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An inert dynamically passive scalar in a constant density fluid forced by a statistically homogeneous field of
turbulence has been investigated using the results of a 2563 grid direct numerical simulation. Mixing charac-
teristics are characterized in terms of either principal curvatures or mean and Gauss curvatures. The most
probable small-scale scalar geometries are flat and tilelike isosurfaces. Preliminary correlations between flow
and scalar small-scale structures associate highly curved saddle points with large-strain regions and elliptic
points with vorticity-dominated zones. The concavity of the scalar profiles along the isosurface normal coor-
dinate xn correlates well with negative mean curvatures, Gauss curvatures displaying any sign, which corre-
spond to scalar minima, tiles, or saddle points; on the other hand, convexity along xn is associated with positive
mean curvatures, Gauss curvatures ranging from negative to positive signs, featuring maxima, tiles, or saddle
points; inflection points along xn correlate well with small values of the mean curvature and zero or negative
values of kg, corresponding to plane isosurfaces or saddle points with curvatures of equal and opposite signs.
Small values of the scalar gradient are associated with elliptic points, either concave or convex �kg�0�, for
both concave and convex scalar profiles along xn. Large values of the scalar gradient �or, equivalently, scalar
fluctuation dissipation rates� are generally connected with small values of the Gauss curvature �either flat or
moderate-curvature tilelike local geometries�, with both concave and convex scalar profiles along xn equally
probable. Vortical local flow structures correlate well with small and moderate values of the scalar gradient,
while strain-dominated regions are associated with large values.

DOI: 10.1103/PhysRevE.76.056316 PACS number�s�: 47.51.�a, 47.27.Gs, 47.27.tb

I. INTRODUCTION

Mixing of scalar fields, such as temperature and chemical
species concentrations, is ubiquitous in energy generation
and chemical processes, among other industrial and natural
systems. Significant scalar fluctuations, induced by a chaotic
velocity and/or injection devices, pose a difficult problem,
commonly with very large spatial and temporal heterogene-
ities. The mathematical description of turbulent mixing often
leads to stochastic simulations �1,2�, with real physics play-
ing a secondary role. Few attempts are registered of models
mimicking mixing by appealing to intuitive and rather sim-
plified physical descriptions �3�.

While the structure of small scales of a turbulence field
has been categorized in terms of its velocity gradient invari-
ants �4�, a similar methodology is missing for scalar fields.
Gibson �5,6� emphasized the importance in mixing of zero
scalar-gradient points; he elucidates two-dimensional �2D�
mechanisms for zero-gradient point generation by a turbulent
field: �i� isolation from a region of uniform scalar gradient
due to direct distortion by a convective velocity �turbulent
eddy� stronger than the restoring diffusive velocity �this ef-
fect looks like a horseshoe map with stretching and folding
�7�� and �ii� secondary splitting by local strain; their genera-
tion rate depends on the strain rates, on the initial size of the
small-scale scalar structures, and on the diffusion coefficient.

Moffatt �8,9� classifies the scalar field critical points �zero
gradient� in terms of the eigenvalues of the scalar Hessian
�second-derivative� tensor; depending on the index of the
critical points, elliptic extremal points �maxima and minima�
or saddle points of two types are encountered. Four possible

ways to establish homoclinic separatrix connections for iso-
scalar surfaces through a saddle point are described. Topo-
logical transitions complicating a relatively simple, initially
spherical, local scalar field with a single extremal point in-
side it are clearly illustrated. It is also stated that turbulence
alone can generate neither extremal nor saddle points, requir-
ing the cooperation of molecular diffusion. Spectral implica-
tions are explored.

Wang and Peters �10� investigate small-scale scalar statis-
tics through the use of direct numerical simulation �DNS�.
The notion of “dissipation elements,” convoluted regions
over which two given extremal points are reached via scalar
gradient trajectories, is introduced. Numerical results allow
the extraction of typical element diameters of a few times the
Kolmogorov microscale and lengths of the order of the Tay-
lor microscale. A dissipation element is characterized in
terms of the distance between two extremal points and their
scalar value difference; a stochastic evolution equation for
the probability density function of that distance is derived
and numerically solved.

