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Modeling highway-traffic headway distributions using superstatistics
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We study traffic clearance distributions (i.e., the instantaneous gap between successive vehicles) and time-
headway distributions by applying the Beck and Cohen superstatistics. We model the transition from free phase
to congested phase with the increase of vehicle density as a transition from the Poisson statistics to that of the
random-matrix theory. We derive an analytic expression for the spacing distributions that interpolates from the
Poisson distribution and Wigner’s surmise and apply it to the distributions of the net distance and time gaps
among the succeeding cars at different densities of traffic flow. The obtained distribution fits the experimental
results for single-vehicle data of the Dutch freeway A9 and the German freeway AS.
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In empirical highway-traffic observations [1], it has been
found that traffic can be either free or congested. In free-flow
conditions, drivers can choose their own speed. The dis-
tances between cars are uncorrelated, and thus follow a Pois-
son distribution. Traffic congestion is a road condition char-
acterized by slower speeds, longer trip times, and increased
queueing. It occurs when traffic demand is greater than the
capacity of a road (or of the intersections along the road).
Kerner [2] classified the congestion regime into two distinct
phases: synchronized flow and wide moving jams. In syn-
chronized flow, the speeds of the vehicles are low and vary
quite a lot between vehicles, but the traffic flow remains
close to free flow. In wide moving jams, vehicle speeds are
more equal and lower, and time delays can be quite large.
Extreme traffic congestion, where vehicles are fully stopped
for periods of time, is colloquially known as a traffic jam.
Besides Kerner’s three-phase theory, congested traffic has
been described in terms of five congestion phases of different
spatiotemporal properties, and their combinations [3,4]. A
velocity dependent randomization variant of traffic cellular
automata leads to the emergence of four distinct phases: free-
flowing traffic, dilutely congested traffic, densely advancing
traffic, and heavily congested traffic [5].

The question whether the transition from one regime to
another is a smooth crossover or is a result of a genuine
phase transition is still not settled in most traffic models.
Measurements of traffic breakdown on various highways by
Kerner and Rehborn [6] indicate a first-order transition be-
tween free-flow and synchronized traffic. Some traffic cellu-
lar automata models are suggested to exhibit phase transi-
tions (see, e.g., [7] and references therein). However, the
existence of such a transition can only be explicitly demon-
strated in some limiting cases where certain dynamical pro-
cesses are deterministic. Asymmetric chipping models,
where a single particle hops to a nearest-neighbor site at a
constant rate, suggest that the jamming phase transition does
not take place. Rather, the system exhibits a smooth cross-
over between free-flow and jammed states, as the car density
is increased [8].

Krbilek and Seba studied the statistics of bus arrivals
close to the Cuernavaca city center [9] where the distances
between buses is optimized. They found that the Gaussian
unitary ensemble (GUE) of random-matrix theory (RMT)
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where D is the mean spacing, successfully models the bus
spacing distribution, and also the bus number variance mea-
suring the fluctuations of the total number of buses arriving
at a fixed location during a given time interval. RMT models
the Hamiltonians of chaotic systems as members of an en-
semble of random matices that depends only on the symme-
try properties of the system. GUE models systems violating
time reversal symmetry. Krbdlek and Seba justified the GUE
properties of the bus arrival statistics by regarding the buses
as one-dimensional interacting gas. Traffic is treated as a gas
of interacting particles (vehicles) described by a distribution
function with time evolution given by a Boltzmann equation.
The steady state solution is given by the Boltzmann factor.
The probability density function for the positions of the
charges is given by exp(—BV) times a constant, where V and
B are the potential energy and the inverse temperature of the
gas, respectively. Dyson has shown several years ago that the
exact level statistics of random-matrix ensembles is obtained
for Coulomb interaction between the gas particles, when the
car positions are identified with the eigenvalues of the en-
semble matrices [10]. GUE corresponds to a value of B=2.
Abul-Magd [11] found that the spacing distribution of GUE
agrees with data measuring the gaps between parked cars on
four streets in central London [12], where it is difficult to
find a parking place. In light of these empirical findings, we
expect GUE to reasonably describe traffic in the phase of
wide (moving) jams, which are localized structures propagat-
ing upstream [2] with a mean spacing D between vehicles
close to the minimum (safe) gap.

