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We investigate the effects of axonal time delay when the neuronal oscillators are coupled by sparse and
random connections. Using phase-reduced models with general coupling functions, we show that a small
fraction of connections with time delay can destabilize synchronous states and induce near-regular wave states.
An order parameter is introduced to characterize those states. We analyze the systems using mean-field-type
approximation.
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I. INTRODUCTION

Populations of coupled oscillators have been investigated
as models of many physical, chemical, and biological sys-
tems �1–5�. In many cases, the oscillators are distributed spa-
tially and, in such systems, waves and synchrony are of par-
ticular interest. Especially in neuroscience, these two
phenomena have been observed and considered in relation
with the information processing and abnormal brain func-
tioning �4–7�. In distributed oscillator systems, the range of
connections and the connection topology structure affect the
dynamics of the systems. It has been argued that long-range
coupling helps the synchronization of neuronal systems �7�.
The recent introduction of the concept of small-world net-
work �8� has strengthened these kinds of ideas. From the
point of view of the Watts-Strogatz small-world network,
neurons of the brain are coupled mainly locally but also con-
nected through sparse long-range connections. Without cost-
ing much for the wiring of the brain, the system can achieve
synchronization by reducing the average path length between
neurons through the sparse long-range coupling �7,9�.

On the other hand, it has been shown that desynchroniz-
ing long-range coupling can destabilize the synchronous
states and induce other states. The prototypical mechanism is
the so-called Mexican-hat-type connection: short-range syn-
chronizing and long-range desynchronizing connections
�10�. In Ref. �11�, the behavior of chains of oscillators with
local synchronizing coupling and long-range desynchroniz-
ing coupling between end points and points in the middle
was studied. The system was shown to exhibit various types
of waves. This system is a good example showing that sparse
long-range coupling can economically, in the sense of wiring
cost, desynchronize the system and induce regular waves.

One way to produce desynchronization at long ranges is
to introduce distance-dependent delays. Time-delayed cou-
pling can be desynchronizing or synchronizing depending on
the type of the coupling and the magnitude of the time delay.
States due to the desynchronizing effects of time delay have
been reported �12–22� along with synchronous states: an-
tiphase states in two coupled oscillators �12�, disorganized

states in a two-dimensional array of oscillators coupled to
nearest neighbors with uniform time delay �13�, and incoher-
ent states in all-to-all coupled oscillators with uniform time
delay �14–16�. The authors of Refs. �17–21� reported that
time delays can induce waves with long-range coupling. In
Ref. �17�, using the phase-reduction method, the authors
showed that axonal time delay which was modeled as pro-
portional to the distance between oscillators can destabilize
the synchronous states and cause the formation of waves in
an infinite line. They showed that a large space constant for
the decay of synaptic coupling and a low conduction velocity
result in a loss of synchrony. Space-dependent delays due to
the axodendritic interactions in an array of integrate-and-fire
neurons with dendritic structure were also shown to have
similar effects on the stability of synchronous states and gen-
eration of traveling waves �18,19�. Similar results with
distance-dependent time delays were reported in all-to-all
coupled oscillators on a ring �20� and a two-dimensional
array of long-range coupled oscillators �21�. The effects of
distance-dependent delays on propagation of wave fronts
were also studied in the firing rate models �23,24�. However,
these studies were done with the regular connection struc-
tures between oscillators. In reality, including neural sys-
tems, coupling topologies are not generally regular �7–9�.
These studies need to be extended to the case of complex
coupling topologies. Recently, it was shown in Ref. �22� for
the case with an idealized coupling function that distance-
dependent time delay can induce near in-phase synchronous
states or near-regular waves when the oscillators are sparsely
randomly connected.

In this paper, in the same context of Ref. �22� but with
general coupling functions, we investigate the effects of ax-
onal time delay when the neuronal oscillators are connected
by sparse and random connections. We find that even a small
fraction of connections with time delay can destabilize syn-
chronous states and induce near-regular wave states. A new
useful order parameter is introduced to quantify the regular-
ity of the states. Using a mean-field-type approximation, we
can analyze the states and find the stability condition of the
states. The “sparseness” is economic in the viewpoint of wir-
ing cost and sufficient to provide desynchronizing effect.

