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Pattern formation in the damped Nikolaevskiy equation
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The Nikolaevskiy equation has been proposed as a model for seismic waves, electroconvection, and weak
turbulence; we show that it can also be used to model transverse instabilities of fronts. This equation possesses
a large-scale “Goldstone” mode that significantly influences the stability of spatially periodic steady solutions;
indeed, all such solutions are unstable at onset, and the equation exhibits spatiotemporal chaos. In many
applications, a weak damping of this neutral mode will be present, and we study the influence of this damping
on solutions to the Nikolaevskiy equation. We examine the transition to the usual Eckhaus instability as the
damping of the large-scale mode is increased, through numerical calculation and weakly nonlinear analysis.
The latter is accomplished using asymptotically consistent systems of coupled amplitude equations. We find
that there is a critical value of the damping below which (for a given value of the supercriticality parameter)
all periodic steady states are unstable. The last solutions to lose stability lie in a cusp close to the left-hand side

of the marginal stability curve.
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I. INTRODUCTION
The Nikolaevskiy equation
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has been widely studied, because of its application to several
physical systems and its interesting nonlinear dynamics. It
can also be written in the alternative form
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after writing u=¢,.

Equation (1) was first derived, in an extended form, by
Nikolaevskiy as a model for seismic waves in the earth’s
crust [1,2]. More recently, other applications of (1) or (2)
have been proposed. Fujisaka and Yamada [3] and Tanaka
[4,5] have derived (2) as a possible phase equation arising in
reaction—diffusion systems. More generally, the Nikola-
evskiy equation can be regarded as a model for a pattern-
forming system with the additional feature of symmetry un-
der the transformation ¢— ¢+const, in the form (2) [6], or
with Galilean symmetry, in the form (1) [7]. Therefore, (1) is
a suitable model for pattern-forming systems with these ad-
ditional symmetries. Finally, as we show in Sec. II below, (2)
can be used to describe finite-wavelength instabilities of
traveling fronts.

The Nikolaevskiy equation exhibits a form of chaotic dy-
namics arising from the interaction between a pattern of fi-
nite wave number, which appears for >0, and a long-wave
neutral (or “Goldstone”) mode. The neutral mode arises as a
direct consequence of the additional symmetries discussed
above. In a sufficiently large domain, all spatially periodic
steady states are unstable, as was shown by Tribelsky and
Velarde [8], and numerical investigations of (1) show irregu-
lar chaotic patterns [6,7,9]. In Ref. [7] we showed that in this
chaotic regime (1) exhibits an unusual scaling, with the am-
plitude of u proportional to the 3/4 power of the supercriti-
cality parameter r, whereas it is more usually proportional to
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the 1/2 power in other pattern-forming systems; this result
was confirmed over a wider range of r by Tanaka [10].
Fujisaka et al. [11] extended (2) to two spatial dimensions
and derived the corresponding amplitude equations, under
the assumption that this scaling also holds in that case. How-
ever, they found it necessary to include an additional higher-
order viscosity term to stabilize the high-wave-number
modes in order for their simulations of their two-dimensional
amplitude equations to remain finite. The need for additional
damping of the high-wave-number modes suggests that fur-
ther work is necessary to resolve the question of whether the
one-dimensional scaling extends to the two-dimensional
case.

An analogy between the behavior of the Nikolaevskiy
equation and that of electroconvection in liquid crystals has
been noted [12—14]. Similarities in behavior result from the
presence, in electroconvection, of a Goldstone mode arising
from an orientational degeneracy of the director. Amplitude
equations and experiments both show that all roll solutions
are unstable at onset and that there is a direct transition to a
chaotic state referred to as ‘“soft-mode turbulence,” both in
two space dimensions [12,14] and in three [13]. However,
since the electroconvection problems are essentially two or
three dimensional, they differ from the one-dimensional
model (2) in some significant respects; the appropriate model
equations are derived by Rossberg and co-workers [12,13].

In this paper, we consider the effect of adding a weak
damping term to the neutral mode in (1). The motivation for
this is that, in real experimental systems, the symmetry that
gives rise to the neutral mode will often be weakly broken.
For example, true Galilean symmetry is broken by the exis-
tence of distant boundaries. In the case of electroconvection,
a weak magnetic field damps the neutral mode [12,13,15]. A
second motivation for including the damping term is to im-
prove our understanding of the appearance of chaotic dy-
namics in the undamped equation (1). If the neutral mode is
strongly damped, then the dynamics of patterns is governed
by the Ginzburg-Landau equation and stable, steady patterns
are observed. As the damping is reduced, a transition to Ni-
kolaevskiy chaos can be observed and investigated. Our
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work extends the recent study by Tribelsky [16].