We shall therefore regard formula (1) as an empirical re-
sult for jammed traffic. On the other hand, the distances be-
tween cars if free-flow traffic are uncorrelated, and the spac-
ing distribution, follow the Poisson distribution

1
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Other forms of congested traffic that constitute synchronized
flow [2], whose main characteristic is the apparent absence
of a functional flow-density form, may be considered as a
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transition between (almost) regular dynamics and chaos. In
this paper, we describe them using the concept of supersta-
tistics (statistics of a statistics).

Superstatistics has been applied to model systems with
partially chaotic classical dynamics within the framework of
RMT in Refs. [13,14]. The formalism of superstatistics has
been proposed by Beck and Cohen [15] as a possible gener-
alization of statistical mechanics. The superstatistics concept
is very general and has been applied to a variety of complex
systems (see [16] and references therein). Essential for the
superstatistical approach is the existence of an intensive pa-
rameter, which fluctuates on a large spatiotemporal scale
compared to the fluctuations of the constituents of the sys-
tem. In congested traffic, there is a relatively fast dynamics
given by the velocity of the vehicle and a slow one given by
the traffic density, which is spatiotemporally inhomogeneous.
The two effects produce a superposition of two statistics, i.e.,
superstatistics. In fact, a traffic headway is inhomogeneous
in space and in time. Effectively, it may consist of many
spatial cells, where there are different values of the traffic
density. Here the flow will always increase (decrease) with
increasing density. In time series of flow-density measure-
ments, the flow might increase or decrease, in sharp contrast
to what is observed for the free-flow and jammed phase. The
measured time series may consist of many time slices. This
“irregularity” of the time series has been quantified by using
the cross-correlation function [17] between density and flow.
It is very close to 1 in free flow and the jams but almost O for
synchronized flow. The order parameter introduced in [18] to
reflect the degree of the internal interaction of vehicles takes
a large value for synchronized flow, whereas free flow and
the jam match its small values as weak mutual interactions.

Within the superstatistics framework, the car ensemble
compromises various groups of cars jammed with different
“local” mean spacing. We express any statistic P of a (suffi-
ciently chaotic) congested traffic as an average of the corre-
sponding statistic P°)(D) for a Gaussian random ensemble
over the local mean level spacing D. The superstatistical
generalization is given by

P= f : F(D)PO(D)dD. (3)
0

Our goal in the present paper is to show that nearest-
neighbor-spacing distribution (NNSD) obtained by substitut-
ing Pgug(s) for P9(D) in Eq. (3), provides a plausible ex-
planation for the observed car-spacing distribution at
arbitrary traffic densities. The form of the probability distri-
bution P as a weighted sum over equilibrium distributions
P9 up to now is based on purely phenomenological argu-
ments. No fundamental derivation of Eq. (3) from the basic
principles has been given. In this case the main problem is
the relationship between the weights f(D) of this expansion
and specific random processes governing the system dynam-
ics, which is currently the main direction of researches car-
ried out in the field of superstatistics (see, e.g., Ref. [19]).
Following Sattin [20], we evaluate f(D) by using the prin-
ciple of maximum entropy. Lacking a detailed information
about the mechanism causing the deviation from the predic-
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tion of RMT, the most probable realization of f(D) will be
the one that extremizes the Shannon entropy S=
—J5f(D)In f(D)dD with the following constraints: (i) Basic
for most statistical applications is the distinction between
average quantities and their fluctuations. The fluctuation
properties are defined in RMT for unfolded spectra, which
have a unit mean level spacing. We thus require
Jof(D)DdD=1. (ii) Vehicle headway distributions are a mea-
sure of narrow intervals of traffic densities. We require that
mean level density of the superposed GUE’s (D7')
=[{f(D)D7'dD is fixed. With these constraints, the maximi-
zation of § yields

ﬂm=ammm4—4%+%ﬂ, 4)

where a and D, are parameters, which can be expressed in
terms of the Lagrange multipliers of the constrained extrem-
ization, and C(a,Dy)=1/2DyK,(2a), where K,(x) is a
modified Bessel function of the second kind. The parameter
D, is given by the condition of (D)=1 as

_ Ki(2a)

= K, 2a) (5)

The parameter « defines the dispersion of the local mean
spacing, whose variance is given by

KQa)K;2a)

- [K,(2a))?
1+[0.536 274 + 4 In(2a)]a? + O(&?), for small «a,
- i+O(L), for large a.
2 o
(6)

The distribution (4) tends to &(D-1) at large «, which
corresponds to traffic jams by assumption.

