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Stabilizing unstable periodic orbits in the Lorenz equations using time-delayed feedback control
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For many years it was believed that an unstable periodic orbit with an odd number of real Floquet multipliers
greater than unity cannot be stabilized by the time-delayed feedback control mechanism of Pyragas. A recent
paper by Fiedler et al. Phys. Rev. Lett. 98, 114101 (2007) uses the normal form of a subcritical Hopf
bifurcation to give a counterexample to this theorem. Using the Lorenz equations as an example, we demon-
strate that the stabilization mechanism identified by Fiedler et al. for the Hopf normal form can also apply to
unstable periodic orbits created by subcritical Hopf bifurcations in higher-dimensional dynamical systems. Our
analysis focuses on a particular codimension-two bifurcation that captures the stabilization mechanism in the
Hopf normal form example, and we show that the same codimension-two bifurcation is present in the Lorenz
equations with appropriately chosen Pyragas-type time-delayed feedback. This example suggests a possible
strategy for choosing the feedback gain matrix in Pyragas control of unstable periodic orbits that arise from a
subcritical Hopf bifurcation of a stable equilibrium. In particular, our choice of feedback gain matrix is
informed by the Fiedler er al. example, and it works over a broad range of parameters, despite the fact that a

center-manifold reduction of the higher-dimensional problem does not lead to their model problem.
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I. INTRODUCTION

Time-delayed feedback control has been used as a method
of stabilizing unstable periodic orbits (UPOs) or spatially
extended patterns by a number of authors. The method of
Pyragas [1], sometimes called “time-delayed autosynchroni-
zation” (TDAS), has attracted much attention. Here, the
feedback F' is proportional to the difference between the cur-
rent and a past state of the system. That is, F=K[x(r—7)
—x(t)] where x(¢) is some state vector, 7 is the period of the
targeted UPO, and K is a feedback gain matrix. Advantages
of this method include the following. First, since the feed-
back vanishes on any orbit with period 7, the targeted UPO is
still a solution of the system with feedback. Control is there-
fore achieved in a noninvasive manner. Second, the only
information required a priori is the period 7 of the target
UPO, rather than a detailed knowledge of the profile of the
orbit, or even any knowledge of the form of the original
ODEs, which may be useful in experimental setups. The
method has been implemented successfully in a variety of
laboratory experiments on electronic [2,3], laser [4], plasma
[5,6], and chemical [7,8] systems, as well as in pattern-
forming systems [9—12]; more examples can be found in a
recent review by Pyragas [13].

A paper by Nakajima [14] gave a supposed restriction on
the method of Pyragas. It was believed that if a UPO in a
system with no feedback had an odd number of real Floquet
multipliers greater than unity, then there was no choice of the
feedback gain matrix K for which the method of Pyragas
could be used to stabilize the UPO. However, a recent paper
of Fiedler et al. [15] gives a counterexample to this restric-
tion. They add Pyragas-type feedback to the normal form of
a subcritical Hopf bifurcation and show that the subcritical
periodic orbit can be stabilized for some values of the feed-
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back gain matrix. The Hopf normal form is two-dimensional,
so the subcritical orbit has exactly one unstable Floquet mul-
tiplier. The mechanism for stabilizing the orbit is through a
transcritical bifurcation with a stable delay-induced periodic
orbit. Just et al. [16] investigate a series of bifurcations in
this system, which has the attractive feature that, despite the
presence of the delay terms, much of the analysis can be
carried out analytically.

The subcritical Hopf bifurcation of a stable equilibrium is
a generic mechanism for creating UPOs with an odd number
of unstable Floquet multipliers. Such bifurcations occur in a
number of physical systems, such as the Belousov-
Zhabotinsky reaction-diffusion equation [17], the Hodgkin-
Huxley model of action potentials in neurons [18], and in
NMR lasers [19]. The reduction of these higher-dimensional
dynamical systems to the two-dimensional normal form of
the Hopf bifurcation problem is a standard procedure
[20,21]. Moreover, if Pyragas-type feedback delay terms
were added to the model ODEs, then these (infinite-
dimensional) dynamical systems could likewise be reduced
to the standard two-dimensional normal form in a vicinity of
a Hopf bifurcation [22], with the parameters of the feedback
control matrix K modifying the coefficients in the normal
form. Despite this disconnect between center manifold re-
duction of delay equations to Hopf normal form, and the
example of Fiedler er al. in which the feedback delay terms
are added directly to the Hopf normal form, we find that the
same stabilization mechanism of subcritical Hopf orbits ap-
plies to both their example and to the one we present for the
Lorenz equations.

