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The effect of a random phase screen on laser beam wander in a turbulent atmosphere is studied theoretically.
The photon distribution function method is used to describe the photon kinetics of both weak and strong
turbulence. By bringing together analytical and numerical calculations, we have obtained the variance of beam
centroid deflections caused by scattering on turbulent eddies. It is shown that an artificial distortion of the
initial coherence of the radiation can be used to decrease the wandering effect. The physical mechanism
responsible for this reduction and the applicability of our approach are discussed.
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I. INTRODUCTION

When a beam of light propagates through the turbulent
atmosphere of the Earth, it experiences random fluctuations
in the refractive index. Fluctuations of the refractive index
are due to turbulent eddies caused by stochastic variations of
the temperature. The characteristic scales of the atmospheric
inhomogeneities range from millimeters �the inner radius of
the eddies, l0� up to 100 m �the outer radius of the eddies,
L0�. Those inhomogeneities that are large compared with the
diameter of the beam tend to deflect the beam, whereas those
inhomogeneities that are small compared with the beam di-
ameter tend to broaden the beam but not deflect it signifi-
cantly. As a result, we can observe a broadened laser spot
whose centroid randomly moves because of the motion of
individual eddies. The average beam radius is determined by
the overall scattering effect, i.e., by both the beam broaden-
ing and the centroid wandering averaged over a sufficiently
long time.

Beam wandering, as well as the scintillation index, is an
important characteristic of radiation, determining its utility
for practical applications �for example, for purposes of unin-
terrupted laser tracking and pointing�. Thus we will study
here the possibility of controlling this effect by means of
artificially decreasing the initial coherence of the radiation
using a random phase screen. This screen introduces random
�spatial and temporal� phase distortions into the wave front
of the exiting beam. Therefore, after passing the phase
screen, the initially coherent laser beam becomes partially
coherent. Its coherence length lc in the direction perpendicu-
lar to the direction of propagation becomes smaller than the
diameter D of the aperture. As a result the initial angular
spread of the beam, which is due to diffraction, increases
from � /D to � / lc, where � is the wavelength of the radiation.
�See, for example, Refs. �1–3�.� From the viewpoint of pos-
sible laser applications, the beam broadening is a negative
factor that reduces the intensity of the radiation field. At the
same time, the wandering effect can become smaller just due
to the broadening.

The above comments concern the case of not too long
propagation paths when diffraction broadening �which really

depends on the partial coherence� dominates over broadening
caused by the atmospheric turbulence. But there is another
important effect of the phase screen on the statistical proper-
ties of the radiation propagating in the atmosphere. It is
shown in �4–8� that the decrease of the initial coherence may
result in lowering the normalized variance of the intensity
�i.e., the scintillation index� even in the case of strong turbu-
lence. This effect takes place only for the case of a “slow”
detector. The term “slow detector” means the detector has an
integration time greater than the characteristic time of phase
variation introduced by the phase screen. Since the suppres-
sion of the intensity fluctuations is of great practical impor-
tance, it is also interesting to study the behavior of the beam
wandering �which is also expressed in terms of local fluctua-
tions of the irradiance intensity� for the same experimental
arrangement. Thus, in what follows the importance of a ran-
dom phase screen for the case of strong turbulence will be
elucidated.

To describe the effect of beam wandering, we will use
here an approach based on the photon distribution function
�6–8�.

II. THEORETICAL DESCRIPTION AND CALCULATIONS
OF THE WANDER EFFECT

The position of the beam centroid, Rw�z , t�, is determined
by the expression

Rw�z,t� =
� dr�r�I�r,t�

� dr��I�r,t��
, �1�

where �¯� means averaging over different realizations of the
refractive index inhomogeneities, and source fluctuations, r
= �r� ,z	, r�= �x ,y	; the z axis is along the initial direction of
the beam propagation; and the coordinate r=0 corresponds
to the center of the exit aperture.

