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Autocatalytic reaction fronts propagating in a Poiseuille flow present a change of speed and curvature
depending on the strength of the flow and on the direction of front propagation. These chemical fronts separate
reacted and unreacted fluids of different densities, consequently convection will always be present due to the
horizontal density gradient of the curved front. In this paper, we find the change of speed caused by gravity for
fronts propagating in vertical tubes under a Poiseuille flow. For small density differences, we find axisymmetric
fronts. Our theory predicts a transition to nonaxisymmetric fronts as the distance between the walls is in-
creased. The transition depends on the average speed of the Poiseuille flow.
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I. INTRODUCTION

Chemical reactions such as the Belousov-Zhabotinsky re-
action �1�, the chlorite-tetrathionate �CT� reaction �2–4�, the
iron�II�-nitric acid system �5�, the iodate-sulfate system �6�,
and the iodate-arsenous acid reaction �7–10� exhibit waves
of chemical activity that separate regions of different chemi-
cal concentrations. Such chemical waves generate thermal
and compositional gradients leading to mass density gradi-
ents. These density gradients can cause convective fluid mo-
tion for reactions taking place in aqueous solutions. Several
theoretical and experimental studies have established condi-
tions for convective fluid motion in chemical fronts �11–21�.

Experiments in the iodate-arsenous acid reaction in verti-
cal tubes showed a transition to convective fronts as the di-
ameter of the tube was increased �7,8�. Convection only oc-
curs in fronts propagating upward since the unreacted fluid is
heavier than the reacted fluid. This reaction exhibits flat
fronts without convection and also nonaxisymmetric and axi-
symmetric fronts with convection, depending on the tube di-
ameter. The change in curvature of the front due to convec-
tion is accompanied by an increase in front speed. This
transition was predicted by a theoretical analysis that consid-
ered the front as a thin boundary between two fluids of dif-
ferent densities �22�. Thermal effects were included consid-
ering the limit of infinite thermal diffusivity. In Hele-Shaw
cells, where the fluid is confined between two planar walls,
fronts in the iodate reaction develop fingers caused by the
convective fluid motion. Detailed experiments with this re-
action measured the dispersion relation between the growth
rate and the wavelength of small perturbations to the flat
convectionless front �9,10�. Good agreement between theory
and experiment were also found for fronts in the CT reaction
in Hele-Shaw cells �2,3�. In this case, the reacted fluid is
heavier than the unreacted fluid, consequently convection
sets in for downward propagating fronts. More recent experi-
ments showed a chemical plume propagating upward in the
iodate-arsenous acid reaction having shape and speed char-
acterized by convective fluid motion �23�.

Recent experimental and theoretical work analyzed the
interaction between chemical wave propagation with an im-
posed external fluid flow. Edwards �24� predicted the change
of speed for fronts in the iodate-arsenous acid reaction as
they propagate in the same or opposing direction of a Poi-
seuille flow. This work showed that for large gaps an adverse
Poiseuille flow would not have large effects in the front
speed. Experiments by Salin et al. in cylindrical tubes and
Hele-Shaw cells verified this effect, as well as the cusplike
shape exhibited by these fronts �25�. The theoretical under-
standing of chemical fronts under an external fluid flow has
not included gravitational effect caused by density gradients.
Since the imposed Poiseuille flow deforms the flat front, con-
vective fluid motion should always be present due to a hori-
zontal density gradient. In this work we analyze the effects
of convective fluid motion for fronts in Poiseuille flows. We
will couple the Navier-Stokes equations describing viscous
fluid motion to the reaction-diffusion equation that describes
the chemical wave propagation. We will show how these
effects can also be obtained using an eikonal relation be-
tween the front curvature and the normal speed of propaga-
tion. Experiments can be designed to test these predictions.