Dopazo et al. �11,12� use results from DNS to describe
the local geometry of a reactive dynamically passive scalar
in terms of the isosurface principal curvatures. Transport
equations for the scalar gradient modulus and for the mean
curvature permit analysis of the different contributions of
turbulence, molecular diffusion, and chemical reaction. It is
shown that molecular diffusion, both normal to isoscalar sur-
faces and tangential to them �curvature-induced diffusion�,
scalar dissipation, and chemical conversion are more intense
in plane and tilelike �very small curvature in one spatial di-
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rection, and small, moderate, or large curvature in the or-
thogonal one� structures.

This paper is an attempt to improve upon the description
of the local geometry of inert scalar fields in turbulence us-
ing DNS results. The mathematical tools are presented in
Sec. II; a scalar field is locally characterized by its value, by
its first and second derivatives in the normal direction to its
corresponding isosurface, and by the curvature of the latter.
The isocalar surfaces are classified in terms of the two
nonzero-curvature tensor eigenvalues �principal curvatures�
or, alternatively, in terms of its two nonzero invariants
�mean, km, and Gauss, kg, curvatures�. The parabola kg=km

2

separates the real from the excluded complex curvature re-
gions. DNS corroborates both that the third curvature tensor
invariant vanishes and that no points appear in the excluded
region of a �km , kg�-plane representation. Section III briefly
describes the numerical method followed to obtain the DNS
turbulence and scalar field results, which are reported and
discussed in Sec. IV. Some concluding remarks and sugges-
tions for future work are finally presented in Sec. V.

II. MATHEMATICAL DESCRIPTION

An isoscalar surface Y�x , t�=const evolves with time ac-
cording to

�Y

�t
+ uY · �Y = 0, �1�

where Y�x , t� is the mass fraction of the scalar field, at point
x and time t, uY is the absolute velocity of the isosurface and
� stands for the gradient operator. The isosurface normal
velocity relative to the fluid, V, defined by

Vn = uY − u , �2�

is termed the propagation speed, u being the local fluid ve-
locity and n the unit vector normal to the isosurface given by

n =
�Y

��Y�
�3�

��Y� denotes the modulus of �Y.
Equation �1� can, alternatively, be written as

�Y

�t
+ u · �Y = − V��Y� . �4�

Should the scalar Y�x , t� be convected and diffused, it obeys
the transport equation

�Y

�t
+ u · �Y =

1

�
� · ��D � Y� , �5�

where � is the fluid density and D stands for the molecular
scalar diffusion coefficient. Equating the right sides of Eqs.
�4� and �5�, while, simultaneously, operating on the latter,
one can readily obtain

V = −
1

�
n · ���D� −

D

��Y�
n · ����Y�� − D�� · n� . �6�

Let xn represent the local coordinate normal to the isosur-
face, growing in the positive direction of n. Equation �6� can
then be recast as

V = −
1

�

��D

�xn
−

D

�Y/�xn

�2Y

�xn
2 − D�� · n� . �7�

The first term on the right-hand side is the contribution of �D
variations normal to the isosurface to its propagation speed.
For example, in a premixed system, with Y equal to the
reaction progress variable, the density decreases and the dif-
fusion coefficient increases with xn; therefore, this contribu-
tion to V might, plausibly, be small compared to the other
two terms. This contribution is zero for constant density,
constant diffusion coefficient processes.

The second term in Eq. �7� is the normal propagation
velocity of a flat front. The local profile of Y�x , t� in the
direction of xn determines the propagation characteristics. In-
flection points of the scalar field with nonzero gradients
propagate only due to isosurface curvature. The conservation
equation governing Y�x , t� becomes the unsteady heat con-
duction equation at extremal points. These extremal points
move at an infinite speed relative to the fluid, which has no
physical implications, as the product −V��V� is finite and
equal to �2Y /�xn

2; extremal points become singularities, with
neither a well-defined normal vector nor a propagation direc-
tion, which disappear instantaneously due to diffusion.