Following Ref. �6�, we express the intensity of the photon
flux I�r , t� in terms of the photon distribution function
f�r ,q , t� as*Corresponding author: gpb@lanl.gov
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I�r,t� = c

q

��qf�r,q,t� , �2�

where c is the speed of light in a vacuum, �q=cq,

f�r,q,t� =
1

V


k

e−ik·rbq+k/2
† bq−k/2, �3�

V=LxLyLz is the normalizing volume, and bq
† and bq are the

creation and annihilation operators of photons with the wave
vector q. The operator function f�r ,q , t� describes the pho-
ton density in �r ,q� space at time t. The term “distribution
function” for f�r ,q , t� instead of “the operator of photon
density in r ,q space” is used here for the sake of brevity.

For a detailed description of the photon field in a beam
with radius Rb, it is sufficient to restrict the sum in Eq. �3�
with some value k0 , �k��k0, where Rb

−1�k0��−1. In this
case, the distribution function obeys the kinetic equation �see
Ref. �6��

��t + cq�r + F�r��q	f�r,q,t� = 0, �4�

where cq=��q /�q, F�r�=�0�rn�r�, and n�r� is the fluctuat-
ing constituent of the atmospheric refractive index ��n�r��
=0, �n�r���1�; �0=cq0 is the central frequency of the laser
radiation, which is considered here to be quasimonochro-
matic.

It can be easily seen that Eq. �4� is a linear equation.
Nonlinear effects, which can occur in the course of the beam
propagation in the atmosphere, are not considered here.

Using Eqs. �1� and �2�, we can easily obtain the variance
of Rw�z , t� if we know the correlation function of the distri-
bution function �f f�. The analysis is very simple for the case
of weak turbulence �or short propagation distance�. In this
case, it is convenient to use, not directly Eq. �1�, but a modi-
fied expression for it. The following consideration is in the
spirit of Cook’s approach �9� who has used the similarity
between a parabolic equation describing a paraxial optical
beam and the Schrödinger equation. The application of the
Ehrenfest theorem has made it possible to develop an ap-
proximate method to study the beam wandering effect in �9�.
In contrast to Cook, we proceed not from Ehrenfest’s theo-
rem, but from the definition �1� and Eq. �4�. A simple rela-
tionship between the beam centroid displacement and the
refractive index fluctuations can be easily obtained within
our formalism based on the kinetic equation Eq. �4�:

��z +
1

c
�t
2

R�z,t�

=� dr�

q

�n�r�
�r�

f�r,q,t��� dr�

q

f�r,q,t��−1

�5�

for the case of a stationary beam. Here and in what follows,
the paraxial approximation ��q−q0��q0� is assumed
throughout the beam trajectory.

In the lowest order with respect to the fluctuating refrac-
tive index, the dependence of f on n�r� in �5� has to be
neglected. Therefore, the variance of beam wandering is
given by

�Rw
2 � = �

0

z �
0

z

dz1dz2�z − z1��z − z2�

�� dr�dr�� 

qq�
� �n�r�

�r�

�n�r��
�r��

��f�r,q,t�f�r�,q�,t��

��� dr�

q

f�r,q,t��−2

, �6�

where r= �r� ,z1	, r�= �r�� ,z2	, and f�r ,q , t� satisfies Eq. �4�
with F=0. The distribution function at time t can be ex-
pressed via its value at the instant of photon exit from the
source, t0, as

f�r,q,t� = f�r − cq�t − t0�,q,t = t0�

=
1

V


k

e−ik·�r−cq�t−t0���bq+k/2
† bq−k/2�t=t0

, �7�

where t− t0=z /c. In what follows we will put t0=0 for sim-
plicity.

Two independent averagings should be undertaken in the
right-hand part of Eq. �6�. These are averaging over the tur-
bulence configurations, �nn�, and averaging over the fluctua-
tions of the source, including fluctuations introduced by the
random phase screen, �f f�. The first of these is determined by
the known �10� expression