II. MODEL AND NUMERICAL SIMULATIONS

We use phase models in our simulations and analysis. The
phase-reduction method has been used to study the dynamics
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of coupled oscillators, because it greatly reduces the com-
plexity of the system and describes behaviors such as syn-
chrony and waves clearly �1–5,25–27�. For any system of
weakly coupled nearly identical limit-cycle oscillators, the
system can be reduced to a phase-only system where each
oscillator is represented by a single scalar phase and the in-
teraction is given by the sum of pairwise interactions de-
pending only on the phase difference of the interacting oscil-
lators �1–5,25–27�.

The phase-reduction approach also has the advantage that
delays in the interactions become phase shifts in the coupling
function when the time delay is comparable with one or a
few periods of an oscillation �26–28�. In cases, where time
delays are the same for all the coupling, the system can be
regarded as a system with a different coupling function in the
absence of time delays and can be understood in the same
frame as phase reduction without time delay �4�. However,
when time delays are not the same due to the reasons such as
the inhomogeneity of the speed of signal processing or signal
propagation, and the inhomogeneity of the distance over
which the signal propagates, the system cannot be considered
in that way. Instead, such system may show richer behavior.

In this study, we consider the case of sparsely coupled
identical neurons on a ring, where the axonal conduction is
slow enough to cause a time delay that can be approximately
modeled as the time required for the signal propagate dis-
tance between the oscillators with a constant speed. We also
assume that the maximum time delay is comparable with one
or a few periods of an isolated oscillator. The phase model
for this system can be written as follows:

�̇i�t� = � +
K

n̄
�
j=1

N

AijH�� j�t� − �i�t� −
2�

T

rij

v
�, i = 1,2, . . . ,N ,

�1�

where �i�t� is the phase of the ith oscillator at time t, � is the
natural frequency of oscillators, and N is the total number of
oscillators. The oscillators are located on a ring with circum-
ference L. Note that in contrast to the cases of no time delay
or uniform time delay, the positions of oscillators are impor-
tant in the cases with distance-dependent time delay. Here,
we consider the case of equal spacing between oscillators, in
which oscillator i is located at xi= i�x= L

Ni measured coun-
terclockwise relative to a certain reference point on the ring.
The main results do not change with the mild irregularity of
the spacing. rij is the distance which is unambiguously given
by the shorter Euclidean distance between oscillators i and j
along the ring, rij =min�	xj −xi	 ,L− 	xj −xi	
. The term “dis-
tance” should not be confused with the “path length” defined
along the network in network theory �see, e.g., Ref. �8��.

The second term on the right-hand side of Eq. �1� denotes
the coupling between oscillator i and other oscillators. Oscil-
lator i is coupled to ni oscillators with coupling strength K
according to a coupling topology described by an adjacency
matrix A. n̄ is the average number of neighbors which are
directly connected to an oscillator. Assuming bidirectional
interaction between oscillators, we take the element of adja-
cency matrix Aij =Aji=1, if two oscillators i and j interact,
and Aij =Aji=0 otherwise.

In the coupling term, H is the coupling function obtained
by the phase-reduction method for pairwise interactions
�4,5�. H is a 2� periodic function and, in the absence of time
delays, depends only on the phase difference of the interact-
ing oscillators. It was shown that time delay causes negative
phase shift �=− 2��

T , where � is the delay and T is the period
�26–28�. The coupling between oscillators i and j is assumed
to be mediated by a signal propagating the distance rij be-
tween the oscillators with constant speed v. The finite speed
of signal causes the time delay rij /v. Thus, we have phase
shift − 2�

T

rij

v .
To remove the complication due to the representation of

distance, we treat the index in Eq. �1� as N periodic such that
index i±N is equivalent to i and rewrite Eq. �1� as

�̇i = � +
K

n̄
�

l=−N/2

N/2−1

Ai,i+lH��i+l − �i − 2��	l	�x�, i = 1,2, . . . ,N ,

�2�

where �i=�i�t� and � is the ratio of unit time delay to the
period of the oscillator, �� 1/v

T . Let us call � the relative unit
time delay. Note that it is not the absolute value of 1 /v or T
but the ratio � that determines the dynamics.