In Secs. II and III, we motivate and discuss the undamped
and damped versions of the Nikolaevskiy equation. Then in
Sec. IV we compute numerically the steady spatially periodic
“roll” solutions of the damped equation and compute their
secondary stability. This numerical calculation shows that
there is an additional pocket of stable rolls, beyond those
considered by Tribelsky [16]; indeed, this pocket is signifi-
cant in containing the last rolls to remain stable as the damp-
ing coefficient is reduced. Most of the stability boundary of
the rolls corresponds to large-scale modulational instabilities;
we then analyze these instabilities in three regimes, depend-
ing on the relative sizes of the supercriticality and damping
parameters. In the strong-damping regime, the relevant
weakly nonlinear description is a modified Ginzburg-Landau
equation. In the two other regimes, where the damping is
either moderate or weak, our analyses are based on three
coupled amplitude equations, for the amplitude and phase of
the rolls and for an associated large-scale field; in each case,
these amplitude equations may be reduced to a single, third-
order evolution equation for the phase. In all three regimes,
we examine the secondary stability of rolls, and in certain
cases we are also able to determine the effects of the leading
nonlinear term and comment on the direction of the bifurca-
tion. We demonstrate the subcritical onset of instability in
some cases, including the no-damping case, consistent with
the observed sudden onset of the instability in numerical
simulations of (1).

II. THE NIKOLAEVSKIY EQUATION AS A MODEL
FOR TRANSVERSE INSTABILITY OF FRONTS

In this section, we explain how the Nikolaevskiy equation
may arise as a model for finite-wave-number transverse in-
stabilities of planar fronts. Consider a planar traveling front
in a homogeneous, isotropic medium, arising from, for ex-
ample, a combustion problem or a system of reaction-
diffusion equations. Suppose that the front is traveling at
speed c in the z direction and that the x coordinate is directed
along the front. Consider now small perturbations to the
front, so that it is no longer planar, but its position depends
on the transverse coordinate x. Let the position of the front
under perturbation be denoted by z=cr+ ¢(x,t). Now the
evolution equation for ¢ must have the property that it does
not depend on the value of ¢, because of translational invari-
ance; the equation can depend only on x derivatives of ¢.
Furthermore, reflection symmetry in x means that the only
permissible linear terms involve even derivatives of ¢.
Therefore, the linearized equation for ¢ must have the form

I _ a2¢ ) a6¢
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where the a; are constants. The corresponding dispersion re-
lation is

N=—ak® + ask* —agh® + - - (4)

for the growth of modes ¢~ exp(\r+ikx). From (4) it is
apparent that there are two possible types of instability of the
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FIG. 1. Curves illustrating two possible dispersion relations for
front instabilities. Solid line, finite-wave-number instability, leading
to Nikolaevskiy equation (type I). Dashed line, long-wave instabil-
ity, leading to Kuramoto-Sivashinsky equation (type II).

front. If a, <0 and a, <0, then the planar front is unstable to
a band of wave numbers near k=0 (Fig. 1, dashed line). This
case has been widely studied, and leads, in the weakly non-
linear regime, to the Kuramoto-Sivashinsky equation
[17,18], which, with suitable rescalings of x and ¢, may be
written in the form

ap 1({ap\? P P
E e I (2 A

But if a,, a4, and ag are all positive, then long-wave modes
are stable and a finite wave number instability is possible, as
illustrated by the solid line in Fig. 1. After a rescaling of x
and ¢, (3) then corresponds to the linear terms in (2). These
two possible types of instability are sometimes referred to as
“type II” and “type L,” respectively [19,20].

In either case, a nonlinear term must be added to the
equation to limit the growth of the instability; its derivation
is the same for either type of instability, and, as with the
linear terms, only x derivatives of ¢ may appear. The non-
linear term can be derived by a simple geometrical argument,
considering the propagation of a tilted front [17]. Such an
argument leads to a nonlinear term which in our scaling takes
the form (d¢p/dx)?/2, as in (2) and (5).

