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We consider the targeted manipulation of reaction-diffusion waves by optimization of an external forcing
parameter. As an example, we present numerical results for the FitzHugh-Nagumo system exploiting model-
based optimization capable of targeting characteristic wave properties such as wavelength, shape, and propa-
gation speed by spatiotemporally controlling electric current. The conceptual basis of our approach is optimal
control of periodic orbits in a wave-variable coordinate system. The results are transferred back to the partial
differential equation context and validated in numerical simulations. The whole procedure is applicable to any
reaction-diffusion model.
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I. INTRODUCTION

Dynamic pattern formation processes are the basis for
many aspects of the high degree of structure and organiza-
tion in nature. Nonlinear chemical and biochemical reaction
processes far from equilibrium coupled with diffusion un-
derly most mechanisms for spatiotemporal pattern formation
and self-organization. The general aspect of controlling and
manipulating such complex systems is important from the
operational point of view in technical processes �1� and in
biological systems �2�. Model-based control techniques have
been developed specifically for this task over the past years
�3–6�. However, these have been applicable only to static
self-organized patterns so far, not including propagating
waves. In �7�, control techniques have been applied to stabi-
lize existing but unstable moving fronts in the FitzHugh-
Nagumo system. Here, we present a computational approach
for specific targeting of characteristic wave properties in
reaction-diffusion systems by appropriate control stimuli and
demonstrate its applicability using the FitzHugh-Nagumo
system as an example.

Specific potential example applications of such control
approaches are the improvement of self-propagating high-
temperature synthesis or frontal polymerization �1�. By using
predefined input of heat or concentrations, the quality of the
resulting product could be favorably influenced. In biology,
impressing observations have been made suggesting that bio-
chemical oscillations govern the activity of cellular immune
responses �8�, and, more importantly, diverse and dynami-
cally regulated spatiotemporal waves, likely to be of the
reaction-diffusion type, also seem to play an important role
�9�. Since biological information processing is believed to be
encoded at least partially in properties such as propagation
speed, wavelength, intensity, and shape of propagating acti-
vation signals �8� and activity patterns, the study of manipu-
lation of biochemical waves and their dynamic regulation
seems to be of general interest.

In this article, we consider computational techniques for
the targeted control of one-dimensional reaction-diffusion
waves. An additional motivation to study these kind of con-
trol problems is the application for the study of inverse prob-
lems with the aim to identify potential dynamic input stimuli
that lead to an observed or desired system output in the form
of a measurable system readout. By computing the external
influence needed to induce a specific oscillation shape, for
instance, it is possible to discover what these interactions
might be. This approach was illustrated successfully in �10�
for ordinary differential equation �ODE� models of glycoly-
sis.

The situation for oscillatory and excitable reaction-
diffusion systems is somewhat different, as, by virtue of be-
ing represented by a partial differential equation �PDE�, the
behavior of the models takes place within an infinite-
dimensional space, albeit usually only on a finite-
dimensional manifold. However, in certain cases, the prob-
lem can be reduced to the targeted control of an ODE, using
the so-called wave variable. This transformed system does
not necessarily inherit the stability properties of the original
model. Furthermore, as illustrated by the large number of
publications dealing with special cases, no general math-
ematical theory exists that can link phase plane analysis to
wave shape and wave velocity explicitly. This state of affairs
suggests an experimental computational approach.

Self-organizing structures often occur in chemical and
biochemical networks. Studying the effect of influence pa-
rameters on dynamics and the other way around—achieving
a desired behavior by computing an appropriate amount of
influence—is a key for understanding the mechanisms be-
hind self-organization.

It is important to emphasize that our focus is on the com-
putation of a specific forcing that produces predetermined
properties, as are wave speed, length, or shape. In that point,
it differs from other approaches �see �11�, and the review in
�12� and references therein�, where the effects of given forc-
ings are studied theoretically, and fairly complex behavior is
investigated. Probably, combining both approaches would al-*dirk.lebiedz@biologie.uni-freiburg.de
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low for the targeted control of far more complex and subtle
properties, a matter that shall be investigated in future work.

Since the most famous oscillating chemical reaction, the
Belousov-Zhabotinsky reaction, was discovered in 1951, the
importance of investigating related phenomena has been re-
alized, especially in biological systems �13�. Following this
insight, the interaction of reaction dynamics with diffusion
effects under nonequilibrium conditions was found to be
generally important for spatiotemporally self-organized be-
havior, cf. �14�. One of the most prominent early biological
examples linking experimental observation of self-
organization and mathematical modeling is the work by
Hodgkin and Huxley on the electric signaling in nerve cells
of the squid giant axon �15�. In this model, the components
of the system describe electric currents occurring in an axon.