Figure 1 shows the phases of oscillators along the ring in
numerical simulations of Eq. �2� with H���=sin���. In this
paper, we simulate the system using fourth-order Runge-
Kutta method with time step �t=0.01. We use initial condi-
tions of several types �i� �i�0� chosen randomly from �
−� ,�� �uniformly incoherent� or �ii� �i�0�=2�im /N+�i,
where m is an integer and �i is a random number chosen
from �−	 ,	� with 	 small. From now on, the connection
topology discussed in this paper is random. In Fig. 1, the
total number of oscillators N=1600 and the average number
of neighbors n̄=40 �equivalently, the connection probability
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FIG. 1. �Color online� Phase of the oscillators along the ring for
different time delays. �a� ��=0.3, �b� 0.9, �c� 1.8, and �d� 3.5.
H���=sin���. �=� /2, N=1600, L=1, ���L�, K=1.0, and n̄=40
�p=0.025�. �a� ��=0.3, a near-synchronous state �winding number
m=0, R0�0.995, Rm�0
0.01�, �av�1.137, and ��
10−5. �b�
��=0.9, a wave state m=1 �R1�0.979, Rm�1
0.02�, �av�1.635,
and ��
10−5. �c� ��=1.8, a wave state m=2 �R2�0.968, Rm�2


0.02�, �av�1.696, and �� oscillates irregularly in
�0.002 53, 0.007 13�. �d� ��=3.5, a wave state m=3 �R3�0.89,
Rm�3
0.03�, �av oscillates irregularly in �1.295, 1.305�, and ��

oscillates irregularly in �0.057, 0.078�.
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p=0.025�. Even though each oscillator is connected to only a
small fraction of the whole population, the system exhibits
near-synchronous states and wave states, depending on the
time delays. This result is essentially the same as those re-
ported in Ref. �22�. Simulations with the H��� function ob-
tained from a model for a real neuronal coupling �17,29�
show similar behaviors �see Fig. 2�.

To quantify the oscillating behaviors of the system in the
simulation, we measure the average frequency �av�t� over
the whole oscillators and the dispersion ���t� of the fre-
quency distribution �22�,

�av�t� � 
�̇�t�� �
1

N
�

i

N

�̇i�t� , �3�

���t� � �
��̇�t� − �av�t��2� =� 1

N
�

i

N

��̇i�t� − �av�t��2.

�4�

The smallness of the dispersion ���t� of a state reflects that
the state approaches a frequency synchronized state where all
the oscillators oscillate with the same frequency �av�t�. For a
given set of parameters, especially, � and K which determine
the time scale of the system, the states in Figs. 1�a�–1�d�
have relatively small dispersion ��, and thus we can say that
the system exhibits nearly frequency synchronized oscilla-
tions.

We also introduce an order parameter generalized from
Kuramoto’s order parameter �1,2� to measure how close a
state is to a perfect synchronous state or to a perfect wave
state,

Rm �
1

N
��

i=1

N

exp�i��i −
2�mxi

L
��� , �5�

where m is the winding number of a reference state to which
we measure the resemblance of the state. With m=0, this
order parameter is reduced to that of Kuramoto. The phase
difference, �i−

2�mxi

L , denotes the phase deviation from a per-
fect phase distribution. For a perfect synchronous state or for
a perfect wave state with winding number m0, Rm0

is one
since the phase difference with m=m0 is the same for all i. In
contrast, Rm is zero for m�m0. For states which are not
perfect, Rm gives values according to the resemblance to the
perfect ones. Rm is a measure of the regularity of states.
Based on the order parameter values, we can tell which cat-
egory a given state belongs to. Rm values calculated for the
states in Fig. 1 reflect the states well as described. For the
well-defined states, such as those in Fig. 1, the fluctuation of
the time series of Rm is small and Rm approaches a stationary
value.