We have shown that (2) may be regarded as a model
equation for the transverse instability of a planar front at
finite wave number. More generally, it is apparent that any
physical system that gives rise to the Kuramoto-Sivashinsky
equation might also lead to the Nikolaevskiy equation, de-
pending on which of the two possible forms shown in Fig. 1
is taken by the dispersion relation. Another application
[3.4,21] is the derivation of nonlinear phase equations; this
leads to the Nikolaevskiy and Kuramoto-Sivashinsky equa-
tions, in different parameter regimes, as the dispersion rela-
tion changes from type I to type II. The argument in the case
of phase equations is essentially identical to that given above
for fronts, following from the invariance under addition of a
constant to the phase, and under reflection in x.

There are many studies of the transverse linear stability of
fronts in the literature, arising from a variety of different
physical and chemical systems. A review of the literature
reveals several examples of a finite-wave-number (type I)
instability, consistent with the Nikolaevskiy equation. For
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example, in their study of an evaporation front for condensed
matter heated by a laser, Anisimov et al. [22] found a linear
spectrum of type I for transverse instability. Both types of
instability were found in an experimental and theoretical
study of a reaction front between two chemicals in a Hele-
Shaw cell [19,23,24].

III. THE DAMPED NIKOLAEVSKIY EQUATION

The complex chaotic behavior of the Nikolaevskiy equa-
tion at onset arises from the interaction between the unstable
modes near k=1 and the neutral mode at k=0. However, in
real physical systems it is likely that the symmetry giving
rise to the neutral mode (such as translation or Galilean sym-
metry) will be weakly broken. For example, in the case of a
propagating front, considered in Sec. II, the translation sym-
metry may be broken by the presence of boundaries, or by a
slight variation in the basic state with position. With such a
weak symmetry breaking, the k=0 mode will not be truly
neutral, but will be weakly damped instead. In the related
problem of electroconvection, damping of the neutral mode
can arise by the imposition of a horizontal magnetic field,
which tends to align the rolls [12-15] and delay their insta-
bility.

A further motivation for including a damping term in the
Nikolaevskiy equation is that it allows us to study the tran-
sition from ordered stable patterns to spatiotemporal chaos.
Such a probing of the origins of the chaotic state is not pos-
sible in the original Nikolaevskiy equation (1), since chaos is
observed directly at onset (provided the domain is suffi-
ciently large). Introduction of a damping term gives another
parameter, which can be used to control and investigate the
onset of chaos. Similar approaches have been used to exam-
ine the dynamics of electroconvection [12] and the
Kuramoto-Sivashinsky equation [25,26].

We thus consider in this paper the “damped Nikola-

evskiy” equation
#\? #\?
—<1+—2)u —v<1+—2>u,
ox ox

(6)

with damping coefficient »=0; in particular we shall be con-
cerned with the dynamics of (6) near the onset of pattern
formation. In examining the stability of roll solutions, we
shall find it useful to consider various cases for the relative
sizes of the supercriticality parameter

du du P
—Hu_=—-_5|ru
ot ox ox

r=é
and the damping coefficient v, and hence we write
v=€u, (7)

where u=0(1); we shall examine below a variety of perti-
nent values for s.

Of course, there are many ways in which one might add
damping to the Nikolaevskiy equation. The damping term in
(6) is chosen so that all modes are linearly damped (with the
exception of the mode with wave number k=1); large-scale
modes decay at a rate —v. Furthermore, significant analytical
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simplifications follow from the fact that in (6) the onset of
linear instability is independent of v (i.e., the critical value of
r is r.=0 and the critical wave number is k.=1, for any v
=0). Note that our choice of damping term differs from that
of Tribelsky [16], who considers instead a damping term
proportional to —u—d*u/dx?. Consequently, in his formula-
tion both r. and k. become functions of v, leading to addi-
tional algebraic complications. However, the two formula-
tions are equivalent under appropriate rescalings of x and ¢,
and appropriate mappings between the two parameter sets.

IV. SECONDARY STABILITY OF ROLLS:
NUMERICAL RESULTS

We begin our investigation of (6) by numerically comput-
ing spatially periodic steady “roll” solutions, and determin-
ing their secondary stability. To do so, first we fix € and
compute the roll solution &(x) for a given choice of k and v
by integrating (6) forward in time in a box of length 27/k. In
our pseudospectral numerical code to achieve this, u# is ap-
proximated by the truncated Fourier series

N
u(x) = E in,e"*
-N

Then if these rolls are disturbed, so that u(x,f)=u(x)
+u'(x,1), the disturbances u’(x,) satisfy, from (6),

' ou o >, 7\
—+u —Hu—=—"—|ru' -\1+—|u
ax?