II. EQUATIONS OF MOTION

We model the propagation of the chemical front by cou-
pling the reaction-diffusion equation describing the autocata-

lytic front in a moving fluid with V� as the velocity �26–29�,

�a

�t
+ V� · �� a = D�2a − kca�a0 − a�2. �1�

Here we use a third order autocatalysis for the concentration
a that applies to fronts in the iodate-arsenous acid reaction.
The parameter a0 is the concentration of the unreacted fluid.
We set the front to propagate upward in a two-dimensional
slab, where the horizontal direction x is confined by two
vertical walls at x=0 and x=a. The vertical z direction has
horizontal boundaries far away from the front. The velocity
field arises from a Poiseuille flow imposed on a fluid of
variable density. A diagram showing the front propagating in
a fluid of constant density can be found in Edwards �24�.
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We use the Navier-Stokes equations in the Bousinesque
approximation, where the changing density affects only the
large gravity term,

�V�

�t
+ �V� · �� �V� = −

1

�0
�� P + ��2V� −

�

�0
gẑ . �2�

Here P is the pressure, � is the mass density of the fluid, �0
is the mass density of the unreacted fluid, � is the kinematic
viscosity, g is the magnitude of the acceleration of gravity,
and ẑ is a unit vector in the direction upward of the gravity.

In this approximation the continuity equation is reduced
to

�� · V� = 0. �3�

We will solve the equations in the two dimensional x-z plane.
The continuity equation allows us to write the fluid equations
in terms of the stream function-vorticity ��� and the vorticity
��� defined as

Vx =
��

�z
, Vz = −

��

�x
, �4�

and

�2� = � . �5�

With this definition the Navier-Stokes equations are written
as

��

�t
=

���,��
��x,z�

+ ��2� +
g

�0

��

�x
. �6�

For two functions f1 and f2 we defined

��f1, f2�
��x,z�

=
�f1

�x

�f2

�z
−

�f1

�z

�f2

�x
. �7�

We write the equations of motion in dimensionless form us-
ing tch= �kca0

2�−1 as unit of time, L= �Dtch�1/2 as unit of
length, D as unit of the stream function, D /L2 as unit of the
vorticity, the dimensionless concentration c=a /a0,

��

�t
=

���,��
��x,z�

+ Sc�
2� + RaSc

�c

�x
, �8�

and

�c

�t
=

���,c�
��x,z�

+ �2c − c�1 − c�2. �9�

We defined a dimensionless Rayleigh number

Ra =
g�L3

�D
�10�

and a dimensionless Schmidt number

Sc =
�

D
. �11�

The parameter � represents the fractional density difference
between the unreacted fluid and the reacted fluid. We as-
sumed that the density varies linearly with the concentration

c. For fronts in the iodate-arsenous acid reaction, the
Schmidt number is large, we will replace Eq. �8� in the limit
of infinite Schmidt number �29�,

�2� + Ra
�c

�x
= 0. �12�

For thin fronts �as in the iodate-arsenous acid reaction� we
can replace the reaction-diffusion-advection relation �Eq.
�1�� by an eikonal relation between the normal front velocity
vn, the flat front speed v0, and the front curvature � �in di-
mensioned form� �14,30,31�,

vn = v0 + D� + V� · n̂ . �13�

Here n̂ is a unit vector in the direction normal to the front. In
our choice of dimensionless units v0 corresponds to 1/�2
and D becomes the number 1 as in Ref. �32�. In this case the
thin front separates reacted and unreacted fluid. The eikonal
relation has shown very good agreement with experiments in
locating the onset of convection for autocatalytic fronts. Use-
ful insights will be gained by comparing the solutions of the
eikonal relation and reaction-diffusion models. In this paper
we will apply it only to fronts of small curvature �33�, were
the eikonal relation can be written as

�H

�t
= v0 +

�2H

�x2 + �v0

2
�� �H

�x
�2

+ �Vz�H. �14�

Here z=H�x , t� provides the position of the front as a func-
tion of the horizontal coordinate x. The vertical component
of the fluid velocity �Vz�H is evaluated at the front.

