out to
achieve the mesoscopic description.

To make the subject clear, let us suppose that a micron-
sized magnetic bead in water is leashed at the point x� =0
through a polymer chain and that a magnetic trap constitutes
a static potential well around x� =a� �0. For simplicity we
assume that the polymer is ideal. We further assume that the
arrangement is such that the bead undergoes temporal bista-
bility, either being trapped around x� =a� when the polymer
chain is stretched to the distance ��a� �, or wandering around
x� =0 when the chain is relaxed and fluctuating. The main
question is how much heat is released to or absorbed from
the surrounding water when the bead switches from one of
the bistable states to the other, allowing also for the change
of a� in time. The point is that, although the bistable states
can be represented by a double-well “potential” for the bead,
it is only the magnetic trap that realizes a potential hole
while the ideal chain exerts purely entropic restoring forces.
�We should remember that the kinetic energy of the ideal
chain is independent of the chain’s conformation.� The mea-
sured heat should depend only on the potential energy of the
magnetic trap, which microscopic calculations should pre-
dict. The framework of stochastic energetics predicts, how-
ever, that the �mesoscopic� “heat” is absorbed from the en-
vironment whenever the bead climbs up the “potential”
barrier, and desorbed during the down-hill motion from the
barrier. Below we will show the protocol to convert the
“heat” prediction of stochastic energetics into the measurable
heat, or the heat with the objectivity.

The idea is a straightforward generalization of what is
known in the equilibrium statistical mechanics. We will,
therefore, first summarize the result of the latter discipline
�the next section�, and then go on to the stochastic dynamics
�the remaining sections�.

As for the description of ensemble behavior using the
Fokker-Planck equation, Ref. �13� developed a reasoning
similar to that presented in the present paper. In particular,
the authors of �13� studied two-component �fast and slow�
Brownian system, investigated the thermodynamic relation
for the fast and slow components, and reached conclusions
which are consistent with those obtained in the present paper.
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II. EQUILIBRIUM STATISTICAL MECHANICS
OF MESOSCOPIC VARIABLES

Suppose that the total system consist of the system whose
Hamiltonian is H�x ,y ,a� and a heat bath of the temperature
T. �We could start from the whole isolated system, except
that the argument is more complicated.� Here a stands for the
external control parameter�s�, and we have divided, for the
later use, the system’s degrees of freedom into two groups, x
and y. We can define the Helmholtz free energy F�a ,��
��= �kBT�−1� through the canonical partition function,
Z�a ,��,

e−�F�a,�� = Z�a,�� = Trx,y e−�H�x,y,a�, �1�

where the suffices x ,y of Trx,y indicates the degrees of free-
dom over which the trace should be taken. We can also in-

troduce the mesoscopic �or Landau� free energy, F̃�x ,a ,��,
by eliminating only the degree�s� of freedom, y,

e−�F̃�x,a,�� = Try e−�H�x,y,a�. �2�

We are particularly interested in the case where the variables
x and y represent, respectively, the slow and fast variables of
the system. In the context of the example described in the
Introduction, the slow variable, x, denotes the position of the
magnetic bead, while the fast variables, y, describe the local
movements of the monomers of the polymer chain, or even
the motion of the surrounding water molecules. Then

e−�F̃�x,a,�� gives the relative probability density for the slow
variable, x, given that the parameters a and � are fixed.

By definition we have the relation

e−�F�a,�� = Trx e−�F̃�x,a,��. �3�

We shall say that a quantity has the objectivity, if this
quantity satisfies the following two conditions: �I� it can be
defined on the three levels of descriptions, �x ,y ,a ,��,
�x ,a ,�� and �a ,��, corresponding to Eqs. �1�–�3�, respec-
tively, and �II� the magnitudes of the quantity for these de-
scriptions are essentially the same, except for the fluctuations
inherent to the description levels. The first example is the
force conjugate to the parameter a: Differentiating each
terms of �1�–�3� with respect to a, we have

f̃�x,a,�� = Try�e��F−H� f̂� ,

f�a,�� = Trx�e��F−F̃� f̃� = Trx,y�e��F−H� f̂� , �4�

where the external force conjugated to the parameter a is
defined on the different levels, f�a ,��	�F�a ,�� /�a,

f̃�x ,a ,��	�F̃�x ,a ,�� /�a, and f̂�x ,y ,a�	�H�x ,y ,a� /�a.
The second quantity with the objectivity is the energy �not
the “energy”�. Differentiating each term of �1�–�3� with re-
spect to �, we have