�n�r�n�r��� =� dg e−ig·�r−r����g� , �8�

where the explicit term for � is given by

��g� = 0.033Cn
2exp�− �gl0/2��2�

�g2 + L0
−2�11/6 . �9�

Equation �9� is referred to as the von Karman spectrum.
The other averaging accounting for the effect of a “slow”

detector is given by �6�

�f�r,q,t�f�r�,q�,t��

= � 2�r1
2

VLxLy

2

	qz,q0
	qz�,q0

�b†b†bb�

� 

k�,k��

e−ik�·�r�−q�z1/q0�−ik�� ·�r�� −q�� z2/q0�

�e−�k�
2 +k��

2�r0
2/8−�q�

2 +q��
2�r1

2/2, �10�

where b† and b are the operators of the generated mode.
The effect of the phase screen is represented in Eq. �10� by
the parameter r1, determined via the correlation length �c of
phase variation due to the phase screen as
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r1
2 =

r0
2

1 + 2r0
2�c

−2 . �11�

In the absence of a phase screen, we may formally set �c
=
. Then it follows from Eq. �11� that in this case r1=r0. For
any finite value of �c, r1�r0 and, as follows from Eq. �10�,
the characteristic values of the transverse momenta of pho-
tons q� ,q�� are increased. This means that the beam becomes
more divergent after passing a phase screen.

With the known explicit terms �9� and �10�, the calcula-
tion of �Rw

2 � reduces to many-fold integrations which can be
performed straightforwardly. The result is given by

�Rw
2 � = 0.066�2��1

6

Cn

2z8/3�q0r1�1/3I1, �12�

where the contribution of L0
−2 to Eq. �9� was neglected.

The dimensionless quantity I1 is determined by the inte-
gral

I1 = �
0

1

dx�x − 1�2�x2 + �r0
2/4 + l0�

2�q0
2r1

2z−2�−1/6, �13�

where l0�= l0 / �2��. It can be calculated numerically. In the
limiting cases of short and long propagation distances, it is
given by the following analytical expressions:

I1 ��
1

3
� z

q0r1

1/3

�l0�
2 + r0

2/4�−1/6 when q0
2r1

2z−2�l0�
2 + r0

2/4� � 1,

27

40
when q0

2r1
2z−2�l0�

2 + r0
2/4� � 1. � �14�

Usually �r0
2 /4�� l0�

2. Then, the above criteria mean that the
diffraction broadening is smaller �upper case� and greater
�lower case� than the initial beam radius. The upper case in
Eqs. �14� results in �Rw

2 �=1.919Cn
2z3�2r0�−1/3, which coin-

cides exactly with the classic formula presented in Ref. �11�
�see Eq. �45� there�. As we see, there is no dependence of
beam wandering on the phase screen when the propagation
distance is very short. The result is evident for this limiting
case in view of the fact that both the diffraction broadening
and the broadening due to the atmosphere turbulence are
much smaller than the initial radius of the beam. With in-
crease of the propagation distance z or decrease of the initial
coherence, the upper case in Eqs. �14� may transform to the
lower case, which corresponds to dominant diffraction
broadening of the beam. Then the dependence �Rw

2 ��r1
1/3

will arise. As we see, �Rw
2 � decreases with decreasing initial

coherence. In this case, the variance of the wander distance
can be controlled by a suitable choice of the random phase
screen.

The situation is much more complex when the turbulence
is strong. The averaging is no longer decoupled in the man-
ner shown in Eq. �6�. An essential dependence of the distri-
bution function on turbulence takes place here. Therefore the
approach based on employing Eq. �5� is not advantageous.

The simplest way for further analysis is to proceed from the
initial definition of the wandering given by Eq. �1�. The ex-
pression for the distribution function f�r ,q , t� is given by �6�

f�r,q,t� =
1

V


k

exp�− ik��r − cqt + c/q0

��
0

t

dt�t�F��r�t���
�
��bQ+k�/2,q0

† bQ−k�/2,q0/2�t=0, �15�

where q= �q� ,q0	, Q=q�−�0
t dt�F��r�t���, and r�t�� is the

trajectory of the particle that has the velocity cq�t�� and is
affected by the force F. The initial conditions are given by
r�t�= t�=r and q�t�= t�=q.