In this paper we study the gravitational effects on a
chemical front under Poiseuille flow, therefore the fluid ve-
locity will be considered as the Poiseuille flow velocity plus
an additional velocity. The fluid velocity for Poiseuille flow
corresponds to fluid motion in the vertical z direction with
parabolic profile in the horizontal x direction: Vz

�0��x�
=6V̄x�a−x� /a2. Here V̄ corresponds to the average fluid ve-
locity. We write the stream function � as the sum of the
stream function for the Poiseuille flow �0 plus the stream
function for the additional velocity ��. The primed stream
function satisfies viscous boundary conditions at the wall,
��=�z��=0. After making the corresponding substitutions in
the dynamic equations we drop the prime on the additional
stream function. We point out that in the limit of infinite
Schmidt number, Eq. �12� remains unchanged after this sub-
stitution. The front evolution equation �Eq. �14�� corresponds
to the original equation with the simple addition of the Poi-
seuille fluid velocity.

III. FRONT EVOLUTION EQUATION

We study the front evolution equation, Eq. �14�, which is
the small curvature approximation to the eikonal relation.
Previous work using this equation showed good agreement
with experiments near the transition to convection without a
Poiseuille flow �8,14,15�. This equation also provides a good
description for the change in curvature and increase of speed
near the onset of convection in vertical tubes �34�. We use
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this model to describe the effects of the Poiseuille flow on
the convective fronts. The front evolution equation is
coupled to Eqs. �5� and �12� describing fluid motion. We
begin studying the case of “free” boundaries for the addi-
tional flow velocity. Here we only require the additional nor-
mal velocity to vanish, which in terms of the stream function
leads to the conditions �=�x

2�=0. Free boundaries provide a
simple example of the mathematical methods applied. These
results can be compared with previous calculations without
Poiseuille flow with the same boundary conditions �35�.

Under the thin front approximation, the density difference
changes abruptly across the front

� = �0 + ����z − H� . �15�

Here ��y� is the step function, 0 if y	0 and 1 if y
0.
Substituting into Eq. �12� we find

�2�2� = Ra
�H

�x
��z − H� , �16�

which is replaced by the equation �2�2�=0 with jump con-
ditions across the front ���= ��z��= ��z

2��=0, and ��z
3��

=Ra �H /�x. The jump conditions, indicated by the brackets,
correspond to the value of � just above the front in the un-
reacted fluid minus the value of � just below the front in the
reacted fluid. For small curvature fronts, the jump conditions
can be evaluated at the average front height neglecting any
dependence in the horizontal �x� coordinate �35�. Therefore
knowing H at a given time, Eq. �16� will give �. We intro-
duce the corresponding Fourier expansions of � and H,

� = 	
n

�n�z�sin�nqx� , �17�

and

H = 	
n

Hn�z�cos�nqx� , �18�

with q=� /a and 0	x	a. After substitution into Eq. �16�
and projecting over the Fourier expansion, we have the equa-
tions for the Fourier coefficients,

d4�n

dz4 − 2�nq�2d2�n

dz2 + �nq�4�n = 0, �19�

��n� = 
d�n

dz
� = 
d2�n

dz2 � = 0, �20�

and


d3�n

dz3 � = − Ra�nq�Hn. �21�

The solution for these equations that vanish far away from
the front are

�n�z� = �An�e−nqz + nqze−nqz� if z 
 0

An�enqz + nqzenqz� if z 	 0

 . �22�

Here we define

An = −
RaHn

4�nq�2 . �23�

We introduce this result into the front evolution equation Eq.
�14� leading to

�H

�t
= v0 +

�2H

�x2 + �v0

2
�� �H

�x
�2

+
Ra

4 	
n

Hn

nq
cos�nqx�

+ Vz
�0��x� . �24�

Here Vz
�0��x� corresponds to the z component of the Poiseuille

flow with average fluid speed V̄. Using the Fourier series for
the front height H as given by Eq. �18� we find the time
evolution for the Fourier coefficients as a set of ordinary
differential equations,

dH0

dt
= v0 + V̄ + v0

q2

4 	
n=1

n2Hn �25�

and

dHp

dt
= Vp + �− p2q2 +

Ra

4pq
�Hp

+ v0
q2

4 	
n=1

	
m=1

nmHnHm��p,�n−m� − �p,n+m� for p � 1.