The Hodgkin-Huxley model is a standard model for stud-
ies concerning wave propagation and theoretically well un-
derstood �16�, including its dispersion relation �17�. Numer-
ous publications have appeared in the past years, treating
external control of oscillatory or pattern forming dynamical
systems. These extend from �sub�excitable systems �18� to
feedback control of instabilities �19� and optimal control to
target specific patterns �3,20�.

We introduce our technique for computing the dynamic
input to a system in the next two sections. To simplify mat-
ters, we do so on a concrete example: the bidiffusive
FitzHugh-Nagumo system, which is a simplified version of
the Hodgkin-Huxley model. We then illustrate the perfor-
mance of the methodology in a few carefully selected ex-
amples, validating our results by performing simulations on
the original PDE model. Our experimental studies suggest
that, for this approach to work correctly, the parameter used
to control the system must be restricted in order to avoid
bifurcations.

II. MODEL EQUATIONS

Let us consider the FitzHugh-Nagumo equations �21�,
which present a simplified version of the Hodgkin-Huxley
model �22�. They are also widely used for control studies of
self-organization �23�. In a reduced form, we have a two-
component dimensionless system, describing qualitatively
the original full system,

�u

�t
= D1�u + u − u3 − v + Ia,

�v
�t

= D2�v + ��u − �v + �� . �1�

v and u denote hypothetical variables, u can be identified
with voltage, and v can be understood as combined force
trying to reach a rest state �24�. Ia denotes an applied current
from the outside. These PDE of parabolic type present a
standard example for a reaction-diffusion system displaying
self-organized wave propagation. We restrict ourselves here
to the spatially one-dimensional case. In these equations, it is
not possible to influence the characteristic properties we are
interested in only by using a constant input parameter Ia.

We introduce the “wave variable” z=x−ct with the fixed
wave speed c, obtaining the following system of ordinary
differential equations:

− cu� = D1u� + u − u3 − v + Ia,

− cv� = D2v� + ��u − �v + �� , �2�

where the prime denotes differentiation with respect to z.
Since we take the diffusion coefficients to be nonzero, we
have to transform these equations into a system of first order.

A periodic wave train solution of Eq. �1� transforms into a
periodic orbit solution of Eq. �2� and vice versa. To obtain a
traveling wave solution of Eq. �1� with a given property, we
will set up an optimal control problem, where the value of Ia
is used as forcing parameter for controlling the wavelength,
wave speed, and wave shape. We first consider a set of pa-
rameters for which Eq. �1� is in an oscillatory regime �D1
=1, D2=0.01, �=0.01, �=0.5, �=0� and try to impose a
chosen wavelength or wave speed. Under these conditions,
for any wavelength a wave with specific wave speed, ampli-
tude, and form exists in the uncontrolled case. For example a
wave with velocity c�2.7 and an amplitude of approxi-
mately 0.7 for both u and v is associated with a wavelength
L=20.

With the choice of parameters we ensure that the
nullclines of system �1� without diffusion intersect only once
in an unstable fixed point with a stable limit cycle surround-
ing it �17,22�. The algebraic sign in Eq. �2� changes in com-
parison to Eq. �1�, and thus the nullclines are reflected with
respect to the u axis. The intersection point of the nullclines
becomes a stable fixed point.

III. OPTIMAL CONTROL OF THE TRANSFORMED
SYSTEM

For setting up the optimal control problem we use system
�2� and formulate the square deviation between properties of
the desired wave �characterized by the desired wavelength,
velocity, or shape� and the controlled system output as ob-
jective functional to be minimized. Exemplarily, we provide
the mathematical formulation only for the case of wave-
length targeting. We denote the actual wavelength by L and
the desired wavelength by L* and want to solve the optimal
control boundary value problem

min
u1,u2,v1,v2,Ia,L

F ª �L − L*�2 �3a�

subject to

du1

dz
= u2,

du2

dz
= � 1

D1
��− �u1 − u1

3 − v1� − cu2 − Ia� ,

dv1

dz
= v2,
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dv2

dz
= � 1

D2
��− ��u1 − �v1 + �� − cv2� , �3b�

which is just the first-order transformation of Eq. �2�, and

ui�0� = ui�L�, i = 1,2,

vi�0� = vi�L�, i = 1,2,

v1�0� = 1,

v2�0� = 0, �3c�

which are the periodicity constraints together with a “phase
condition” to exclude simple translations of the solution, and
finally the restrictions

Lmin � L � Lmax,

0 � z � L ,

ui,min � ui � ui,max, i = 1,2,

vi,min � vi � vi,max, i = 1,2,

Ia,min � Ia � Ia,max, �3d�

which are additional constraints with arbitrary values of
lower and upper bounds which are required for the numerical
reason to optimize on a compactum. Should the secondary
variable, v, be nondiffusive, the first order transformation
becomes obsolete and, to adapt the problem formulation, one
could choose the accordant right-hand side of the model
equation to be equal to 0 at z=0 instead of v2�0�.