We note that the constraint (ii) imposed here is different
from the corresponding constraint used in [14], which re-
quires the existence of (D2). Namely the present choice has
recently been found [21] to produce a distribution of local
density of states v=1/D which is very similar to the one
obtained by Altshuler and Prigodin [22] for strictly one-
dimensional disordered chains, which has been successfully
applied in the numerical simulation of the closed wire (see,
e.g., [23]). In addition, the present constraint (ii) is more
suitable for analysis of traffic data, such as the data to be
considered in this paper, where vehicle spacings are taken
from separate intervals of traffic density.

We now apply superstatistics to calculate the NNSD for a
system undergoing a transition out of chaos described by
GUE statistics. For this purpose, we substitute Egs. (5) and
(6) into Eq. (4) to obtain
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where D, is given by Eq. (5).

We now try to model the transition of traffic from the
free-flow regime to that of a moving jam as a dynamical
transformation from the Poisson statistics to that of a GUE.
Accordingly, the traffic headway NNSD at intermediate traf-
fic densities has an intermediate behavior between the Pois-
son and GUE distributions (3) and (5). A quantitative inter-
pretation of this model is provided by the superstatistical
generalization of RMT. In the following, we show that the
superstatistical spacing distribution in Eq. (7) is suitable for
describing clearance distribution at arbitrary traffic density.

The distributions of space gap between vehicles
(i.e., clearances in the traffic terminology) are recorded by
double induction-loop detectors continuously during ap-
proximately 140 days on the Dutch two-lane freeway
A9 [24]. The macroscopic traffic density was calculated
for samples of N=50 subsequent cars passing a detector.
The region of the measured densities
pE[0,85 vehicle/km/lane] is divided into 85 equidistant
subintervals. The measured data in each density subinterval
include, for each lane, the passage time of each vehicle, its
velocity, and its length. From this, the individual bumper-to-
bumper distance s; among the succeeding cars [ith and
(i—1)th] are determined. The bumper-to-bumper distance s;
among the succeeding cars [ith and (i—1)th] is calculated
(after eliminating car-truck, truck-car, and truck-truck gaps).
The mean distance among the cars is rescaled to 1 in all
density regions. The car-spacing distributions of four density
regions, which have been reported in Ref. [25] are shown in
Fig. 1 by histograms. The curves are the best fit to the su-
perstatistical distribution (7). The figure demonstrates the
high quality of agreement between the proposed model and
the experiment. The best-fit values of the superstatistical pa-
rameter « are 0.16, 0.48, 2.1, and 9.3, for density intervals
centered around p=0.5, 4.5, 25.5, and 81.5 vehicle/km/lane,
respectively. Interestingly, if we disregard the first interval
where the spacing distribution is nearly Poissonian, we find
that the best-fit values of « increases linearly with p such
that

Pla,s) = 2

c=0.10£0.1. (8)

a=cp,

In Ref. [25], the empirical clearance distributions are suc-
cessfully compared with a one-dimensional thermodynami-
cal particle gas model. The author considers a system of
identical particles on the circumference of a circle. The par-
ticles interact with a repulsive potential inversely propor-
tional to their mutual distance. The agreement between ex-
perimental and calculated distributions is obtained by
varying one free parameter (inverse temperature 8) that rep-
resents the traffic density. In spite of the success of this
model, it is not obvious to us that (equilibrium) thermostatics
can describe all of the different traffic phases in a similar
way.
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FIG. 1. (Color online) Probability density P(s) for scaled spac-
ing s between successive cars in traffic flow, taken from Ref. [25].
Histograms represent the clearance distributions computed for traf-
fic data from a four density region, p&(0,1),(4,5),(25,26),
(81,82) (in vehicle/km/lane). The curves represent the predictions
of superstatistical model (8) where the best-fit values of the super-
statistical parameter « are 0.16, 0.48, 2.1, and 9.3, respectively.