�26�

Here Vp corresponds to the Fourier coefficient of the Poi-
seuille flow as in

Vz
�0��x� = 	

p=0
Vp cos�pqx� �27�

with

Vp = �− 24V̄/�p2�2� for p even

0 for p odd

. �28�

Thus the time evolution of the front is defined by the evolu-
tion of the Fourier coefficients of the front height H deter-
mined by Eq. �26�.

A solution for rigid boundary conditions can be found by
expanding the stream function in terms of orthogonal eigen-
functions of the operator d4 /dx4, with the eigenfunction and
its derivative vanishing at the walls. The front height is still
expanded by a Fourier series. This approach gave good
agreement with experiments without external flow, even for a
one- or two-term truncation �15�. In this paper we will limit
ourselves to using a two-term expansion for the stream func-
tion, thus we will write

��x,z� = 
1�z�C1�x/a − 1/2� + 
2�z�S1�x/a − 1/2� , �29�

where the functions C1 and S1 are the corresponding eigen-
functions defined in Chandrasekhar �36�. These expansions
are replaced in Eq. �16� and projected over the orthogonal
eigenfunctions, leading to a set of equations similar to Eq.
�19�,
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d4
n

dz4 − �gn/a2�
d2
n

dz2 + ��n/a4�
n = 0. �30�

Here �n is the corresponding eigenvalue, while gn is calcu-
lated using the projection leading to g1=12.302 618 67 and
g2=46.050 120 33. The solution follows the method outlined
for free boundaries repeating similar calculations. While we
keep two terms in the stream function, we require three terms
for the front height truncation, Eq. �18�. For these truncations
we find the following set of differential equations:

dH0

dt
= v0 + V̄ + v0

q2

4
H1

2 + v0q2H2
2, �31�

dH1

dt
= − q2H1 + v0q2H1H2 + f1

Ra

q
H1, �32�

and

dH2

dt
= − 4q2H2 −

v0

4
q2H1

2 + f2
Ra

q
H2 − 6V̄/�2. �33�

The values for the parameters f i are f1=0.080 932 627 and
f2=0.065 310 740 21 for viscous boundary conditions. For
the case of free boundaries, the corresponding truncation of
Eq. �26� gives f1=1/4 and f2=1/8.

IV. THE REACTION-DIFFUSION-CONVECTION
EQUATIONS

Our results using the front evolution equations are com-
pared to numerical solutions of the reaction-diffusion-
convection system. We used a finite difference method to
approximate the spatial derivatives using a rectangular mesh.
The time evolution equation is obtained by using a simple
Euler method with a very small time step in order to avoid
numerical instabilities in the advective term. We solve the
discretized Poisson equation �Eq. �5�� to obtain the stream
function using the GENBUN subroutine from the FISHPACK

software package �37�. The second Poisson equation �Eq.
�16�� is also solved using the same method. The implemen-
tation of boundary conditions is straightforward for slip
boundaries using �=�=0 at the walls. For nonslip bound-
aries we use �=0 and �1,j =2�2,j /�x2 for the left wall, with
a similar expression for the right wall �38,39�. We use a
self-consistent relaxation technique to obtain the stream
function �, since its value depends on � which depends on �
near the walls �39�. We use a 40�200 grid with spacing
�x=�y=0.5. This reproduces the flat front speed and
matches results for previous studies on the transition to con-
vection �26,27�. We let the front evolve from initial condi-
tions with random noise. We shift it backward as it ap-
proaches the upper end of the domain. In this way the front
achieves propagation with constant speed.