Specifically, we study a subcritical Hopf bifurcation of a
stable equilibrium in the Lorenz equations [23,24], and show
that Pyragas-type feedback can stabilize the subcritical peri-
odic orbit. As in the example in [15], in the absence of feed-
back, the bifurcating periodic orbit has exactly one real un-
stable Floquet multiplier. It also has one stable Floquet
multiplier, and one Floquet multiplier equal to one (corre-
sponding to the neutral direction along the orbit). The 3 X3

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.76.056214

CLAIRE M. POSTLETHWAITE AND MARY SILBER

gain matrix multiplying the Pyragas feedback terms can be
chosen in many different ways. We give two examples in
which we choose the structure of the gain matrix in different
ways and show that they give quite different results.

In our first example, we choose the gain matrix in a man-
ner suggested by the results in [15,16]: there is no feedback
in the stable direction of the UPO, and Pyragas-type feed-
back in the direction of the unstable Floquet multiplier,
which is identical in form to the feedback in [15]. In this
way, the problem of choosing the nine parameters in the 3
X3 gain matrix is reduced to one of making an informed
choice of the two parameters employed in [15]. We find that
the subcritical orbit can be stabilized over a wide range of
values of our two bifurcation parameters: the amplitude of
the feedback gain, and the usual control parameter p in the
Lorenz equations. We identify a codimension-two point in
the Hopf normal form example, where two Hopf bifurcations
collide, and show that the same codimension-two point can
be found in the Lorenz system with this choice of feedback,
and the bifurcation structure is qualitatively the same in the
two cases. This codimension-two point captures the stabili-
zation mechanism in both examples: the periodic orbits cre-
ated by the two Hopf bifurcations exchange stability in a
transcritical bifurcation. The curve of transcritical bifurca-
tions in our two-parameter plane emanates from the Hopf-
Hopf codimension-two point.

Our second choice of the gain matrix is a real multiple of
the identity. This is also a natural choice, but in contrast with
our first example we show that here the subcritical orbit can-
not be stabilized for any parameters close to the original
Hopf bifurcation. Our two bifurcation parameters are again
the amplitude of the gain and the parameter p in the Lorenz
equations. We give analytical results on the location of Hopf
bifurcation curves and hence deduce the stability of the pe-
riodic orbit as it bifurcates.

This paper is organized as follows. In Sec. II we review
some results from Fiedler ef al. [15] and Just et al. [16]. In
Sec. III we give our example system of the Lorenz equations
with Pyragas feedback. We give two examples of the choice
of gain matrix. We explain for the first example how we
choose the gain matrix to stabilize the subcritical Hopf orbit
and show that the bifurcation structure of this system is the
same as that for the normal form system. For the second
example, the gain matrix is a real multiple of the identity and
we show that the subcritical orbit cannot be stabilized. Sec-
tion IV concludes.

II. HOPF NORMAL FORM WITH DELAY

In this section we recap the results of [15] and identify a
particular codimension-two point in the Hopf normal form
with delay which we will later examine for the Lorenz equa-
tions with feedback. This codimension-two point acts as an
organizing center for the bifurcations involved in the mecha-
nism for stabilizing the periodic orbit.

The normal form of a subcritical Hopf bifurcation with a
Pyragas-type delay term is

2(H) = N+ )z(0) + (1 +iy)|z(0)[*2(2) + b[z(t = 7) = 2(1)]
(1)

with z e C, and parameters N,y e R. The feedback gain b
=bye'? € C, and the delay 7>0. The linear Hopf frequency
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has been normalized to unity by an appropriate scaling of
time. We consider N\ as the primary bifurcation parameter.
We consider only y<<0; this is the case in the Lorenz ex-
ample.