P \2
—V<l+@> u'. (8)
These disturbances are sought in the form
N
u’(x,t) — eo—t+ipx2 ur/zenikx (9)
-N

(where the sum is again truncated for numerical purposes).
Equation (8) is thus reduced to a matrix eigenvalue problem
for the growth rate o. By computing o(p;k, €, v) for p in the
range —k/2=p=k/2, we are then able to determine the sta-
bility of the roll solution u(x).

Results for €=0.1 and 0.05 are summarized in Fig. 2,
where rolls are stable inside the regions bounded by solid
curves. For large enough damping (i.e., toward the top of
each plot), the familiar Eckhaus stability boundaries are re-
covered. For sufficiently small damping, by contrast, all rolls
are unstable—this shows that the known instability of all
rolls in the undamped Nikolaevskiy equation extends to the
case of (sufficiently small) finite damping, for a fixed value
of the supercriticality parameter. Intermediate numerical re-
sults show the transition between the two limits.

Several features of Fig. 2 merit comment. First, the region
of stable rolls, which is roughly symmetrical about k=1 at
large damping, becomes distinctly asymmetrical as the
damping is reduced; rolls with k>1 tend to be less stable
than those with k<<1. Second, stability is finally lost, as v is
decreased, in a small cusp near the left-hand side of the
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FIG. 2. Stability boundaries of rolls in (6), computed numeri-
cally for e=(a) 0.1 and (b) 0.05. Rolls with wave number k exist
between the dashed curves, and are stable inside the region en-
closed by solid curves. The annotations on the stability boundary
indicate the type of instability suffered by the rolls upon crossing
that part of the boundary: modulational steady (s), modulational
Hopf (H), or finite-wavelength (f) instability. The crosses corre-
spond to numerical simulations of the initial-value problem (6) in a
large computational box and indicate the most extreme values of the
wave number for which rolls are found to be stable to small pertur-
bations (necessarily restricted to those that fit into the computa-
tional box); that all crosses lie inside the roll stability boundary
provides a consistency check on our results.

marginal stability curve. For e€=0.1, this corner is at v
=~ (.02 and k=0.950 (the roll existence boundary is, for this
value of v, at k=0.9493); for €=0.05, we have found it
much harder to compute the very thin cusp right down to its
tip. The left and right sides of the cusp correspond, respec-
tively, to monotonic and oscillatory long-wavelength insta-
bilities. In fact, the entire boundary corresponds to long-
wavelength instabilities (|p| <C1), with the exception of the
segment marked f, where the instability has finite wave-
length [p=0(1)]. For even smaller values of € than shown in
the figure, this finite-wavelength segment is absent, a point to
which we shall return in Sec. V C 1.

A more conventional picture of the stability balloon for
rolls is shown in Fig. 3, where the damping parameter v is
fixed to be 0.02 and the stability of rolls is shown in the (k,r)
plane. Again rolls are stable inside the solid curves. The re-
gion of stable rolls lies almost entirely in the region k<<1.
For »>0.003, all rolls are unstable, except those exceedingly
close to the left-hand part of the marginal stability curve;
these rolls are last to lose stability as r is increased. Finally,
for r>0.01, all rolls are unstable. A corresponding picture
for smaller damping coefficient » would show stable rolls in
a similar, but smaller region, confined closer to the point of
onset (r=0, k=1). In the next section, we shall argue on the
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FIG. 3. Stability boundaries of rolls in (6), computed numeri-
cally for »=0.02. Rolls with wave number k exist between the
dashed curves, and are stable inside the region enclosed by solid
curves.

basis of asymptotic arguments that in the limit v—0 (ap-
proaching the undamped Nikolaevskiy equation), the size of
the stable region shrinks to zero. Crucially, however, we ex-
pect a small, but finite, region of stable rolls in the (k,r)
plane for any nonzero value of the damping coefficient v. It
is only for the undamped case v=0 that all rolls are unstable
at onset.

V. SECONDARY STABILITY OF ROLLS:
ANALYTICAL RESULTS

The numerical results in the previous section reveal a
number of different instabilities of rolls in the damped Ni-
kolaevskiy equation. In this section, we consider in detail
three scalings for v in (6) which shed particular light on the
numerical stability results illustrated above: these correspond
to choosing in turn s=1, 3/2, and 2 in (7).