V. RESULTS

We study solutions to the reaction-diffusion-convection
equations and compare them with results from the thin front
approximation. We establish the regime of interest by choos-

ing appropriate initial values for the parameters that define
the front propagation. According to our dimensionless units,
the front propagation depends on the Rayleigh number �Ra�,
the dimensionless distance between the walls �a�, and the

dimensionless average Poiseuille flow �V̄�. In our units, the
time scale is determined by the reaction kinetics. Using the
results of Saul and Showalter �40� for fronts in the iodate-
arsenous acid reaction described by a cubic equation, we
estimate a chemical time tch=1.1594 s. We found the corre-
sponding length scale using a diffusion coefficient of D=2
�10−5 cm/s2 as in Wu �26�, resulting in L=4.815
�10−3 cm. According to experiments in vertical cylinders,
the transition to convection in fronts in the iodate arsenous
acid reaction occurs near a diameter of dc=0.92 mm, which
suggests a dimesionless distance between the walls near a
=dc /L�20. We obtain Ra�0.05 using the values found in
Wu �26�: �=0.84�10−3, g=980 cm/s2, and �=9.2
�10−3 cm2/s. We study the front in the vicinity of these
values of Ra and a with different average speeds for the
Poiseuille flow.

The results using the reaction-diffusion-convection equa-
tion are shown in Fig. 1, where we display the front speed as
a function of Rayleigh number keeping the wall separation at
a=20. The line corresponding to zero Poiseuille flow shows
an increase of speed for Ra numbers above 0.06 which is
consistent with our estimates, otherwise the front speed is the
convectionless front speed v0=1/�2 �32�. Once Poiseuille
flow is turned on we observe a similar increase of speed but
at different Rayleigh numbers. We find a sharp increase of

speed for Ra
0.11 when the average Poiseuille velocity V̄ is
+0.1, while the transition takes place when Ra
0.04 in the

V̄=−0.1 case. This behavior is also reflected in the case of
free boundary conditions with the increase of speed occur-
ring at different values of the Rayleigh number as shown in

0.6

0.7

0.8

0.9

1

1.1

0 0.05 0.1 0.15 0.2 0.25 0.3
Rayleigh Number

Sp
ee

d

FIG. 1. The dimensionless front speed as a function of the Ray-
leigh number for different average velocities of the Poiseuille flow

�V̄�. The distance between the walls is a=20. The results corre-
spond to the reaction-diffusion-convection equations with viscous
boundary conditions. The triangles correspond to no Poiseuille flow

���, the squares ��� to V̄=−0.1, and the plus signs ��� to V̄=0.1.
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Fig. 2. In this case the transition occurs at Ra
0.021 for
V̄=0.1 and Ra
0.011 for V̄=−0.1. The fact that the transi-
tion takes place at lower values of Ra for free boundaries
shows that the viscous boundaries provide additional stabil-
ity to the front.

For Rayleigh numbers below the transition, the front has a
speed close to �but not equal to� the flat front speed plus the
corresponding average Poiseuille velocity. The state before
the transition cannot be characterized as a convectionless
front, since fluid motion due to gravity is always present
even before the transition occurs. The reason is that without
gravity the Poiseuille flow changes the front curvature de-
pending on the direction of propagation of the front, either
with or against the flow. The front curvature caused by the
flow results in a horizontal density gradient, which always
leads to fluid motion due to gravity regardless of the Ray-
leigh number. For very small Rayleigh numbers the front is
curved having the same symmetry as the front without gravi-
tational effects �41�. The front is symmetric with respect to a
line through the center of the two-dimensional domain �x
=a /2�, which we call the axis. The speed of these fronts is
affected by the small Rayleigh number. In Fig. 3 we show
the change of speed due to a small Rayleigh number for
fronts advected by the Poiseuille flow. Here we consider a
front that propagates in the same direction as the Poiseuille
flow. Figure 3 also shows that increasing the average Poi-
seuille flow increases the gravitational effects on the front
velocity. We also show �Fig. 3� that the increase of speed is
larger for larger positive Rayleigh numbers �Ra=0.04 as
compared to Ra=0.02�. In this figure we also show that a
negative Rayleigh number �as in the case of fronts propagat-
ing downwards� actually diminishes the additional speed. We
point out that in all these cases the additional speed is small
compared to the convectionless front speed, roughly less
than 4%.