For the system with no feedback (i.e., b=0) we can write
z=re'? and then

F=(N+r)r, (2)

O=1+ v (3)

Periodic orbits exist with amplitude r2==\ if A <0, so 6
=1-y\ and the orbits have minimal period T=27/(1—y\).
We refer to these orbits as the Pyragas orbits, and it is these
orbits that we wish to stabilize noninvasively by adding an
appropriate feedback term (i.e., with b#0).

Following [15,16], we define the Pyragas curve T
=7p(\) in \-7 space, along which the feedback vanishes on
the Pyragas orbits:

27
I—y\'

7p(N) = 4)
We plot this curve in A-7 space in Fig. 1, along with curves
of Hopf bifurcations from the zero solution. In later sections,
we set 7=7p(\), as our main purpose is the noninvasive sta-
bilization of the Pyragas orbits.

The zero solution of Eq. (1) undergoes Hopf bifurcations
when the characteristic equation has purely imaginary solu-
tions. Setting z(f)=e” in Eq. (1) and linearizing we find

n=N+i+b(e”-1).

Writing #=iw and separating into real and imaginary parts
gives

0=\ +by[cos(B- wT) —cos B], (5)

w—1=by[sin(8- w7) —sin B]. (6)

These equations define the Hopf curves 7=75(\), in -7
space, parametrized by the linear frequency w associated
with the bifurcating periodic orbit. There are multiple
branches to this curve, which we show in Fig. 1(a), but we
concentrate on the one which intersects the curve 7=7p(\) at
(N, 7)=(0,2m). The solution of the characteristic equation at
A=0, 7=2m has w=1 and corresponds to the Hopf bifurca-
tion to the Pyragas orbit.

Figure 1 shows the possible configurations of the curves
7=7p(\) and 7=74(\) as the parameter b, is varied. The
curves typically cross in two places: at A=0 and at a second
location depending on b,. At by=by, the two curves are tan-
gent at A=0 and only intersect once. Just et al. [16] show
that

-1
by = .
07 27r(y sin B+ cos B)

For simplicity, we assume b;,>0, so we must have ysin 8
+cos <0. )

We define a curve of Hopf bifurcations b0=bg°pr()\) in
\-b, space by the location of the second intersection of 7p(\)
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FIG. 1. (Color online) The figures show the curves 7=7p(\) (dashed curve) and 7=75(\) (solid curve) for three values of by The
remaining parameters in Eq. (1) are B=7/4 and y=-10. In (a), portions of four of the Hopf curves are shown, but in (b) and (c) we show
only the curve which passes through (N, 7)=(0,27). In all three cases, the two curves cross at A=0 (shown by a solid dot). In (a) (with
bo>bg), the curves cross again at N<<0 (shown by an empty dot), and in (c), (bg<b) the curves cross again at A>0. Case (b) has b,
=b( and the two curves are tangent at A=0. The origin is stable (unstable) in those regions marked by an s (u).

and 7y(\). This is a Hopf bifurcation to a delay-induced
periodic orbit, that is, a periodic orbit arising from the addi-
tion of the delay terms; one for which the feedback does not
vanish.

We adopt the convention that a Hopf bifurcation of a
stable equilibrium is called “supercritical” (“subcritical”) if
the resulting periodic orbit bifurcates into the parameter re-
gime where it coexists with the unstable (stable) equilibrium.
Such a supercritical bifurcation generically produces a stable
periodic orbit [20], while the subcritical case produces an
unstable periodic orbit. In the absence of feedback, the bifur-
cating orbit is subcritical and unstable. The mechanism for
stabilization involves the additional delay-induced Hopf bi-
furcation at b}}"l’fo\). This bifurcation can change the trivial
equilibrium from being stable to being unstable. Conse-
quently, the Pyragas orbit may then coexist with an unstable
periodic orbit. As the Hopf bifurcation at b{i°P'(\) passes
through A=0, the original Hopf bifurcation to the Pyragas
orbit at A=0 changes from a subcritical one to a supercritical
one. This is all done without otherwise altering the form of
the Pyragas orbit.

The Hopf bifurcation of the zero solution to the Pyragas
orbit at (A, 7)=(0,2) changes from subcritical to supercriti-
cal as described above as b, is increased through b, since for
bo> by, the curve 7p(\) lies “inside” 74(\). In this sense, b
is the smallest value of the feedback gain for which the Pyra-
gas orbit is stabilized immediately after the bifurcation point.
The minimum positive bj can be selected by choosing B
such that y=tan 8.