A. Strong damping: s=1

The case s=1 represents strong damping, in the sense that
the decay rate v=eu of the large-scale mode is O(e), which
is much greater than the O(€?) growth rate of the pattern-
forming mode. The effect of this strong damping is simply to
modify the usual Ginzburg-Landau amplitude equation and
thus modify the Eckhaus stability boundary, as we now dem-
onstrate. Our conclusions below are consistent with those
obtained by Tribelsky [16], although his analysis proceeds
directly from a substitution of (9) into (8), rather than the
amplitude-equation framework developed below.

We apply to (6) the usual weakly nonlinear scalings and
expand the solution as

u=dAX,Ne”* +ccl+ €ur+ €us+ -+, (10)

where X=ex and T= €%, and where c.c. denotes the complex
conjugate of the preceding term. At O(e), (6) is satisfied. At
O0(€?), we find

u,=(— %iAzez"X +c.c.)+f(X,T),

where the large-scale mode f(X,7) is arbitrary. At O(€’), an
equation arises for the mean mode f, which represents a bal-
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ance between the driving term (JA|?)y and the damping term

—puf
0=—(AP)x - uf. (11)

The governing equation for A is also obtained at O(€’), by
applying the usual solvability condition. It turns out to be

Ar=A+4Axy — 3 |APA - ifA, (12)

from which f may be eliminated using (11) to give a single
amplitude equation for A in the form

Ar=A+4Axy — = |APA +i(JAP) A/ . (13)

This is the usual Ginzburg-Landau equation for A, but with
an additional nonlinear derivative term arising from the
damping. Extensions to the Ginzburg-Landau equation in-
cluding terms such as i(JA|*)yA are well known [27,28], but
the different scalings involved here have the consequence
that no further terms need be included to ensure that all terms
of a given asymptotic order are present: with our scalings,
(13) is complete. Note that in the limit u— o, we recover the
usual Ginzburg-Landau equation for A.

It is straightforward to analyze the stability of patterns in
(13)—see Mancebo and Vega [29]. Steady patterns with A
=ag exp igX exist for q2<qf= 1/4, with the real amplitude
ag=6(1-44¢*)"?. The stability of these solutions may be de-
termined by writing A=[ay+a(X,T)]exp igX and linearizing
in the perturbation a, to give

ar=- 31—6a(2)(a +a’) + 8igay + dayy + ia(z)(ax + a;)/,u.
(14)

After writing a=b+ic, and separating (14) into real and
imaginary parts, we find that b and ¢ obey

br=— 15agh - 8qcy + 4byy, (15)

Cr= 8qu+4CXx+ za(z)bx//.L (16)

Then, by supposing b and ¢ each to be proportional to
exp(AT+ilX), we find that the growth rate \ satisfies

N2+ (ggap + 8PN+ 161* + 2adi? - 64¢°1% — 16q1%al Iu=0;
(17)

only monotonic instability is possible, and there can be in-
stability if and only if

(720 + aj - 2884 — T2qag /) < 0. (18)

It is clear from (18) that the most “dangerous” modes are
those with small /, so the pattern is stable if

(1-12¢% > 72¢(1 - 4¢%)/ . (19)

The corresponding stability boundaries are shown in Fig. 4.

In the limit u— o, the usual Eckhaus stability condition
(that rolls are stable for q2<qe = %q?:%) is recovered from
(19). As w is decreased, however, an asymmetry develops in
the stability region: patterns are stable for f(u) <g<g(u),
where f(u) e [—% ,—q,) and g(u) €[0,q,) are each increasing
functions of w. When w is small, the stability condition is
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FIG. 4. Stability boundaries of rolls according to (19), in (¢, &)
space, where the damping coefficient v=eu. Rolls exist for —1/2
<g<1/2 and are stable in the region between the two curves,
where indicated. In the limit u— 0, the stable rolls are those with
¢ <<0. In the limit as u— o, the usual Eckhaus stability boundary is
recovered, so that rolls are stable for —(1/12)"2<g<(1/12)"2.

roughly ¢(1-4¢%) <0, so that patterns with ¢>0 are un-
stable and patterns with ¢<<0 are stable. A corresponding
conclusion is reached by Tribelsky [whose results are plotted
in his Fig. 1(a)]. If we compare the results of this analysis
with the numerical stability calculations described above in
Sec. IV, we see that the stability boundaries in Fig. 4 corre-
spond, roughly, to those in Fig. 2 above v=0.2 (for €=0.1)
and above v=0.07 (for €=0.05).