The cases with different objective functionals will be
treated analogously to this one, replacing the wavelength
by propagation velocity or wave shape, respectively.
For wavelength targeting we choose control constraints Ia
� �−0.455,0.455� in order to ensure that the system dynam-
ics remains in the oscillatory regime, since a Hopf bifurca-
tion occurs at Ia= ±0.4763 for the chosen parameter values
�as computed with XPPAUT �25��.

To solve this problem we use the optimal control package
MUSCOD-II, which is based on a multiple shooting technique,
cf. �26,27�, where the interval �0,L� is discretized into sev-
eral subintervals by defining multiple shooting nodes as grid-
points. After parametrization of the control function on the
multiple shooting grid, the corresponding ODE is solved in-
dependently on each subinterval. For continuity of the solu-
tion additional equality constraints are introduced at the mul-
tiple shooting nodes. The resulting nonlinear optimization
problem is solved using a sequential quadratic programming
algorithm.

�i� In the first example we control the wavelength. Se-
lected results are shown in Fig. 1. A wavelength increase
from 15 up to 25 can be achieved by applying a switching
control function for Ia within the control bounds imposed.
The wave speed is fixed to c=2.5. We use three equidistant
multiple shooting intervals and a piecewise constant control
function parametrization, as this seemed to be flexible

enough to achieve our optimization goals. The control func-
tion switches three times to obtain the desired wavelength.

�ii� In Fig. 2 we present results for influencing the wave
speed. The same conditions as for scenario �i� are used.
Three multiple shooting intervals and a piecewise constant
function make it possible to target wave velocities between
c=2.12 and c=3.35. A fixed wavelength L=20 is chosen. We
show the maximum range of reachable velocities under the
given constraints. In the second multiple shooting interval
the influence parameter nearly catches the bound of ±0.455,
where the oscillatory domain is ending.
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FIG. 1. Numerical solution results of problem �3a�–�3d� for tar-
get wavelengths �a� L*=15, �b� L*=20, and �c� L*=25. The con-
tinuous line represents u, the broken line v, and the dash-dotted line
the control Ia. Parameter values for system �1�: D1=1, D2=0.01,
�=0.01, �=0.5, �=0. The objective functional values are 7.31
�10−12, 2.16�10−13, and 4.50�10−11.
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�iii� The most challenging control objective we treat is the
targeting of a sine profile for the second variable v, just to
make a choice, with a fixed amplitude of 1.9, fixed wave-
length L=20, and fixed wave speed c=2.5. To achieve an
accurate adjustment to a sine function, we use cubic splines
for the input Ia on five multiple shooting intervals �see Fig.
3�. We allow Ia� �−10,10� and thereby cover both the oscil-
latory and excitable regime. We make the following modifi-
cation of the objective functional �3a�:

min
u1,u2,v1,v2,Ia,L

F ª �
0

20 	v1�z� − 1.9 � sin�2�z

20
�
2

dz . �4�

The constraints �3b�–�3d� are mostly the same, however we
have no initial value constraint for v2�0� here, changed the
initial value for v1 into v1�0�=0 �as given by the sine func-
tion�, and introduced a periodicity constraint for Ia.

IV. VALIDATION OF WAVE TARGETING
IN NUMERICAL SIMULATIONS

To verify that the waves predicted for the optimally con-
trolled system indeed exist and are stable in the context of
the original FitzHugh-Nagumo PDE model, we transfer the
output data of the optimization into the context of a numeri-

cal PDE simulation. For the simulation we discretize �1� first
in space using finite differences, and then solve the resulting
ODE system using a backward differentiation formula �BDF�
method, implemented in DAESOL �28,29�. The total length of
the one-dimensional spatial domain is chosen to coincide
with the wavelength and periodic boundary conditions are
imposed. We choose an equidistant grid width of 0.1 and use
the optimal trajectory output of MUSCOD-II �as a spatial pro-
file in the wave variable z=x−ct at time t=0� after linear
interpolation on the grid points as spatially distributed initial
values. The control variable Ia moves with the wave velocity
c, defined or computed in the optimization process. This en-
sures that Ia from the wave-variable coordinate system takes
the correct value in space at the right time. The wave moves
together with the control function from the left to the right as
illustrated by the snapshots in Fig. 4.