Substituting Eq. �15� into the general expression

� � dr�dr�� r�r�� �I�r,t�I�r�,t�� ,

which determines the mean square variation of the wander
distance, and averaging over phase variations introduced by
the random phase screen, we arrive at

�2�r1
2c��

VLxLy

2

�b†b†bb� 

k�,q�



k�� ,q��

� dr�dr�� r�r�� e−ik�·�r−cqt�−ik�� ·�r�−cq�t�e−�k�
2 +k��

2�r0
2/8

��exp�− �Q2 + Q�2�r1
2/2 − �ic/q0��

0

t

dt�t��k� · F„r�t��… + k�� · F„r��t��…�
� , �16�
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where the last averaging is over random values of the refrac-
tive index. It is worth mentioning that the momenta Q and
Q� depend linearly on F. Therefore it is convenient to re-
write the quantity in the last angular bracket in a more con-
venient equivalent form as

�¯� =
1

�2�r1
2�2� � dpdp�ei�pq+p�q��−�p2+p�2�/�2r1

2�

��exp�− i�
0

t

dt���c/q0k�t� + p�F�r�t���

+ �c/q0k�� t� + p��F�r��t���	
� , �17�

where p and p� are vectors perpendicular to the z axis.
Thus, the problem is reduced to the calculation of mul-

tiple integrals. There is a 13-fold integration in Eq. �16�.
After substituting Eq. �17� into �16�, the number of integra-
tions increases to 17. Besides that, averaging over fluctua-
tions of the refractive index introduces four additional inte-
grations. Finally, we have a 21-fold integral. We have
performed most integrations analytically. The corresponding
procedure is similar to that described in Ref. �6�. The remain-
ing fivefold integral has been calculated numerically. Figure
1 shows the results for fixed values of the aperture
�r0=4 cm� and propagation distance �z=10 km�. We plot the
dependence of the dimensionless quantity �Rw

2 � /Rb
2 on the

turbulence strength. �It is the ratio �Rw
2 � /Rb

2 rather than
merely �Rw

2 � that is informative about the practical signifi-
cance of the wandering.� The beam radius Rb is given by the
expression �6�

Rb
2 =

r0
2

2
�1 +

4z2

q0
2r0

2r1
2 +

8z3T

r0
2 
 , �18�

where T=0.558Cn
2l0

−1/3.

As we see in Fig. 1, there is still considerable beam
wander even for very strong turbulence, i.e., for Cn

2

=5�10−13 m−2/3. �Usually, the value Cn
2=10−14 m−2/3 is

considered to be a moderate turbulence level.� The four
curves merge into a single curve when Cn

2→
. This means
that the wandering does not depend on the initial coherence
in this case. So the universal behavior of the wandering ef-
fect corresponds to the general concept that the atmosphere
controls beam parameters for long-distance propagation or
for the strong-turbulence regime. At the same time, we see
here the general tendency of the wander to decay with in-
creasing turbulence strength, which supports the reasonings
of Fante �10�. He considered that, when the turbulence is
strong, the beam no longer wanders significantly, but rather
breaks up into multiple beams.

In the opposite limiting case Cn
2→0, the wander distance

Rw also tends to zero due to the obvious fact that the wan-
dering is entirely caused by turbulence. From a formal point
of view, there should be at least one maximum in the curve
that connects the regions of weak and strong turbulence. The
corresponding physical picture can be explained in terms of
two competitive tendencies occurring when Cn

2 increases: �i�
in the range of weak turbulence, where the beam radius is
almost independent of the turbulence, the probability to meet
sufficiently strong large-scale fluctuation of the refractive in-
dex, which deflects the beam as a whole, increases linearly
with Cn

2; �ii� in the range of strong turbulence, there is con-
siderable beam widening due to photon scattering on fluctua-
tions of the refractive index �Rb

2�Cn
2�; therefore the previous

possibility has a low probability. This explains the presence
of the maxima in Fig. 1.

It is interesting to compare the results of the weak-
turbulence theory given by Eq. �12� with those of a more
general approach based on the distribution function �15�. The
results are shown in Fig. 2. As we see, both approaches give
almost coinciding data for small values of Cn

2. When Cn
2 in-

creases, the results of the weak-turbulence theory are over-
stated. A similar picture was observed in Ref. �12�, where the
weak-turbulence theory was tested by means of computer
simulations.

Figure 3 illustrates the dependence of beam wander on Cn
2

for a shorter distance �5 km� than in Fig. 1. The plots in Figs.