To see the effect of the average number of neighbors or
the connection probability, we simulate with different condi-
tions for fixed time delay. Figure 2 shows the simulation
results with different average number n̄ of neighbors. As ex-
pected, the state looks more like that of all-to-all coupling for
increased n̄. But transition from disorganized incoherent
state to the organized wave state occurs with relatively small
connection probability. In Fig. 3, we calculate Rm values for
the states obtained with various n̄ for several different N
values. Figure 3�a� shows the results with different time de-
lays. The time delays are chosen according to the stability
analysis discussed in the next section to guarantee the stabil-
ity of the states. Even though the transition point to an or-
dered state shifts depending on the time delay, it occurs at a
relatively small n̄ compared to the total number of oscilla-
tors. Figure 3�b� shows the dependence of Rm on n̄ for dif-
ferent N values. The dependence is qualitatively the same for
different N values. The transition to the ordered states occurs
at the similar n̄ which corresponds to a smaller wiring prob-
ability p for a larger system. This implies that n̄ rather than p
determines the dynamics. With the similarity between ran-
dom coupling and simple random sampling of statistics �30�,
this observation is consistent with the fact that, in simple
random sampling, the size of the sample representing a large
population is nearly independent of the size of the population
�30�. In neural systems, we can expect that the numbers of
connections are sufficient to cause desynchronization and
regular wave formation, even though the connections are
very sparse �9�.

III. MEAN-FIELD-TYPE ANALYSIS

Now let us analyze the system using an approximate
equation. In the limit of N→
 and ni→
 for all i, the sum-
mation term �Ai,i+lH�·� of Eq. �2� could be approximated by
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FIG. 2. �Color online� Phase of the oscillators along the ring for
different average number of neighbors �a� n̄=15, �b� 20, �c� 40, and
�d� 80. H���=Hcrook��� �29�. �=� /2, N=3200, L=1, ���L�
=4.64, and K=1.0. �a� n̄=15 �p=0.004 6875�, R−5 and R5 oscillate
irregularly in �0.005, 0.42� and �0.005, 0.395�, respectively. The
state changes irregularly between the high R−5 state and the high R5

state. R−5 and R5 move in an anticorrelated manner, Rm�±5


0.045. �av oscillates irregularly in �3.842, 3.908� and �� oscil-
lates irregularly in �0.465, 0.602�. �b� n̄=20 �p=0.006 25�, a wave
state with winding number m=−5. R−5 oscillates irregularly in
�0.682, 0.725� and Rm�−5
0.025. �av oscillates irregularly in
�3.785, 3.82� and �� oscillates irregularly in �0.237, 0.303�. �c� n̄
=40 �p=0.0125�, a wave state with m=5, R5�0.94, Rm�5
0.012.
�av oscillates irregularly in �3.643, 3.648� and �� oscillates irregu-
larly in �0.02, 0.09�. �d� n̄=80 �p=0.025�, a wave state with m=5,
R5�0.993, Rm�5
0.006, �av�3.558, and ��
10−5.
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�Pi,i+lH�·�, where Pi,i+l is the probability of connection be-
tween oscillator i and i+ l. In other words, Pi,j is the prob-
ability of finding connection between the oscillators in the
ensemble of the networks and the weighted sum �lPi,i+lH�·�
is the ensemble average of the sum �lAi,i+lH�·�. So the sum
�lPi,i+lH�·� gives a good approximate value of �lAi,i+lH�·�
when both N and ni are large enough. As Fig. 3�b� shows,
this approximation is good even for very sparsely coupled
cases with ni�N as long as ni is large enough. In addition to
this approximation, if we take the limit of �x→0, we can
convert the approximate equation for discrete oscillators into
an equation for a continuum of oscillators,

���x,t�
�t

= � +
K

n̄�x
��

−L/2

L/2

P�x,x + y�H„��x + y,t� − ��x,t�

− 2��	y	…dy� , �6�

where P�x ,y� is the probability of connection between oscil-
lator at position x and y, and the average connection is given

by n̄= 1
L�x�−L/2

L/2 �−L/2
L/2 P�x ,y�dydx. Scaling the variables and the

parameters by x�=x /L, y�=y /L, and ��=L�, we can get an
N- and L-independent equation,

� �̂�x�,t�
�t

= � +
K

P̄
��

−1/2

1/2

P̂�x�,x� + y��H„�̂�x� + y�,t� − �̂�x�,t�

− 2���	y�	…dy�� , �7�

where P̄ is the average connecting probability given by P̄

=�−1/2
1/2 �−1/2

1/2 P̂�x� ,y��dy�dx�, �̂�x� , t����Lx� , t�, and P̂�x� ,x�
+y��� P�Lx� ,Lx�+Ly��. To simplify the notation, without
loss of generality, we assume that L=1. Now we can ignore
ˆ over � and P.