A. Codimension-two bifurcation point

We now review some of the details of the bifurcation
structure of the system (1) which are described in Just ef al.
[16], and identify the codimension-two point we examine in
the Lorenz system. We consider \ and b as two bifurcation
parameters, and fix 7=7p(\).

The mechanism by which the Pyragas orbit is stabilized is
through a transcritical bifurcation with a delay-induced peri-
odic orbit. As shown in Just ef al. [16], the transcritical bi-
furcations occur when

-1
7-= . b
by(cos B+ ysin B)

or, in N-b, space, since 7=7p(\), when

1 1 b
N=—[1+2mby(cos B+ ysin B)] = —(1 - —‘C))
Y Y\ b

This line of transcritical bifurcations collides in \-b, space
with the two curves of Hopf bifurcations A=0 and b,
=bg'°pf()\) at (N, by)=(0,b(), at a double-Hopf codimension-
two point. In Fig. 2 we sketch the bifurcation structure
around this point in A-b, space. From this figure we can see
that in order for the Pyragas orbit to bifurcate stably (i.e.,
supercritically) at A=0, we must have by > by,

III. LORENZ EQUATIONS WITH TIME-DELAYED
FEEDBACK

We now use the Lorenz equations as an example system
to demonstrate that the feedback described above can also
stabilize orbits arising in a subcritical Hopf bifurcation in a
higher-dimensional system of differential equations. We give
two examples of a choice of feedback gain matrix. The first
choice is informed by the results given above, and for the
second choice we set the gain matrix equal to a real multiple
of the identity. In the first example, we further locate the
codimension-two point described in Sec. II A, in the Lorenz
system with feedback, and show that the bifurcation structure
is the same as in the normal form case.

The Lorenz equations [23,24] are most often written in
the following form:

x=o(y-x),
y=px—y-—xz,
I=—az+xy,

for real parameters o, «, and p. Lorenz and most other au-
thors studied the parameter regime o=10, =8/3, p>0, and
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Delay-induced orbit

FIG. 2. In (a), the two Hopf bifurcation curves A=0 and bozbg‘)pf()\) (solid bold lines), and the transcritical (TC) bifurcation curve
(dashed bold line) divide the N-b, plane into five regions. The curves intersect at (N, by)=(0,by). The Pyragas orbit is stable in the shaded
region. (b) Schematic representation of the solutions as a path C is traversed anticlockwise around the origin. Solid lines represent stable

solutions and dashed lines represent unstable solutions.

we continue in the same manner. Taking p as the primary
bifurcation parameter, the zero solution is stable for p<1
and loses stability in a supercritical pitchfork bifurcation at
p=1. Two further equilibria are created at

i={tValp-1), £Valp-1),p-1}.

As p is increased further, these equilibria each undergo a
subcritical Hopf bifurcation at p,=o(c+a+3)/(c—a—1)
~24.74 (see [20,21] for further details). It is this bifurcation
that we study in the following, so we shift coordinates to be
centered around x, and rescale to obtain

u=c(v-u),
v=u-v-(p-Dw-(p—Duw, (7)

w=alu+v-w+uv).

Figure 3 shows a bifurcation diagram of the subcritical bi-
furcation of the zero solution of Eq. (7), and also the period
T of the bifurcating orbits, which we use to determine the
delay time 7p(p) in the controlled system. The periodic orbit
exists for 13.926<p<p,; at the lower boundary it collides
with a fixed point in a homoclinic bifurcation.

A. Adding time-delayed feedback

We now add Pyragas-type feedback to the Lorenz equa-
tions. We write

u u U,—u
v |=Jp)| v [+Nuovw) +I'|\ v,—v |, (8)
w w W,—Ww
where
-0 O 0
Jp)=| 1 -1 =(p=1) |,
a « -«

0
Nu,v,w)=|-(p— Duw |,

auv

u,=u(t—17), etc. and I is a 3 X 3 real feedback gain matrix, to
be determined. In this section we use the results of [15,16] to
inform our choice of the control matrix I'. In general, T’
would contain nine independent parameters, but the method
we describe reduces this to only two. In Sec. III C we de-
scribe the dynamics when I' is a real multiple of the identity.
Note that if this system were reduced to normal form around
the Hopf bifurcation point, the resulting equations would not
be the same as Eq. (1). That is, there would be no delay
terms; the delay terms here would only have the affect of
altering the parameters in the usual Hopf normal form. See
[22] for more details.