Mixing is visualized as a smoothing process of scalar
fluctuations; deviations from the scalar mean are suppressed
by molecular diffusion. The dissipation of scalar fluctuations
takes place in the smallest scales. The one-dimensional
Y�xn , t� local profile in the normal direction, shown in Fig. 1,
about an inflection point can either smooth or sharpen de-

Xn

IP1

Xn

IP2

(a) (b)

Xn

M2

Xn

M2

(c) (d)

FIG. 1. Scalar profile in the normal direction to isosurfaces
Y�xn , . . . , t�. Solid line at time t and dashed line at time t+�t. IP1,
inflection point �concave-convex�, IP2, inflection point �convex-
concave�, M1 maximum point, and M2 minimum point.
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pending on its local variation from concave to convex, or the
other way round, along xn; smoothing is equivalent to disap-
pearance of small scales, or, equivalently, large wave num-
bers, while sharpening implies the generation of small struc-
tures as a previous step to smoothing. Sharpening inflection
points shall evolve toward smoothing ones with time.
Maxima with scalar content above the mean mass fraction
and minima with values below it tend to move closer to the
mean due to molecular diffusion; on the other hand, minima
above the mean and maxima below it move away from the
scalar mean. The complete picture of turbulent mixing is
obtained by allowing the small-scale flow topologies interact
with the previous scalar local geometries.

The third term in Eq. �7� is the curvature-induced speed.
This contribution vanishes for flat fronts and saddle points
with positive and negative principal curvatures of equal ab-
solute value. Isosurfaces concave toward n imply � ·n�0
and, therefore, a positive V; on the contrary, iso-scalar sur-
faces convex toward n mean � ·n�0 and, thus, a negative V.
Therefore, the curvature-induced propagation speed, due to
molecular diffusion, of an isoscalar surface is always in the
sense of its geometric concavity.

The conventional way to characterize the scalar fluctua-
tion reduction process is by defining its dissipation rate. The
transport equation for the square scalar fluctuation Y�2

= �Y − Ȳ�2, Ȳ being the mean mass fraction, is

�Y�2

�t
+ u · �Y�2 = D�2Y�2 − 2D��Y��2. �8�

The right-hand side of Eq. �8� contains the diffusive transport
and the dissipation of Y�2, respectively. The first contribution
can be rewritten as

D�2Y�2 = D
�2Y�2

�xn
2 + D�� · n�� �Y�

�xn
� , �9�

where the first term on the right-hand side is the diffusive
transport normal to the isosurface, while the second one is
the curvature-induced molecular diffusion, tangential to it.
�Y =D��Y��2 is termed the scalar fluctuation dissipation rate;
an equivalent expression for it is �Y =D��Y� /�xn�2. There-
fore, there is no contribution from curvature to the fluctua-
tion dissipation rate.

The local geometry of the scalar field is thus defined by
its value Y�x , t�, by its first and second derivative, �Y /�xn

and �2Y /�xn
2 in the direction normal to the isosurface, and

also by its curvature. The latter is provided in detail by the
curvature tensor, ni,j =�ni /�xj, which can be rephrased in
terms of the scalar field derivatives as

ni,j =
1

��Y�
��ik − nink�Y ,kj . �10�

ni,j is not a symmetric tensor. However, it admits row-side
eigenvalues k and eigenvectors N, which can be obtained
from the solution of the homogeneous system

Ni�k�ij − ni,j� = 0, �11�

which yields nonzero solutions if and only if

det�k�ij − ni,j� = 0. �12�

Equation �12� is equivalent to the cubic equation

k3 + I1k2 + I2k + I3 = 0. �13�

The invariants of ni,j are defined as

I1 = − � · n , �14�

I2 = �1/2��ni,inj,j − ni,jnj,i� , �15�

I3 = − det�ni,j� . �16�

N=n is a solution to Eq. �12� as nini,j = �1 /2��nini�,j =0,
which, therefore, implies k=0 and, consequently, I3=0. The
relationship between ni,j and the intrinsic curvatures of iso-
scalar surfaces may be obtained from Weingarten’s theorem
�13�.