After the transition takes place, the front is no longer
axisymmetric. In Fig. 4 we display the fluid velocity de-

scribed by the stream function � which corresponds to the
additional velocity on the Poiseuille flow. Here the front

propagates upward and the Poiseuille flow �V̄=−0.1� is
against the direction of propagation. In Fig. 4�a� the Rayleigh
number is below the transition, the front is axysimmetric
with a velocity field consisting of two rolls, one the mirror
image of the other. Here fluid rises along the sides and falls
in the middle of the two-dimensional tube. For Ra=0.04, the
front is no longer axisymmetric, one of the convective rolls
is clearly stronger. There is a stronger upward fluid motion
on one side with the downward flow away from the center.
For Ra=0.05, the motion consists of a single roll with fluid
rising on one side and falling on the other side �Fig. 5�.

The results for the front evolution model also exhibit a
sharp speed transition as we increase the Rayleigh number.
Figures 6 and 7 show the results of the front evolution equa-
tion for the two types of boundary conditions: free and vis-
cous boundaries. Figure 6 shows the increase of speed as
calculated with free boundaries while Fig. 7 shows the in-
crease of speed using viscous boundaries. For the free
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FIG. 2. The dimensionless front speed as a function of the Ray-
leigh number for different average velocities of the Poiseuille flow

�V̄�. The distance between the walls is a=20. The results corre-
spond to the reaction-diffusion-convection equations with free
boundary conditions. The triangles correspond to no Poiseuille flow

���, the squares ��� to V̄=−0.1, and the plus signs ��� to V̄=0.1.
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FIG. 3. The additional front velocity due to gravity for advected,
axisymmetric fronts. The squares ��� correspond to Ra=0.04, the
plus signs ��� to Ra=0.02, and the triangles ��� to Ra=−0.02. The
units are the dimensionless units described in the text.

Ra=0.03
(a)

Ra=0.04
(b)

z

x x
x=0 x=a x=0 x=a

FIG. 4. The additional fluid velocity field near the front. For �a�
Ra=0.03 we find an axisymmetric front, while for �b� Ra=0.04 it is
no longer axisymmetric.
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boundary case, we used the Fourier series expansion with ten
terms �Eq. �26��, while for viscous boundaries we used the
results from the two-term expansion in the stream function
�Eqs. �30�–�33��. We verified that adding terms to the Fourier
expansion in the free boundary case does not change the
results significantly. Introducing more terms for viscous
boundaries is more difficult, since the Fourier series for the
front height is not orthogonal to the expansion for the stream
function. However, in Ref. �15� additional terms do not alter
significantly the linear stability analysis for flat fronts, con-
sequently we expect that the truncations leading to Eqs.
�30�–�33� will be sufficient for fronts near the nonaxisym-
metric transition. To support these approximations we also

display in Figs. 6 and 7 result for the reaction-diffusion
model. We display in Fig. 6 the front speed as a function of
the Rayleigh number for different Poiseuille flow velocities.
We compare the results with the ones obtained using the
reaction-diffusion equation. Both models exhibit the transi-
tion at the same Rayleigh numbers, but the increase of speed
after the transition is somewhat faster using the front-
evolution model. We also observe that the three lines after
the transition cross each other, which is not the case for the
reaction-diffusion model. This may be due to the fact that the
front evolution approximation assumes a small curvature,
with front curvature increasing significantly after the transi-
tion takes place. The results for viscous boundary conditions
also show good agreement with the reaction-diffusion results
as shown in Fig. 7. In this case we use the truncation defined
by Equations �31�–�33�. Here we also find a transition to a
nonaxisymmetric front with the corresponding sharp increase
of speed, but the increase of speed is faster compared to the
reaction-diffusion model. The critical Rayleigh numbers ob-
tained with each model are slightly different. Further insights
can be gained with the three term truncation by carrying out
a linear stability analysis of the initial axisymmetric state.
This state is characterized by having H1=0 and H2 being a

function of V̄ and the Rayleigh number Ra. We carried out a
linear stability analysis of Eqs. �32� and �33� to first order on

V̄ resulting in a relation between the critical Rayleigh num-
ber and the dimensionless wall separation a,

Ra =
�3

a3f1
+

6v0V̄

�a�4f1 − f2�
. �34�

For V̄=0 the critical Rayleigh numbers correspond to previ-
ous works �14,15,27�. The parameters f1 and f2 depend on