FIG. 1. Dimensionless mean square wandering radius vs the
turbulence strength Cn

2 for different values of the partial coherence
determined by the ratio r1

2 /r0
2. For all curves q0=107 m−1 , l0�

=10−3 m. The symbols show the results of numerical calculations.
For visual convenience, the solid lines connect symbols using
B-spline approximations.

FIG. 2. Dependence of beam wandering on the turbulence
strength for small values of Cn

2. Dashed lines show the dependence
given by Eq. �12�; solid lines with symbols show the results of more
general theory.
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1 and 3 are very similar, with the only difference that the
maxima in Fig. 3 are displaced to the range of greater values
of the turbulence strength Cn

2. This difference is quite evi-
dent; namely, initially the overall effect of the turbulence
increases with the increase of both the value of Cn

2 and the
distance z. Therefore, the decrease of one of the factors can
be compensated by the increase of the other one, thus pro-
viding almost the same effect of the turbulent atmosphere.
Figure 4 illustrates how the two approaches correspond to
one another at small values of Cn

2. Again we see a good
agreement of both theories in this range of Cn

2.
Figure 5 illustrates the dependence of the ratio Rw

2 /Rb
2 on

the turbulence strength for small values of the aperture radius
�r0=1 cm�. There is a significant decrease of the wandering
effect in this case. This is because a small value of r0 �and
automatically r1� results in considerable diffraction broaden-
ing of the beam for such a long propagation path �5 km�.
That is why the influence of turbulence on the beam param-
eters becomes competitive at greater values of Cn

2 and, in
correspondence with the latter, the maxima of both curves
are displaced to the right as compared with Fig. 3. Also, the
effect of partial coherence is more pronounced for smaller
initial radius of the beam. This can be seen by comparing
Figs. 3 and 5.

The results presented in Figs. 1–5 require additional com-
ments. Our analysis proceeds from Eq. �2� where the evolu-
tion of the distribution function is based on the kinetic equa-

tion �4�. By definition, this function is quadratic in the field
amplitudes describing the intensity of the irradiance. Not all
momenta q� and wave vectors k� contribute to the observ-
able intensity. One can easily see that initially, in the absence
of a phase screen, the characteristic values of both q� and k�

are given by r0
−1. In the presence of a phase screen, the char-

acteristic value of q� is of the order of r1
−1 which determines

the divergence of the beam and its broadening �diffraction
broadening�. It follows from geometric considerations that
the diffraction broadening is of the order of z2q0

−2r1
−2. This is

almost the same value as given by Eq. �18�. Therefore the
characteristic value of k� decreases with increasing distance
as �r0

2 /4+z2r1
−2q0

−2�−1/2. Also, the momentum q� of the mov-
ing particle varies with distance due to scattering on atmo-
spheric inhomogeneities. The additional momentum acquired
in this way, 
q�, can be estimated from its mean square
value as in the case of a Brownian particle moving in q�

space and being affected by a random force F� during the
time t=z /c. Thus we have

�
q�
2 � � �F�

2 �t � Cn
2z .

As a result, the beam becomes more divergent, and addi-
tional broadening due to the turbulence, 
Rb

2, can be esti-
mated as


Rb
2 ��� 1

q0
�

0

z

dz�
q��z��
2� � Cn
2z3.

This again agrees with Eq. �18�, where 
Rb
2=2.23l0

−1/3Cn
2z3.

When


Rb
2 �

r0
2

2
+

2z2

q0
2 r1

−2, �19�

one can say that the beam size is determined almost entirely
by the effects of the turbulence. In this case the characteristic
values of k� are of the order of �
Rb�−1 and decrease with
the increasing turbulence as Cn

−1z−3/2. Also, the characteristic
value of q� becomes of the order of 
q�, which is much
greater than its initial value r0

−1 �or r1
−1�. The last point can be

seen directly from Eq. �19� when we represent the turbulence
broadening as

FIG. 3. The same as in Fig. 1 but for z=5 km.

FIG. 4. The same as in Fig. 2 but for z=5 km.

FIG. 5. The same as in Fig. 3 but for r0=1 cm.
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Rb
2 �

z2

q0
2
q�

2 .