At the bifurcation point (p=py), J has one real negative
eigenvalue (which we denote by —\,=—a-o—-1=~-11.7),
and a pair of purely imaginary eigenvalues (tiwj,, o),
= \/(2a0'(cr+ 1))/(c—a—1)=9.62). The center manifold of
the original problem with no feedback is therefore two-
dimensional, and the eigenvectors of J can be found explic-
itly (see [21]). Close to the bifurcation point, the subcritical
orbit will lie in a two-dimensional manifold which is close to
the center subspace at the bifurcation point. We therefore
choose

I'=EGE™, 9)

where E is the matrix of eigenvectors which puts J(p,)=J}, in
Jordan normal form, that is

-\, 00
E'JE= 0 0 -w,], (10)
O wy, 0

and
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FIG. 3. (Color online) The top figure is a bifurcation diagram of the subcritical Hopf bifurcation in Eq. (7), showing the fixed point at
zero and the bifurcating branch of unstable periodic orbits. Solid lines indicate stable solutions and dashed lines indicate unstable solutions.
The lower figure shows the period, 7, of the bifurcating periodic orbit, as a function of p.

0 0 0
G=|0 bgcos B —bysinf |.
0 bysin B bycos B

(11)

There is then no feedback in the stable direction and
Pyragas-type feedback in the directions tangent to the center
manifold.

In the following numerical results, we set S=/4, as in
Fiedler et al., and vary b,

B. Numerical results

We use the continuation package DDE-BIFTOOL [25] to
analyze the delay-differential equation (8). The primary bi-
furcation parameter is p, with the subcritical Hopf bifurca-
tion for the system without feedback occurring at p=p,
~24.74. Recall we have set 0=10, @=8/3, and B=m/4.

1.2F

0.8-

(a) bo =1.2

First, we locate Hopf bifurcations of the trivial solution in
the p-7 plane for various values of b,. Figure 4 shows curves
of Hopf bifurcations 7=7y(p) for by=1.2 and 0.1. We also
plot the curve 7=7p(p), given by the period of the bifurcating
subcritical orbits (see Fig. 3). Figure 4 is qualitatively similar
to Fig. 1 (the corresponding figure for the normal form case).
For by=1.2, 7p(p) lies inside 7y4(p), and so we expect, by
analogy with the normal form case, that choosing 7=7p(p)
will stabilize the Pyragas orbit. For by=0.1, 7p(p) lies out-
side 7(p), and so the feedback cannot stabilize the Pyragas
orbit near onset, since it bifurcates subcritically (i.e., it coex-
ists with the stable equilibrium from which it bifurcates). The
codimension-two point occurs at some value of b, that is the
boundary between these cases.

We use DDE-BIFTOOL to locate this codimension-two
point. As in the normal form case, we set 7=7p(p). We do not
have an analytic form for 7p(p), so we numerically estimate

0.9r
0.8f

0.7r

0.6

0.5
0.4f s
0.3f

0.2r

30 21 22 23 24 25 26 27 28

(b) by = 0.1

FIG. 4. (Color online) The figure shows the curves 7=7g(p) (solid lines) and 7=17p(p) (dashed lines) for by=1.2>b{ and by=0.1 <by.
Remaining parameters are 0=10, a=8/3, and B=m/4. Compare with Fig. 1. The Hopf bifurcation at p=p;,=~24.74 is shown with a solid
dot. In (a) the curves additionally cross in p<<p;, (shown by an empty dot). The origin is stable (unstable) in those regions marked with an

s (u). These figures were produced using DDE-BIFTOOL [25].
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Delay-induced orbit

Pyragas orbit

(b)

FIG. 5. (Color online) (a) Curves of Hopf bifurcations from the zero solution in the p-b, plane for the Lorenz system with delay. The
vertical line is the bifurcation to the Pyragas periodic orbits, and the second curve is the bifurcation to the delay-induced periodic orbits. The
curve of transcritical bifurcations of periodic orbits is not shown, but it can be seen in Fig. 6. The dotted ellipse is the curve traversed to
generate the bifurcation diagram in (b). Here, solid lines indicate stable solutions, and dashed lines indicate unstable solutions. Parameter
values are =10, a=8/3, B=m/4. The ellipse is parametrized by 6: p—p,=1.4 cos 6, by—by=0.03 sin 6, and encloses the codimension-two
point. This figure was generated using DDE-BIFTOOL. Compare with Fig. 2.