With I3=0, the cubic Eq. �13� reduces to a quadratic one,

k2 + I1k + I2 = 0, �17�

whose solutions are

k1,k2 =
− I1 ± �I1

2 − 4I2

2
. �18�

k1 and k2 are the principal curvatures, �k1+k2� /2=−I1 /2
=km is the mean curvature, and k1k2= I2=kg stands for the
Gauss curvature. The zone kg�km

2 in the km-kg plane implies
complex curvatures and, thus, it is excluded from study. DNS
results corroborate both the presence of a zero third invariant
of ni,j and the exclusion region of complex principal curva-
tures.

The different local geometries of isoscalar surfaces are
depicted in Figs. 2 and 3 in terms of k1−k2 and km−kg, re-
spectively.

FIG. 2. �Color online� Classification of small-scale structures of
isoscalar surfaces, in terms of their principal curvatures k1 and k2.
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III. NUMERICAL METHOD

A direct numerical simulation of a passive scalar field,
whose fluctuations decay, in a forced, incompressible, isotro-
pic, homogeneous, turbulent velocity field has been per-
formed.

The evolution of the velocity field is governed by

�ui

�xi
= 0, �19�

�ui

�t
+ uj

�ui

�xj
= −

1

�
P,i + �ui,j j + f i, �20�

where f i stands for the forcing term. Incompressibility im-
plies that the pressure in Eq. �20� is not the thermodynamic
pressure, assumed constant everywhere, but the hydrody-
namic pressure �much smaller than the thermodynamic pres-
sure but with nonzero gradient�, whose only role is to project
the evolution of the velocity field in a divergence-free mani-
fold. The scalar field, in its turn, evolves according to Eq. �5�
with �D constant and a Schmidt number Sc=� /D=0.7.

A pseudospectral numerical code �14–16� in the spatial
domain with a second-order Runge-Kutta scheme in time has
been chosen. The computational region is a cube of size 2	
with a 2563 grid and periodic boundary conditions. In order
to reduce aliasing, a spherical filter is applied to data in Fou-
rier space; all nodes corresponding to a wave number larger
than 256
0.471 are set to zero. This filter is chosen �14� to
suppress the double and triple aliasing contribution �17�
caused by convective terms. Some amount of aliasing due to
the single contribution of convective terms still remains; but
it is neglected according to the criterion of Kida and Mu-
rakami �18�, since the spatial resolution is such that the value
of the largest wave number times the Kolmogorov scale is
about 3.80. In order to resolve a field �19�, it is sufficient for
that product to be larger than unity; whereas it should be
around 2 to resolve its gradient. The reason for choosing a

value so high is imposed by the need of resolving curvature
fields as well.

The time step has been chosen according to the Courant
number criterion

C =
�t

�x/max	�u� �

�21�

with C=0.7.
The forcing scheme has been that of Eswaran and Pope

�20� with a zero correlation time of the forcing. To be more
specific, all the Fourier-space nodes with a modulus less than
2�2, except the zero node which has no contribution, receive
at each time step a random, white noise forcing contribution,
where its phase is adjusted to enforce incompressibility and
its intensity is such that the Reynolds number �based on the
Taylor microscale� is close to 50.

The integral length scale of the velocity field is less than
one-sixth of the length of each edge of the computational
box. This is well below the one-third value which guarantees
the homogeneity of the resulting flow.

The velocity field is left to evolve first from an arbitrary
initial spectrum until it reaches a statistically stationary situ-
ation, namely, an equilibrium between viscous dissipation
and forcing.