The second quantity we look at is the time-headway dis-
tribution, which is the time elapsing between two vehicles
passing the detector. In principle, time headways are associ-
ated with space headways once the latter are measured in
narrow vehicle-density intervals. The required single-vehicle
data include, for each lane, the passage time t? of vehicle i,
its velocity v;, and its length /;. From this, we determine the
individual net to time gaps as t;=1'—#) | ~1;/v;. Kerner et al.
[26] measured single-vehicle data sets on the three-lane free-
way section of the German freeway A5-South. They reported
the time-headway distributions for the free-flow, synchro-
nized flow, and moving jam phases. We calculated the mean
values 7 of the net to time gaps in these distributions to be
1.52, 1.82, and 2.29 s, respectively. The distributions P(7),
where 7=1/7, are compared in Fig. 2 with the superstatistical
distribution in Eq. (7). The agreement between the empirical
and superstatistical distributions is very good. The best-fit
values of the parameters « take large values (=5.9, 15, and
13, respectively) compared to those obtained in fitting the
headway data for the same traffic phase. The corresponding
values of the variance o2 of the parameter distribution f(D)
are quite small, being 0.084, 0.033, and 0.038, respectively.
Due to the slow decrease of the variance o at large values of
a [see last line of Eq. (6)], the distributions P(7) look very
similar for all three phases. A possible reason for the large
values of « is the additional fluctuation of the mean time
headway introduced by the mean-velocity fluctuation to that
of the local mean space gap D. Surprisingly, the best-fit
value of the superstatistical parameter « is almost the same
for both synchronized flow and the jam (a=15, 13, respec-
tively), both have almost a GUE distribution.

To summarize, the space-gap distribution between ve-
hicles in traffic jams shows strong “level repulsion” and is
well reproduced by the Wigner surmise for GUE. The clear
distances between vehicles in a free-flowing traffic, on the
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FIG. 2. (Color online) Probability density P(7) for scaled net to
time gaps 7 between successive cars in traffic flow, taken from Ref.
[26]. Histograms represent the time-headway distributions com-
puted for traffic data for the free-flow, synchronized flow, and mov-
ing jam traffic phases. The curves represent the predictions of the
superstatistical model (8) where the best-fit values of the super-
statistical parameter « are 5.9, 15, and 13, respectively.

other hand, are uncorrelated and follow Poisson statistics. In
this paper we use the concept of superstatistics to model
congested traffic as a superposition of moving jams repre-
sented by GUE’s with different mean level spacings. We de-
rive an expression for NNSD that describes the transition
between the Poisson-like statistics to that of a GUE by tun-
ing a single parameter, namely the superstatistical parameter
a. This parameter measures the variance of the fluctuating
intensive variable (the mean distance between vehicles). We
then apply the derived distribution to model transition of
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traffic from a stationary free-flow phase to a continuously
growing congested nonstationary phase. Small values of «
correspond to the free-flowing traffic, while the jammed and
congested traffic phases are described by spacing distribu-
tions with large values of a. We found that the superstatisti-
cal NNSD provided a satisfactory description for the distance
headway distributions at different densities by varying a
single parameter. Thus, that the statistical features of traffic
clearance exhibit a smooth crossover between a free-flow
and a jammed state as the car density is increased. The best-
fit values of superstatistical parameter increases almost lin-
early with the traffic density. This may suggest that single-
vehicle data do not “feel” a first-order phase transition in
traffic flow. However, it is not possible to draw a definite
conclusion by considering so small number of cases. We note
that the values of the inverse temperature of the one-
dimensional gas model that fitted these and many other simi-
lar data [25] also do not show any stepwise variations as the
car density increases. The superstatistical distribution was
also successfully applied to time-headway distributions mea-
sured by Kerner and collaborators for the free-flow, synchro-
nized flow, and moving jam traffic phases. While the mean
time gaps between vehicles were essentially different in the
three traffic phases, the fluctuation properties (measured by
NNSD of “unfolded” levels) were almost the same for the
two congested phases but rather different from the case of
free flow.

The presented results support the possibility for applying
the superstatistical RMT to the traffic systems. Obviously,
the proposed model is no substitute for the elaborate inves-
tigations of the traffic problems. Nevertheless, the powerful
methods of RMT may be useful in understanding some of its
aspects even during the transition between the free-flow and
congested phases.
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