7p(p) in the following way. For p<<p, we set 7p(p) equal to
the period of the bifurcating period orbits for the system with
no feedback (see Fig. 3). We want to continue 7p(p) into p
> py, 0 we can complete both sides of the bifurcation dia-
gram, so here we set 7p(p)=7,/[1-B(p—p,)], where B=
—0.0528, and 7,=7p(p,) =0.6528. This choice of B ensures
that 7p(p) is continuous and has continuous first derivative at
P=Pp-

With the parameter restriction 7=7p(p), we generate
curves of Hopf bifurcations from the zero solution in the
p-by plane; these are shown in Fig. 5. We can then estimate
the location of the codimension-two point, at (p,b)
=(py.bg), the point where the two curves of Hopf bifurca-
tions cross. We find b~ 0.221. We follow a path around the
codimension-two point and track the amplitude and stability
of the bifurcating periodic orbits; a bifurcation diagram of
the periodic orbits is shown in Fig. 5. The transcritical bifur-
cation of periodic orbits can clearly be seen. Note that Fig. 5
is qualitatively similar to Fig. 2, showing that the bifurcation
structure in the normal form case and in our Lorenz example
is the same.

With the additional feedback, the Pyragas orbits are stable
for a wide parameter range. In Fig. 6, we show the stability
of the Pyragas orbits as p and b are varied. The transcritical
bifurcation can be seen as the boundary of the stable region
which terminates at the codimension-two point. The orbits
also undergo an instability at around p=17. Along this
boundary of the stable region, the periodic orbits have a Flo-
quet multiplier equal to —1, and so the instability is a period-
doubling bifurcation.

In Fig. 7 we show results of forward time integration of
the delay-differential equation (8), at p=23<p,, with 7
=7p(p)=0.7191. Initally, by=1.2, and the Pyragas orbit is
stable. The feedback is then turned off (i.e., by=0) at r=50,
and the trajectory decays back to the zero solution. We have

used DDE-BIFTOOL to confirm the stability of these orbits.
The structure around the codimension-two point also tells
us that the delay-induced orbits can be stable in the region
p>p,,. For example, at p=24.8388, b;=0.22, 7=0.6494, we
can use DDE-BIFTOOL to show that there exists a stable delay-
induced periodic orbit with a period of 0.6537. Figure 8
shows time integration at these parameter values, with feed-
back turned on at r=5. The figure shows the chaotic attractor
for t<<5 and an approach to a stable periodic orbit for #>5.

0.3

0.28

0.26

S o024

0228

0.2

FIG. 6. The figure shows a contour plot of the modulus of the
largest Floquet multipliers for the Pyragas orbit as p and b, are
varied. The shaded area indicates the region where the periodic
orbit is stable. The codimension-two point is marked with a dot.
The boundary of the stable region which emanates from this point is
the transcritical bifurcation of periodic orbits. The left boundary of
the stable region corresponds to a period-doubling bifurcation. This
figure was produced using DDE-BIFTOOL.
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FIG. 7. (Color online) The figure shows time integration of the Lorenz equations with feedback which is switched off at =50 (indicated
by a dashed vertical line). Parameter values are o=10, a=8/3, B=m/4, p=23, and 7=7p(p)=0.7191. by=1.2 for +=<50 and by=0 for ¢
>50. The Pyragas orbit is initially stable, but without feedback, the trajectory decays back to the origin. The data was computed using the

MATLAB routine dde23 for integrating delay-differential equations.