An initial scalar field as close as possible to a homoge-
neously random distribution of 0 and 1 values is taken. This
is realized by creating a random spectrum in Fourier space,
transforming it into physical space, and setting a threshold
such that values of the physical field below the threshold are
set to 0 whereas those above the threshold are set to 1. The
threshold is selected so that the mean of this initial field is
close to 0.5 and the wave numbers initially chosen for the
random spectrum are those with modulus less than 4; which
yields an initial scalar field with an initial integral length
scale large enough to avoid rapid mixing. Then, the values of
this field are smoothed, in Fourier space, to avoid strong
numerical dispersion. In order to further reduce this problem,
the full system is left to evolve for half a large-eddy turnover
time before setting the initial condition of the simulation. In
the end, the initial scalar field has a mean of 0.5 and a vari-
ance of 0.1701 �compare this with the variance of 0.25 that a
fully unmixed field with the same mean should have�.

Velocity fields are characterized by the Taylor-based Rey-
nolds number �Re��, the integral length scale �lint�, the length
of the edge of the computational domain �L=2	�, the vis-
cosity ��=0.012 in this simulation�, the Taylor microscale
���, the Kolmogorov microscale ���, the total kinetic energy
��k��, the kinetic energy dissipation rate �����, the root mean
square velocity �urms� and the maximum wave number times
the Kolmogorov microscale �kmax��.

Scalar fields are characterized by the diffusivity coeffi-
cient �D=0.012 /0.7=0.017 143�, the mean ��Y��, the vari-
ance ��Y2��, and the scalar fluctuation dissipation rate
��DY ,iY ,i��.

Results have been analyzed at three different times: the
initial condition when the scalar field has a mean close to 0.5
and a variance close to 0.17; when the scalar variance is

FIG. 3. �Color online� Classification of small-scale structures of
isoscalar surfaces, in terms of their mean and Gauss curvatures km

and kg.

DOPAZO, MARTÍN, AND HIERRO PHYSICAL REVIEW E 76, 056316 �2007�

056316-4



close to 0.055, and, finally, when it is close to 0.028. Since
the scalar field is chemically inert �passive�, its mean value
remains constant along the simulation.

In Table I, the characteristic parameters of the velocity
and scalar fields for the three times are summarized.

IV. RESULTS

Figure 4 displays the isoscalar surface Y =0.5, at time t1.
Zones with different values of the Gauss curvature kg have
been drawn over the surface. The surface structure is com-
plicated, and all the topological structures previously defined
are present. Darker zones correspond to saddle points, while

the lighter ones indicate the convex or concave ones. Values
close to zero denote flat or tilelike surfaces.

In Fig. 5, the probability density function �PDF� of the
scalar mass fraction Y at the initial, intermediate, and final
simulation times are presented. Initially, the scalar distribu-
tion displays two peaks near the extreme values 0 and 1,
reminiscent of the starting partial segregation. For the inter-
mediate time t= t2 and the final time t= t3, the mixing process
progresses from a partially mixed situation to the initiation of
a well-mixed system, tending asymptotically to a Gaussian
distribution.

Figure 6 plots the PDF’s of the curvature � ·n, calculated
for the scalar isosurfaces Y =0.25, 0.50, and 0.75 at the in-
termediate time t= t2. The PDF calculated for all the isosur-
faces is also shown for comparison. A significant correlation
between curvature and scalar value is apparent. For Y =0.25
the probability is displaced toward positive mean curvatures,
corresponding to convex isosurfaces, while for Y =0.75 the
skewness seems to be negative �concave surfaces�. The PDF
for Y =0.50 is approximately symmetric, similar to the one
resulting for all scalar values, with convex and concave iso-
surfaces equally probable.

In Fig. 7 the total local isosurface propagation velocity V,
as well as its normal Vn and its curvature Vc contributions,
conditional upon the scalar value Y at t= t2, are presented.