When P�x ,x+y� is independent of x and depends only on
y, the system is translationally invariant and thus can have
exact synchronous solutions or wave solutions. This is the
case for our randomly coupled oscillators.

For the random network case of this study, the connection
probability P�x ,x+y� is a constant. Equation �7� for P�x ,x
+y�= p, a constant, becomes

���x�,t�
�t

= � + K�
−1/2

1/2

H„��x� + y�,t� − ��x�,t�

− 2���	y�	…dy�. �8�

Note that Eq. �8� is exactly the same form as that of the
all-to-all coupling case. We can expect similar behaviors ob-
served with regular long-range coupling �17�. There is no p
in Eq. �8�, because we normalize the coupling term by the
mean number of neighbors. This normalization does not af-
fect the stability of the system because the oscillators are
identical, but it affects frequencies of the oscillators. So the
sparsely coupled oscillators can have similar phase distribu-
tion with all-to-all coupled cases regardless of the normaliza-
tion. However, if the coupling terms in both of the cases are
divided by the same constant instead of the mean number of
neighbors, the coupling term is proportional to p and the
sparsely coupled oscillators move slowly toward the phase
distribution with a speed proportional to p.

To identify the possible solutions, let us assume the solu-
tions of the form

��x�,t� = �kt + kx�, k = 2m�, m = 0, ± 1, ± 2, . . . , �9�

where �k, k, and m are the synchronization frequency, the
wave vector, and the winding number, respectively. Because
of symmetry, the behavior with −m and m is identical, so we
restrict the analysis to m�0. Substituting ��x� , t� in Eq. �9�
into Eq. �8�, we obtain

�k = � + K�
−1/2

1/2

H�ky� − 2���	y�	�dy� = � + K��
0

1/2

H�ky�

− 2���y��dy� + �
−1/2

0

H�ky� + 2���y��dy�� . �10�

Figure 4�a� shows the synchronization frequency � as a
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FIG. 3. �Color online� Typical trend of order parameter Rm as a
function of the average number n̄ of neighbors. H���=sin��� and
system parameters are the same as Fig. 1 except N, n̄, and ��. �a� Rm

for the states with ��=3.0 and ��=3.5. N=1600. We compute both
Rm=3 and Rm=−3 for each state obtained from simulations, and de-
note the larger one. The symbols represent the time average of Rm

and the error bars denote the standard deviation of Rm time series.
The curves are guides for the eyes. �b� Rm for the states with N
=1600, 3200, and 6400 for ��=3.5. Error bars with similar sizes for
each data point as in �a� are omitted for the simplicity of the figure.
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function of scaled relative unit time delay �� and winding
number m for a coupling function H���=sin��� and a fixed
coupling strength K=1. The curves for synchronization fre-
quency � are obtained from Eq. �10� and the synchroniza-
tion frequencies denoted by symbols are obtained from nu-
merical simulations of randomly coupled oscillators. The
thick parts of the curves denote the stable region obtained by
the linear analysis of Eq. �8�. The stability of the states are
discussed later in this section. Each curve for m fits well with
the simulation results for the �� values around the �0� value
for which the corresponding curve in Fig. 4�b� for the stabil-
ity has minimum negative value, and thus, the state can be
said to be most stable. The deviation from the predicted val-
ues is larger as �� moves away from �0�. Error bars in Fig.
4�a� denote the time average of the dispersion ���t� of os-
cillating frequencies. The dispersions also have similar trend.
They are small around the most stable states and become
larger as the state moves far from the most stable ones. Fig-
ure 3�a� also reflects this trend. As the average number of
neighbors n̄ decreases, the order parameter for ��=3.0 deep
inside the stability region shows slower decrease from one
than that for ��=3.5 near the boundary of the region. Be-
cause of this trend, we see that as n̄ decreases, the states near
the boundary of the stability regions start to deviate more
from the perfect states and parameter regions agreeing well
with the perfect state shrinking toward the most stable states.
So the regions which can be identified as bistable regions
also shrink and disappear in Fig. 4�a� as we decrease n̄. But,
as Fig. 3�b� for ��=3.5 near the boundary of the stability
region shows, we can get highly ordered states for param-
eters near the boundary of the stability regions for sparse
networks as long as n̄ is large enough and thus can see the
bistability regions for sparse networks with finite but large n̄.
Figure 5�a� is a similar figure with coupling function H���
obtained from a model for a real neuron �17,29�. Details of
the figure including the existence of bistable regions depend
on the coupling functions.