Ra=0.05

z

x
x=0 x=a

FIG. 5. The additional fluid velocity field near the front for
Ra=0.05. Here the front is nonaxisymmetric.
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FIG. 6. The speed of the front as a function of the Rayleigh
number for different average velocities of the Poiseuille flow. The
distance between the walls is a=20. The model is the front evolu-
tion equations with free boundary conditions. The triangles corre-

spond to no Poiseuille flow ���, the squares ��� to V̄=−0.1, and the

plus signs ��� to V̄=0.1. The dotted line corresponds to the finite
difference model. The units are the dimensionless units described in
the text.
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FIG. 7. The speed of the front as a function of the Rayleigh
number for different average velocities of the Poiseuille flow. The
distance between the walls is a=20. The model is the three variable
model Eqs. �31�–�33� for viscous boundaries. The triangles corre-

spond to no Poiseuille flow ���, the squares ��� to V̄=−0.1, and the

plus signs ��� to V̄=0.1. The dotted line corresponds to the finite
difference model. The units are the dimensionless units described in
the text.
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the type of boundary conditions and they have been defined
above. The critical Rayleigh number increases as we increase
V̄. Previous work showed that the front speed v0 plays a
negligible role in the transition to convection for flat fronts
due to the large value of the Schmidt number. Here the di-
mensionless front speed v0 plays an important role when
Poiseuille flow is present. If it is neglected there will be no
dependence of the critical Rayleigh number with respect to
V̄.

We use the front evolution with free boundaries to show
the dependence of the critical Rayleigh number on the Poi-
seuille flow velocity �Fig. 7�. These results are close to the
ones obtained with the reaction-diffusion-convection system
�Fig. 2� but with less computational effort. We observe in
Fig. 8 that the critical Rayleigh number increases for positive
Poiseuille flow speeds, but decreases for negative flow
speeds. This suggests a way to experimentally observe the
transition. We can start an experiment where the Rayleigh
number is just above the critical Rayleigh number, then we
can impose a Poiseuille flow to increase the critical Rayleigh
number. In this way, the initial front �nonaxisymmetric� will
become an axisymmetric front. In Fig. 9 we show the depen-
dence of the critical wall separation with respect to the Poi-
seuille flow velocity. If the front propagates in a domain
where the wall separation is below critical, the front will be
axisymmetric, otherwise it will become nonaxisymmetric.
Our results show that the critical wall separation increases as

the average flow speed increases from V̄=−0.7 to V̄=0.8.
Experiments with different tube diameter were conducted to
locate the onset of convection without Poiseuille flow. These
experiments in the presence of Poiseuille flow will show the

dependence of the critical diameter as a function of V̄.

VI. CONCLUSIONS

In this paper we studied the gravitational effects of chemi-
cal fronts advected by a Poiseuille flow caused by the density

difference between reacted and unreacted fluid. For small
Rayleigh numbers or small wall separations we found that
the front deformation always induces flow caused by gravity,
resulting in a change of speed for the advected front. As the
Rayleigh number or the wall separation is increased, the ad-
vected front loses stability to a nonaxisymmetric state, with a
consequent sharp increase in front speed. Experiments can
locate the critical width for the nonaxisymmetric transition
as the front propagates with or against the Pouiseuille front
�Fig. 9�. This provides more contrasting results than measur-
ing the small change of speed for the initial axisymmetric
front �Fig. 3�

The results using the front evolution equation are similar
to the ones found for the reaction-diffusion model. One of
the advantages of using a front evolution model is that it can
be reduced to a simpler three variable model that shows good
results. The use of free boundaries provides the same quali-
tative features for the transition to the nonaxisymmetric state
simplifying the equations. Future work should incorporate
the corresponding geometry of the experiments, either a
three-dimensional cylinder or a Hele-Shaw cell. Our results
show that the advected fronts become more stable �higher
critical Rayleigh number� as the front propagates in the same
direction of the Poiseuille flow. These effects can be mea-
sured in experiments using relatively small velocities for the
Poiseuille flow.
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