TABLE I. Characteristic parameters of the studied DNS fields.
Time is given in large-eddy turnover time units.

Time 0 3 6

Re� 46.5 47.6 53.02

�K� 2.61 2.49 2.91

��� 1.75 1.52 1.67

urms 1.32 1.29 1.39

lint 0.84 0.89 0.86

� 0.42 0.44 0.45

� 0.032 0.033 0.032

kmax� 3.86 3.98 3.86

�Y� 0.500 0.500 0.500

�Y2� 0.171 0.055 0.028

�DY ,iY ,i� 0.068 0.035 0.018

FIG. 4. �Color online� Simulation domain showing the isoscalar
surface Y =0.5, at t= t1. Zones with different values of the Gauss
curvature kg have been drawn over the surface.
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FIG. 5. PDF’s of the mass fraction scalar Y at the initial time
�1�, intermediate time �2�, and final time �3� of the simulation.
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the intermediate time t= t2.
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The total velocity V appears clearly correlated with the scalar
value Y; the dependence is approximately linear for small
values of the scalar fluctuation Y�, becoming nonlinear for
large ones. The positive sign of that correlation agrees well
with the negative one for the scalar diffusion, a consequence
of the definition of V. Although the contribution of the nor-
mal part, Vn, is larger than that of the curvature, Vc, the latter
is far from being negligible.

Figure 8 represents the joint PDF of the principal curva-
tures k1 and k2, calculated for all isosurfaces at t= t2. Because
of isotropy, the directions x1 and x2 are indistinguishable. k1
is here taken as the larger of the two curvatures, and there-
fore all sample points will be below the line k2=k1, exclud-
ing the occurrence of pairs �k1 ,k2� above it. The distribution
seems symmetric with respect to the line k2=−k1, presents a
maximum near the origin, and a high probability with long
tails extending along the axes. The width of those tails de-
creases as the curvature magnitude increases. Consequently,

the most probable local structures are flat and saddle points
with small curvatures. For moderate and large curvatures,
saddles, and elliptic �concave and convex� or tile structures
can occur, with a significantly larger probability of tiles.

Figure 9 depicts the joint PDF of the mean and Gauss
curvatures km and kg, calculated for all isosurfaces at t= t2.
The resulting distribution is symmetric with respect to the kg
axis, and displays a maximum below the origin, near to it.
All samples are below the parabola kg=km

2 , separatrix of the
prohibited region corresponding to complex curvatures. Iso-
contours surround the origin spreading over increasing areas
as the curvature magnitude increases. Furthermore, the dis-
tribution seems skewed toward large positive values of kg,
and the contours present long tails on both sides of the limit
curve kg=km

2 . This last feature is enhanced as larger—
positive or negative—values of km are reached. The descrip-
tion of local geometries in terms of km−kg is totally analo-
gous to that provided by Fig. 8.

Figure 10 is a plot of the scalar value Y conditional upon
the mean and Gauss curvatures for all isosurfaces at time t
= t2. The correlation, previously observed in Fig. 6 between
scalar and the curvature values, is clearer here; scalar values
above the mean correspond to negative mean curvature,
while negative scalar fluctuations are associated with posi-
tive km. In turn, for large positive km values, Y increases with
decreasing kg, and for large negative km values the magnitude
of Y increases as kg does. Minimum scalar values occur for
elliptic convex structures, intermediate values for saddle
points, and maxima for elliptic concave ones.

The absolute value of the scalar gradient, ��Y�, condi-
tional upon the mean and Gauss curvatures, for all isosur-
faces, at time t= t2, is shown in Fig. 11. Equivalently, this
figure provides the features of the scalar fluctuation dissipa-
tion rate. The resulting conditional values are symmetric
with respect to the kg axis. The largest scalar gradients cor-
relate with small values of both curvatures and for kg nega-
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tive. Intermediate scalar gradients appear in a region sur-
rounding the origin which extends along the km axis,
reaching moderate values, with only small relative values of
kg. As the scalar gradient magnitude decreases, large nega-
tive and positive values of kg are involved. Therefore, it
seems that the scalar gradient magnitude has the following
properties.