As we can see in Fig. 4, the induced wave is indeed stable
and propagates in the computed shape without change. Fig-
ure 5 shows the PDE simulation corresponding to example
�ii� targeting a desired wave speed. Also in the third case
study, where we controlled the wave of v to a sine shape and
pushed the amplitude to an extreme value of 1.9, the wave
propagates through space without changing shape, as can be
concluded from Fig. 6.

To confirm the stability of all these waves, we computed
Floquet multipliers for the discretized PDE system in order
to theoretically determine stability properties. The mono-
dromy matrix was computed for one full transition of the
wave through space for each grid point meaning one period
of the periodic wave train. Computations were done by in-
ternal numerical differentiation implemented in the code
DAESOL �28,29�. In all cases presented above, the absolute
values of the Floquet multipliers are smaller than 1. This is
strong evidence that the waves are stable in all control sce-
narios.

V. SUMMARY

We present in this paper a generally applicable and robust
numerical approach to the specific targeting of wavelength,
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FIG. 2. Numerical solution results of problem �3a�–�3d� for tar-
get wave speed �a� c*=2.12, �b� c*=3.35. Changes in problem for-
mulation: Objective function �c−c*�2, with c* desired wave speed,
cmin�c�cmax, L=20 is fixed. All other parameters as in
Fig. 1. Objective functional values are 5.14�10−10 and 1.15
�10−10, respectively.
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FIG. 3. Numerical results for problem �4�: Targeting a sine-
shaped wave for v. Here, we use piecewise cubic splines as control
parametrization. Parameters as in control scenarios �i� and �ii�.
Value of the objective function: 1.05�10−4.
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FIG. 4. PDE of control scenario �i� �wavelength�: Conditions
and parameters as in Fig. 1�b�, L=20. Snapshots are presented at
different points in time, �a� t=75, �b� 125, �c� 175, �d� 225. Numeri-
cal integration was performed using DAESOL �28,29�. Spatial grid
width 0.1. Optimal trajectory output of MUSCOD-II in the wave vari-
able z for t=0 linearly interpolated on the grid points as initial
values. Between two successive pictures the wave has crossed space
already six times.
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FIG. 5. PDE of control scenario �ii� �wave propagation speed�:
Conditions and parameters in �a� �t=0.1�, �b� �t=150.1� as in Fig.
2�a�, c=2.12, and in �c� �t=0.1�, �d� �t=150.1� as in Fig. 2�b�, c
=3.35. Transfer of optimal control output into the PDE simulation
as described in Fig. 4. In the first case, the wave crosses the domain
nearly 16 times between the two snapshots without changing shape,
and in the second case it does so more than 25 times.
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velocity, amplitude, and shape in reaction-diffusion systems
by external forcing. Of course, also other objective functions
are conceivable, e.g., including the control force. We pre-
define a desired behavior and compute the necessary influ-
ence for achieving this behavior numerically, using the wave
variable. In contrast to former approaches, which applied a
periodic forcing and studied its influence on spatiotemporal
dynamics �see �12� for a review�, our approach can be used
to compute control function which influence the model sys-
tem obtaining a desired behavior. The details of this addi-
tional external forcing can be interpreted as a dynamic dif-
ference between the model and an observed behavior. For a

demonstration of the capability of this method we have ap-
plied it to the FitzHugh-Nagumo system, assuming a piece-
wise constant or piecewise cubic external control parametri-
zation, and show results for various control scenarios.

Our aim was to apply a control function as easy as pos-
sible and restricted ourselves to piecewise constant functions
with a minimal number of equidistant intervals. The com-
puted control functions are dependent on the number of these
intervals and the optimal solution is not unique since the
optimization problem is underdetermined. An extension of
the range of controlability, e.g., allowing stronger influence
or refining the resolution of the input, and choosing a larger
number of subintervals may result in a greater range of
achievable output, but there exists no general theory right
now.

Transfer of results into numerical simulations of the
FitzHugh-Nagumo PDE system and stability analysis con-
firmed the existence of stable traveling wave trains with the
desired properties.

An interesting possibility to test these methods in a real-
world scenario would be to use the Belousov-Zhabotinsky
system, where a source of light can be used to influence the
reaction. Since fairly accurate reaction-diffusion models ex-
ist, we predict that it may be possible to compute an illumi-
nation regime that induces a desired wave speed, length, or
shape within a certain range.

Our approach is applicable to reaction-diffusion PDE sys-
tems in general. Even in the case of unstable waves a
straightforward extension to the use of nonlinear model pre-
dictive control �30,31� within our optimization framework
could be used to stabilize wave propagation.
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