Ẽ�x,a,�� = Try�e��F−H�H� ,

E�a,�� = Trx�e��F−F̃�Ẽ� = Trx,y�e��F−H�H� , �5�

where E�a ,��	���F�a ,��� /�� and Ẽ�x ,a ,��
	���F̃�x ,a ,��� /�� stand for the energies of the system, as
is H�x ,y ,a� on the microscopic level. The above relation-

ships indicates that �i� it is F̃�x ,a ,�� that governs the prob-

ability weight of x on the mesoscopic level, while �ii� it is Ẽ
whose equilibrium average over x coincides with the thermo-
dynamic energy E. The “correction” term for the latter from
the former is nothing but the entropic term, which we obtain

by rewriting slightly the definition of Ẽ mentioned above,

Ẽ − F̃ = − T
�F̃

�T
. �6�

III. STOCHASTIC ENERGETICS AND THE HEAT

If the time scale of the slow variable�s� x is well separated
from that of fast variable�s� y �as well as all the others related
to the thermal environment�, and if the temperature of the
environment can be regarded to be constant, we may use the
Markovian description such as the Langevin equation to
simulate the fluctuations of x near the canonical equilibrium.
In the overdamped case, the equation writes

�
dx

dt
= −

�F̃�x,a,��
�x

+ ��t� , �7�

where � is the friction constant for x, and ��t� is the white
Gaussian random force with zero mean and the correlation,

��t���t���=2�kBT��t− t�� �14�. The factor 2�kBT assures the
canonical equilibrium distribution if a is fixed. As in the

static case summarized above, it is F̃�x ,a ,�� that gives the
bias for the variable x. The “energy” balance along a particu-
lar realization of the stochastic process writes �1�

dF̃ = d�W̃ + d�Q̃ , �8�

where we use d �not d�� to mean the total differential at
constant temperature, i.e., d=dx� /�x+da� /�a, while the

work d�W̃ and the “heat” d�Q̃ brought to the system are
defined by �N.B. all the multiplications below should be in-
terpreted as of Stratonovich type�

d�W̃ 	
�F̃

�a
da , �9�

d�Q̃ 	 �− �
dx

dt
+ ��t�
dx =

�F̃

�x
dx . �10�

We should remember that the eliminated degree�s� of free-
dom y are supposed to follow x and a fast enough that any
non-Markov properties is excluded in Eq. �7�. It means that
the heat dissipated can be captured by the change of the
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pertinent entropy, −�F̃ / �T . �A related argument is also found

in �15�.� In order to convert d�Q̃ into the measurable heat,

d�Qm, it is, therefore, sufficient to add to both d�Q̃ and dF̃
the differential of the “correction” term found in Eq. �6�, that
is

d�Q̃ � d�Qm 	 d�Q̃ − Td
�F̃

�T
,

dF̃ � dẼ 	 dF̃ − Td
�F̃

�T
. �11�

Now the “energy balance” equation �8� is converted to the
new one that includes only the quantities with objectivity,

dẼ = d�W̃ + d�Qm. �12�

This expression holds for a particular realization of the
Langevin equation �7�, as does Eq. �8�, which could be di-
rectly verified experimentally or calculated using the original

Hamiltonian H. Note that the term, −Td��F̃ /�T�, in Eq. �12�
is the total differential, to which both the change of x and
that of a contribute. For cyclic processes this term has, there-
fore, no cumulative effects. In the context of the fluctuation
theorem about the “heat,” the distribution of the �measur-
able� heat may deviate from that of the “heat.”