�i� It does not depend on the mean curvature sign.
�ii� It displays large values for zones of the isoscalar sur-

faces with small curvature. In previous experimental and
DNS work �21–23�, it was found that scalar dissipation rate
maxima are organized in sheets; however, these maximum

dissipation rate sheets are not necessarily coincident with
isoscalar surfaces.

�iii� It has moderate and small values when km and kg take
large values, independently of their signs.

In order to explore the possible relationship between iso-
scalar surface structures and small-scale flow motions, the
conditional average of Q, the second invariant of the velocity
gradient tensor �ui /�xj Aij, is plotted in Fig. 12 as a func-
tion of km and kg. For a constant density flow Q=−AijAji /2
can be rephrased as Q=2 /4−SijSij /2, where Sij is the strain
rate tensor and  is the vorticity. Hence, Q is a measure of
the local balance between vorticity and strain at every point
in the flow. The figure shows a clear correlation of Q with
the curvature. For negative kg curvatures �saddle points� ex-
treme values of km appear related with intense strain �Q
�0�, while points with large positive kg �elliptic concave or
convex points� are related with focal motions, corresponding
to dominant vorticity �Q�0�. On the contrary, little correla-
tion is found for points having small or moderate
curvatures—most of the samples—which display very low
values of Q, without clear trends. Flat and tilelike scalar
isosurfaces are typically immersed in varying strain regions
from zero to large deformation rates.

Figure 13 depicts the joint PDF of the mean and Gauss
curvatures corresponding to the isosurfaces Y =0.25 �top�,
0.50 �center� and 0.75 �bottom� at time t= t2. The result is
consistent with the picture pointed out in Fig. 6 for the PDF
of the curvature � ·n. The plot for Y =0.25 indicates that
scalar values below the mean better correlate with positive
km values, with enhanced amplitudes—positive or
negative—of kg. The opposite is true for values of Y above
its mean, as the distribution for Y =0.75 shows preference for
negative mean curvatures, also with more probability of
large kg values. The isosurface for the scalar value Y =0.5
�the mean� displays a symmetric joint PDF analogous to that
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obtained for all scalar values in Fig. 9. The result confirms
the previously noted trend of the isoscalar surfaces with
negative fluctuation to present dominant positive curvature
�k1+k2�0� convex toward the scalar gradient direction,
while positive scalar fluctuation isosurfaces present a pre-
dominantly concave shape �k1+k2�0� toward the scalar gra-
dient.

D�2Y /�xn
2 is the part of the scalar diffusion term that ac-

counts for the molecular transport in the normal direction to
the local isoscalar surface. Figure 14 depicts the normal sec-
ond derivative as a function of the curvatures km and kg,
calculated for the three isosurfaces Y =0.25, 0.50, and 0.75 at
time t= t2. A clear correlation of �2Y /�xn

2 with the mean cur-
vature km is observed for Y =0.5 �the scalar mean�; normal
diffusion shares the sign of km, with the magnitude of the
second derivative slightly increasing as large absolute values

of km are reached; this increase is higher for small values of
kg. This trend extends for the isosurfaces Y =0.25 and 0.75,
but predominantly positive values of �2Y /�xn

2 are found in
the former, and negative in the latter. The zero isocontour
appears slightly displaced toward negative values of km for
Y =0.25, and toward positive km values for Y =0.75. This
result seems logical, as normal diffusion behaves similarly to
total diffusion, which has, generally, opposite sign to that of
scalar fluctuation, as previously observed in Fig. 7.