There is a possibility of states other than synchronous
states or wave states being stable in the stability regions or
outside of the regions. But, we obtain only synchronous
states or wave states for the conditions inside the stability
regions from numerical simulations with our random initial
conditions. This shows that if other states are stable in the
stability regions, they may have small sizes of basin of at-
traction or cannot be reached from such random initial con-
ditions. Outside of the stability regions as in Fig. 5 and re-
gions near the boundary of the stability regions, we obtain
states distorted from perfect states. The distortion is due to
the oscillators which come to have frequencies significantly
different from others. Typically, such oscillator groups are
not fixed and change over time. For all-to-all coupling cases,
we observe continuous variation of frequency over space,
but, for randomly coupled cases, the frequency shows dis-
continuous variation over space and the deviating oscillators
are often spatially localized. The distorted states look similar
to those states of the adjacent stability regions and can have
high order parameters. As we see similar distorted states in
all-to-all coupling cases, the order parameter does not as-
ymptote at 1 with increasing n̄ outside of the stability regions
and this tells us that these distorted states are not mainly due
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FIG. 4. �Color online� States and their stability as a function of
scaled relative time delay ��=L� for the case with H���=sin���,
�=� /2, and K=1. Thick parts of the curves in �a�, �b�, and �c�
correspond to the stable states identified by linear stability analysis
of Eq. �8�. �a� Synchronization frequency �. m is the winding num-
ber of a state. Curves are obtained from Eq. �10�. Symbols and error
bars denote the time average of �av�t� and ���t� defined by Eq. �4�,
respectively. Simulations are carried out with N=1600 and n̄=40
�p=0.025�. Dashed vertical lines denote �� values with which
Re����max of �b� has minimum values. �b� The maximum real part
of eigenvalue ��. Re���� is given by Eq. �14�. Re����max
0 is the
condition for the linear stability. �c� Re���� for perturbations with
large wave vector ��1. Re������1 is given by Eq. �15� and
Re����a�1
0 is a necessary condition for the stability of corre-
sponding states.
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to the finite n̄ but due to the instabilities from the frequency
locked states. The frequency dispersion ���t� of the distorted
states is large and the average frequency �av�t� deviates sig-
nificantly from the frequency of Eq. �10� obtained for perfect

states, as is expected. This is also true for the case with
all-to-all coupling.

We notice that the curves of Figs. 4�a� and 5�a� have
similar shapes for large m and/or �� in each case. We can
understand this observation as follows. In general, a
2�-periodic coupling function H��� can be written as a Fou-
rier series,

H��� = c0 + �
n=1

cn sin�n� + �n�, cn � 0. �11�

With the second term of H��� in Eq. �11�, the second integral
of Eq. �10� gives the summations of terms like
−cn cos�n�k+2����y�+�n�

n�k+2����
evaluated over a given range. For a large

k or �, this value is order of �k+2����−1, and thus can be
ignored compared to the first integral with the same term. In
those cases, �k can be approximated as the following:

�k � � + K�c0 + �
0

1/2

H1�ky� − 2���y��dy�� , �12�

where H1���=H���−c0. �k has a shape which is conserved
under the transformations k→k+2s� and ��→��+s for an
integer s. This is the property manifested in Figs. 4�a� and
5�a�. Curves for different k values have similar shape shifted
by integer �� values for large k and/or ��. This holds for
general H���.