C. Second example

Another natural choice for the gain matrix I" is a real
multiple of the identity. As a comparison to the results given
above, we now consider this case, so write

0
0], byeR. (12)
1

For this choice of I' we can obtain analytical results, and we
show that the bifurcation structure is different from our pre-
vious example, whatever the value of b,. We show first that
unstable periodic orbits with real positive Floquet exponents
cannot be stabilized using this form of feedback. We then
discuss the shape and location of the curves of Hopf bifur-
cation from the origin, in a similar manner to the previous
section, to give a comparison of the two types of feedback.
The codimension-two point described previously does not
exist, and the Hopf bifurcation to the Pyragas orbit is always
subcritical. That is, the periodic orbit in p<<p, always bifur-
cates unstably from an equilibrium which is stable in p<p,
and unstable in p> p,,.

Consider a Pyragas solution u*(¢) of Eq. (8), which is
periodic with period 7, and with I" as in Eq. (12). Then if
is a Floquet exponent of i* (in the system with no feedback),
the characteristic equation for #* in the system with feedback
is given by

[N =bo(e™ = 1)] = p. (13)
Both here, and in the analysis which follows below, simpli-
fication is possible because I' is a multiple of the identity. If
u* has one Floquet exponent u which is real and positive,
then it can be shown (see, e.g., [26]) that there always exists
at least one solution N\ which is real and positive. Hence
stabilization of #* cannot be achieved.

We note that at the subcritical Hopf bifurcation from the
zero solution in Eq. (7), the orbit which bifurcates has one
real stable multiplier (inherited from the zero solution) and
one neutral multiplier, and so the remaining unstable multi-
plier must be real. Therefore the Pyragas orbit cannot be
stabilized close to the Hopf bifurcation using this type of
feedback.

In addition, we now follow the method of the previous
section to find curves of Hopf bifurcations of the zero solu-
tion of Eq. (8) in p-7 space. This provides us with a com-
parison of the two types of feedback used in this and the
previous section. We are particularly interested in those
curves which pass through (p,7)=(p;,,,), with Hopf fre-
quency equal to wy,, as this is the Hopf bifurcation to the
Pyragas orbit.

Consider the linearization of Eq. (8) about the origin, and
write (u,v,w) =ieM. Then

NueM = J(p)iueM + Tu(e™ - 1)eM,
and so for a nontrivial solution (i 0) to exist, A\ must sat-
isfy the characteristic equation:

det{[\ —by(e "= 1)]I-J(p)}=0. (14)

Note that we have been able to simplify this equation be-
cause in this example I" is a multiple of the identity. This
tells us that g(A\)=[\—by(e™"=1)] are the eigenvalues of
J(p).

When p is close to p,, J(p) has one negative eigenvalue
—N\i(p), and a complex conjugate pair we denote as
u(p)xiv(p). Note that u(p,)=0, and v(pp,)=w,.

We find curves of Hopf bifurcations in p-7 space by writ-
ing A\=iw (w € R) and setting g(iw) equal to the eigenvalues
of J(p), u(p)+iv(p). We note that setting g(iw) equal to the
negative eigenvalue of J(p), —\;(p), does not produce any
Hopf curves which pass through (p, 7)=(py, 7,), S0 we do not
consider these here. Equating real and imaginary parts gives

= bolcos(w7) — 1]= u(p), (15)

w+ by sin(w7) = v(p). (16)

Equations (15) and (16) describe curves of Hopf bifurcations
in p-7 space, parametrized by the Hopf frequency w. Figure
9 shows examples of the shape of these Hopf curves; com-
pare with Fig. 4 showing the Hopf curves in our previous
example. The zero solution is unstable to the right of the
curves and stable to the left of the curves. We now explain
why we expect the curves to have this shape.
We have
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FIG. 8. (Color online) (a) and (b) Two time integrations of the Lorenz equations, (a) has no feedback terms, and in (b) the feedback is
“turned on” at r=5. Without feedback, the well-known chaotic strange attractor is stable, but with the feedback, a delay-induced periodic
orbit becomes the stable solution. The stability of the periodic orbit has been confirmed using DDE-BIFTOOL. Parameters are p=24.8388,
by=0.22, and 7=0.6494. The stable periodic orbit has a period of 0.6537. (c) The time plot of (b). The data was computed using the MATLAB

routine dde23.

[v(p) — w]* = w(p)[2by— w(p)].