Alternatively, �2Y /�xn
2 also represents the scalar annihila-

tion, �Y /�t, of extremal points at a fixed spatial location. The
material derivative of Y at inflection points is given by
D�� ·n���Y�. Figure 15�a� provides information on the joint
PDF of �2Y /�xn

2 and ��Y�; isoprobability contours are ap-
proximately ellipses elongated along the ��Y� axis. Maxima
and minima are equally probable; inflection points with
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small values of ��Y� or, equivalently, scalar fluctuation dis-
sipation rate are more probable. Figure 15�b� indicates that
convex isosurfaces, with positive mean curvature, are asso-
ciated with positive second normal derivatives and decay
with increasing ��Y�. Figure 15�c� shows that elliptic points
are correlated with small values of �2Y /�xn

2 and ��Y�, while
saddle points coincide with large positive and negative val-
ues of �2Y /�xn

2 with small and moderate ��Y�. Large values
of ��Y� generally imply flat and tilelike isosurfaces. Figure
15�d� indicates that vorticity-dominated regions coincide
with both small values of �2Y /�xn

2 and small and moderate
��Y�. Moderate and large values of �2Y /�xn

2 are associated
with large ��Y� in strain-controlled zones.

V. CONCLUSIONS AND FUTURE WORK

Results of a 2563 grid DNS for an inert dynamically pas-
sive scalar in a constant density fluid forced by a statistically
homogeneous field of turbulence have been used to describe
mixing characteristics in terms of either principal curvatures
or mean and Gauss curvatures. The predominant small-scale
scalar geometries are apparently flat and tilelike isosurfaces.
Large values of the scalar gradients are also associated with
these structures. Preliminary correlations between flow and
scalar small-scale structures are obtained, associating highly
curved saddle points with large-strain regions and extremal
points with vorticity-dominated zones. The curvatures for
different isosurfaces moderately change from large to small
scalar values. Concavity along the isosurface normal coordi-
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nate �xn� correlates well with negative mean curvatures, the
Gauss curvature displaying any sign, corresponding to scalar
minima, tiles, or saddle points; on the other hand, convexity
along xn is associated with positive mean curvatures and
Gauss curvatures ranging from negative to positive signs,
connected to maxima, tiles, or saddle points; inflection points
along xn correlate well with small values of the mean curva-
ture and zero or negative values of kg, corresponding to plane
isosurfaces or saddle points with principal curvatures of
equal and opposite signs. Small values of the scalar gradient
are associated with elliptic points, either concave or convex
�kg�0�, and both concave and convex scalar profiles along
xn. As already mentioned, large values of scalar gradients are
generally connected with small values of the Gauss curvature
�either flat or tilelike with moderate-curvature local geom-
etries� and both concave and convex scalar profiles along xn
equally probable. Vortical local flow structures correlate well

with small and moderate values of the scalar gradient, while
strain-dominated regions are associated with large values.

Higher-resolution DNS’s, increasing both the number of
nodes and, possibly, the Reynolds number, would be neces-
sary in order to improve the curvature statistics quality, since
the study of the topology of isoscalar surfaces needs a better
resolution than that required for studying gradient fields. The
present research should also be extended to consider the time
evolution of the isosurface geometry statistics at the different
stages of mixing. The relationship between the small scales
of the turbulent flow and those of the scalar field should be
explored in depth. It would also be interesting to check the
degree of alignment between maximum dissipation rate
sheets and sheetlike �small-curvature� regions of isoscalar
surfaces. Investigations of isoscalar surface local geometry in
variable density turbulence, relevant to combustive flows,
would be of great interest. Last, though not least, the impli-
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cations of scalar local structures for molecular mixing mod-
els should be scrutinized, mainly to try to include possible
curvature effects.

Some stochastic mixing simulations involve the estima-
tion of D�2Y evaluated at specific isosurfaces Y =�; the de-
composition of Eq. �7� of the diffusive term into two flat
front plus one curvature contributions will, hopefully, help to
unveil the relative importance of the three effects in turbulent
combustion systems. Preliminary results for constant density
turbulent reacting flows tend to indicate that high reaction
rates occur at scalar structures with large curvatures only in
one direction.
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