Let us consider the stability of the solutions. To determine
the stability of the solutions, we linearize Eq. �7� around the
solution Eq. �9� by letting ��x� , t�=�kt+kx�+���x� , t� with
��1,

���x�,t�
�t

= K��
−1/2

1/2

H�„ky� − 2���	y�	…„��x� + y�,t�

− ��x�,t�…dy�� , �13�

where H� indicates the derivative of the function with respect
to its argument. The solutions of Eq. �13� have the form
��x , t�=ei�xe��t, where � has the form 2�q with q
=0, ±1, ±2, . . .. Thus, formal stability for the approximate
system, Eq. �7�, is assured if the real part of �� is negative
for all possible �. Inserting this into Eq. �13� and taking the
real part of �� which determines the stability, we get

Re���� = K�
−1/2

1/2

H��ky� − 2���	y�	��cos��y�� − 1�dy�.

�14�

For fixed parameters, we numerically calculate Re���� as we
change � and find the maximum values Re����max as a func-
tion of ��. Figures 4�b� and 5�b� show Re����max. We can
rephrase the stability condition: when the value Re����max is
negative, the corresponding state is stable. In Figs. 4 and 5,
we denote the stability region as thick curves. The end points
of the thick curves correspond to the bifurcation points.
Simulation results with sparse random coupling fit well with
the stability region obtained. For corresponding all-to-all
coupling cases, the condition defines the exact stable region
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FIG. 5. �Color online� States and their stability as a function of
scaled relative time delay ��=L� for the case with H���=Hcrook���
�29�, �=� /2, and K=1. �a� Synchronization frequency �. Simula-
tions are carried out with N=1600 and n̄=80 �p=0.05�. �b� The
maximum real part of the eigenvalue ��. �c� Re���� for perturba-
tions with large wave vector ��1. For other details, refer to the
caption of Fig. 4.
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for perfect synchronous states and wave state.
Finding simple conditions from Eq. �14� for a general

coupling function is not easy. Instead, we can find a simple
necessary condition for the stability. For a solution to be
stable, Re���� should be negative for all possible �. There-
fore, a necessary condition for the stability is the condition
Re����
0 for ��1. Inserting H��� in the form of Eq. �11�
into Eq. �14�, we can see that the integral of H��ky�
−2���	y�	�cos��y�� is order of �−1 and vanishes for large �.

Thus, the necessary condition for the stability of the so-
lutions is

Re������1 � − K�
−1/2

1/2

H��ky� − 2���	y�	�dy�

= −
K

k − 2���
�H�1

2
�k − 2����� − H�0��

+
K

k + 2���
�H�−

1

2
�k + 2����� − H�0�� 
 0.

�15�

Figures 4�c� and 5�c� show the validity of the necessary con-
dition for each case. Only the states satisfying the necessary
condition Re������1
0 can be stable.

IV. SUMMARY AND DISCUSSION

In this paper, using phase-reduced models with general
coupling functions, we have shown that axonal time delay,

which can be distance dependent, can destabilize the syn-
chronous state and/or induce waves in sparsely connected
neural systems. There are several ways to produce waves in
systems of oscillators �5�: �i� local pacemakers, �ii� fre-
quency gradients, �iii� coupling anisotropy, and �iv� pattern
formation. The present paper concerns the latter mechanism.
The role of delays here is to destabilize the synchronous state
due to the long-distance desynchronizing of the “effective”
coupling function �phase shifted due to the delays�. In other
words, we can say that Mexican-hat-type mechanism, short-
range synchronizing and long-range desynchronizing, occurs
effectively by time delays in this system �10,17�. In the ab-
sence of distance-dependent delays, sparse long-range cou-
pling encourages synchrony, but when there is a “penalty” to
pay for this �for example, delays in getting information
there�, synchrony can actually be destabilized with the result,
the emergence of traveling waves as the only stable attractor.
The noticeable thing is that sparse long-range coupling can
efficiently induce regular waves without costing much for
the wiring of the system. In this sense, even though neurons
in neural systems are sparsely coupled in complicated ways
�9�, the connection seems to be enough to make time delay
cause desynchronization and possibly wave formation. Re-
lated to this study, it would be interesting to see the effect of
random sparse long-range desynchronizing inhibitory cou-
pling on wave formation in the systems with local synchro-
nizing coupling �31�.
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