The condition 
q��r0
−1 ,r1

−1 means a considerable random-
ization of the radiation field. The waves acquire properties of
Gaussian statistics, which is very important when calculating
beam wander variance. In contrast to calculations of the
beam radius, which is determined by correlations of only two
waves, the beam wandering effect is determined by four-
wave correlations �or by the pair correlation function of the
intensity �II��. The results presented in Figs. 1–5 were ob-
tained explicitly assuming the dominant contribution to the
average

�I�r�I�r��� � 

q,k



q�,k�

e−i�k·r+k�·r���bq+k/2
† bq−k/2bq�+k�/2

† bq�−k�/2�

to be from small regions of k and k� as explained above.
�To simplify the notation, we omit the indices ��� in all
variables.� In this way strong correlations of pairs of waves
bq+k/2

† ,bq−k/2 and bq�+k�/2
† ,bq�−k�/2 were taken into account. At

the same time it is evident that there is another region of
wave vectors, i.e.,

�q + k/2 − q� + k�/2�, �q − k/2 − q� − k�/2� � 
Rb
−1,

where pair correlations of waves may also be essential. The
waves from different pairs, shown above, may correlate in
this region. Conventionally, we will refer to this type of cor-
relation as cross correlation. In the case of strong turbulence,
the contribution of cross correlations is not small, thus pro-
viding saturation of fluctuations at a high level. �See, for
example, �6�.� The two regions of wave vectors are well
separated from one another and possible overlapping in the
course of summing over wave vectors is not important in the
case of strong turbulence �13�. When the turbulence effect
becomes weaker, these regions approach each other, and in
the limit of small turbulence they unite into a single region.
In this case the beam wander is determined by the asymp-
totically exact solution �12�.

For strong turbulence, the contribution of cross correla-
tions to the beam wandering, �Rw

2 �cross, can be obtained as
done in previous calculations. It is given by

�Rw
2 �cross =

8

3

r1
2

r0
2

z2

q0
2
Rb

2 . �20�

Let us compare the value �Rw
2 �cross to �Rw

2 �, shown in Figs.
1–5. First of all, consider those Cn

2 which correspond to the
maxima in the curves plotted in Figs. 1, 3, and 5. For the

case r0=r1 we see that 
Rb
2�r0

2 /2,2z2 /q0
2r0

2 in all cases. This
means that these maxima are in the range of strong turbu-
lence, and Eq. �20� is applicable here. The values obtained
from Eq. �20� consist of only 7%, 5%, and 0.4% of the
corresponding data in Figs. 1, 3, and 5, respectively. More-
over, if one moves toward greater values of Cn

2, the contri-
bution of cross correlations will become smaller because of
the increase of 
Rb

2. A similar situation occurs when r1
becomes less than r0.

On the other hand, our solutions with cross correlations
neglected almost coincide with those given by weak-
turbulence theory when Cn

2→0. �See Figs. 2 and 3.� This
assures us that Figs. 1, 3, and 5 represent reasonable solu-
tions for the specific set of parameters used there �and close
to those� for any values of the turbulence strength Cn

2.

III. CONCLUSION

We have applied the photon distribution function method
�6� to describe beam wander in a turbulent atmosphere. In
the limit of weak turbulence and in the absence of artificial
random phase modulation, it becomes possible to obtain an
analytical expression for the wandering radius, which coin-
cides with the one known in the literature. Also, by bringing
together analytical and numerical calculations, we have suc-
ceeded in obtaining the wandering radius in the range of
strong turbulence. The general conclusion of the actual stud-
ies is that the variation of the initial spatial and temporal
coherence provides significant positive �from the viewpoint
of practical applications of laser beams� influence on the
character of the intensity fluctuations. That is, the relative
value of the wandering radius can be considerably reduced.
Moreover, this reduction takes place just in the range of the
most pronounced wandering effect. �See Figs. 1, 3, and 5.�
At the same time, the effect of partial coherence vanishes for
very strong turbulence. This is in contrast to the behavior of
the scintillation index, which in this case can be significantly
suppressed by decreasing the initial coherence of the light.
�See, for example, Refs. �4� and �6�.� But this suppression is
not very important because of the small wandering effect in
this case.
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