In the case of the example discussed in the Introduction,
we may assign the variables y to the degrees of freedoms
associated to the monomers of the ideal chain. For the

“potential energy,” F̃�x� ,a� ,��,we may write F̃�x� ,a� ,��
=U�m��x� −a��−TS�p��x��, where U�m��x� −a�� represents the po-
tential energy due to the magnetic trap, and S�p��x�� is the
entropy due to the ideal polymer chain. By substituting this
form into Eq. �12�, we find the concrete expression, term by
term ��U denotes the gradient of U�,

dU�m��− �U�m��x� − a��da�� + ��U�m��x� − a��dx�� �13�

as it should be from the argument in the Introduction on one
hand, and also as a mathematical identity on the other hand.
Experimentally, we should take account of the heat exchange
with the magnetic bead as well as the effect of polymer con-
formations on the solvent.

The change of F̃�x ,a ,�� through the change of x is sup-
posed to be a quasistatic work for the fast degrees of free-
dom, y. The chain should, therefore, release the heat even
when the chain is spontaneously stretched near x� =0. This
statement does not contradicts with the above analysis; it is
the thermal environment that does the work to displace the
bead, gathering the energy nearby. The heat −TdS�p� is, there-
fore, compensated around the system. However, if one can
measure the heat even closer, some local transfer of heat
around the chain and the bead should be observed. In gen-
eral, where to measure the heat d�Qm depends on to what
extent we have included the fast degrees of freedom as y.

IV. CASE OF DISCRETE STATES

It is straightforward to generalize the above analysis to
the case where the system’s state is discretized. Suppose that
the probability Pj�t� for the system to be in the jth state
obeys the master equation,

dPj

dt
= �

j
�Pjwj→i�a,�� − Piwi→j�a,��� , �14�

where the transition rate wi→j�a ,�� from the ith state to the
jth one writes �16–19�

wi→j�a,�� = �0e−���̃i,j�a,��−F̃i�a,���, �15�

where the constant �0 is an attempting frequency, and

�̃i,j�a ,��= �̃ j,i�a ,�� is the height of the free-energy barrier
between the states i and j. The above form of the transition
rate assures the canonical equilibrium probability,

Pi
�eq��a ,��=e��F�a,��−F̃i�a,���, as the detailed-balance state.

The energetics of a particular trajectory corresponding to
the above master equation has long been presented �see, for
example, �20��: If a trajectory includes the transition from
the state i� to the state i�+1 at the time t� with 1	�	n and
0
 t1
 ¯ 
 tn
 t, the “energy” balance between t=0�	t0�
and t= t�	tn+1� is written as follows:

�F̃ = ��W + ��Q̃ , �16�

with

�F̃ = F̃in+1
„a�t�,�… − F̃i1

„a�0�,�… , �17�

��W = �
�=1

n+1

�F̃i�
„a�t��,�… − F̃i�

„a�t�−1�,�…� , �18�

��Q̃ = �
�=1

n

�F̃i�+1
„a�t��,�… − F̃i�

„a�t��,�…� . �19�

These relations correspond to Eq. �8� in the continuum case.
To transform to the balance equation with objectivity, we

can again use the correspondence relations �11�: The energy
balance relation,

�Ẽ = ��W̃ + ��Qm, �20�

holds with

�Ẽ 	 �F̃ − T�
�F̃

�T
, �21�

��Qm 	 ��Q − T�
�F̃

�T
, �22�

where the total difference in the correction term is defined by

T�
�F̃

�T
	 T� �F̃in+1

„a�t�,�…

�T
−

�F̃i1
„a�0�,�…

�T

 . �23�
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To conclude, we have related the “heat” of the stochastic
energetics with the conventional heat along a single realiza-
tion of stochastic process. For the moment, the “energy” and
“heat” have only begun to be assessed experimentally �6,10�.
The direct measurement of the fluctuating observable heat,
d�Qm, will be a future experimental challenge. The possibil-

ity to measure directly d�Q̃ is an open theoretical problem.
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