Note that we need u(p)[2by—u(p)]=0 for solutions to exist.
That is, if by>0, we need 0=< u(p) <2by, and if by<0, we
need 2by< u(p) <0. Since w(p) is a monotonically increas-
ing function over the range of p we are considering, this
gives a connected range of p for which Hopf bifurcations can
occur, with boundaries at p=p, [since u(p,)=0] and at p
=p*(by) [where u(p*)=2b,]. Note that at p=p,, w=v(p,)
=wy, and so this is the Hopf bifurcation to the Pyragas orbit.
The solutions for 7 along the Hopf curve solve

o)

=1-
cos(wT) he

Since w(p,)=0, at p=p,, or=27n, and similarly since
u(p*)=2by, at p=p*, or=m(2n+1). The curve of Hopf bi-
furcations is thus tangent to the lines p=p;, and p=p* and
forms a series of wiggles between these values of p. In par-
ticular, the curve is tangent to p=p, at (p, 7)=(py,, 7,), Where
w=wy,, the Hopf bifurcation to the Pyragas orbit.

Therefore, for any value of b, the Pyragas curve 7
=7p(p) [which originates at (p,7)=(p,,7,), and is also
shown in Fig. 9], will always be to the left of the Hopf
curves at p=p,. The zero equilibrium is therefore stable
along the Pyragas curve close to the bifurcation point in p
< pp,, and so the Pyragas orbit will always bifurcate unstably.
Figure 10 shows a contour plot of the largest Floquet multi-
pliers of the periodic orbit, as p and b, are varied. For all
values shown the periodic orbit is unstable.

IV. DISCUSSION

In this paper, we have demonstrated how the mechanism
used by Fiedler er al. [15] for stabilizing periodic orbits with
one unstable Floquet multiplier carries over to higher dimen-
sional systems, using the Lorenz equations as an example.
We use the results from their idealized example to inform our
choice of the feedback gain matrix, and this method follows
a set prescription which we expect could be used on other
systems. First we find the two-dimensional linear center
eigenspace of the system with no feedback at the Hopf bi-
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FIG. 9. (Color online) Curves of Hopf bifurcations from the
zero solution of Eq. (8) with I'=hyl. Curves are shown for b
=0.1, 0.05, and —0.1 (from right to left). The zero solution is stable
to the left of these curves and unstable to the right of these curves.
The dashed curve is the curve 7=17p(p). For each value of b, the
curve lies between p=p,, and p=p*(by).

furcation point. Feedback is then added in the directions ly-
ing tangent to this center subspace, using a 2 X 2 gain matrix
of the form given by Fiedler ef al. This then leaves only the
two parameters B and b, to be chosen. For the example of
the Lorenz equation, the subcritical orbits are stabilized over
a wide range of parameters. We contrast this with an example
of choosing the gain matrix as a real multiple of the identity.
In this case the Pyragas orbit could not be stabilized.

Choosing the gain matrix for our Lorenz equations ex-
ample required a knowledge of the linearization of the sys-
tem at the bifurcation point. This method may also be appli-
cable in systems for which the governing equations are not
known, if it is possible to access perturbations to the equi-
librium solution near the Hopf bifurcation point, and hence
extract the unstable eigenvectors numerically from experi-
mental data.

We have additionally shown that the Lorenz equations
example contains a codimension-two point which is also

PHYSICAL REVIEW E 76, 056214 (2007)
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FIG. 10. The figure shows a contour plot of the magnitude of the
largest Floquet multipliers for the Pyragas periodic orbit, as p and
by are varied. The periodic orbit is unstable for all parameters
shown. This figure was produced using DDE-BIFTOOL.

present in the normal form example of [15]. This double-
Hopf point is not generic. In the normal form example of
[15] there is an additional SO(2) symmetry which is not
present in the Lorenz example. Additional structures in the
problem force a normally codimension-three phenomena
[27] to be codimension-two, since the frequencies of the bi-
furcating periodic orbits are forced to be in a one:one reso-
nance at the codimension-two point. It would be of interest
to examine this degeneracy in more detail by understanding
the mathematics behind the structure of the Hopf-Hopf bifur-
cation in these examples. We intend to investigate further
examples to see how robust this bifurcation structure is, for
example, whether it appears in say, the Hodgkin-Huxley [18]
or Belousov-Zhabotinsky [17] examples.
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