The above analysis shows that, for small u, patterns with
g <0 are stable in (13). However, numerical simulations of
(13) in a periodic domain, started from a random, small am-
plitude initial condition do not always lead to stable patterns.
A typical simulation, for u=0.1, in a domain of size 100, is
shown in Fig. 5(a). The solution is dominated by a state with
eight rolls in the domain, with a wave number g=-8
X 21/100~—-0.5026, which is just outside the range of wave
numbers for which steady patterns exist. This mode must
therefore decay, until a bursting event occurs, involving other
wave numbers, from which the eight-roll state again
emerges. Simulations with different domain sizes show that
(13) seems to exhibit a preference for modes near to the
left-hand limit of the region of existence of steady states, g
=-1/2. Note that this behavior is shared by the damped Ni-
kolaevskiy equation (6), as shown in Fig. 2. Another quali-
tative similarity between the behavior of (13) and the Ni-
kolaevskiy equation is that both exhibit irregular bursting
behavior (albeit with rather different detailed structures). For
comparison, a simulation of the undamped Nikolaevskiy
equation (1) in a domain of size 200, for r=0.01, is shown in
Fig. 5(b).

In the limit w— 0, it is clear from (17) that the eigenval-
ues \ become large, of order w~"2. This indicates that a
different scaling is required in which the damping v is
smaller than O(e€) and the growth rate of the instability is
greater than O(€?); this next scaling is considered in the fol-
lowing section.

B. Intermediate damping: s=3/2

The analysis above corresponds to damping that is suffi-
ciently strong to enslave the large-scale mode to gradients of
the pattern amplitude. More subtle effects of damping can be
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FIG. 5. (Color online) Space-time plots of (a) numerical solu-
tions of (13), for u=0.1 (real part of A plotted), and (b) the un-
damped Nikolaevskiy equation (1) with r=0.01.

explored if it is rather weaker: if s=3/2 in (7). Our starting
point is now the general roll solution of (6) with v=€"?u,
which may be written in the form

u=eage "V 1 cc.+0(),
where ay=6(1-44%)"2.

A proper treatment of the stability of rolls requires con-
sideration of the evolution of both amplitude and phase of
the rolls, together with a large-scale mode. All three modes
couple together, and their relative scalings, together with ap-
propriate length and time scales for their evolution, are cho-
sen below to enable a balance in the linearized perturbation
problem; this is essentially the balance considered in [7].
However, by making appropriate absolute scalings for the
three perturbation quantities, we are able to extend the linear
results in [7] and accommodate the first nonlinear term in the
evolution equations that follow. We shall see below that this
enables us to describe the sub- or supercritical nature of the
onset of instability of the rolls. It turns out that the appropri-
ate scaling for the three perturbation quantities is accom-
plished by writing

u=eay+ ea(X, T)]eixeiq“ei€1/4¢(X’T) +ccCo+ o
+€MXT) + -+, (20)
where now
X=é, T=ém,

Note that in order to simplify notation we use the same sym-
bols (X and T) in different sections to represent different
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length and time scales. Notation within any one section is
consistent, so no confusion should arise.
Then after a systematic substitution of (20) in (6) and a

consideration of terms at successive powers of €4 we even-
tually find

‘;—‘;’ - 4327(/2’ -/ 1)

4 =%_ w20y (22)

%:4%—4%(2—?)2—3%0%- (23)

The linear terms in this equation may be identified with the
linear system considered in [7], with the addition here of the
new damping term —uf in (22) (the quantities b, ¢, and f in
[7] correspond, respectively, to our a, ay¢, and f); the non-
linear term was not computed in [7]. These three equations
may then be reduced to the nonlinear phase equation

(oo 202
or Yo ) \or e e 6 e oy ke

(24)

In analyzing (24), it is useful to consider first the linear-
ized problem, for which the right-hand side is simply
—16a(2)q¢>xx. This term represents the coupling between ¢, a
and f in its absence, no instability can result in (24). Thus in
Secs. VB 1 and V B 2 below we assume aéq:O(l). How-
ever, we should note that the analysis described below must
be reconsidered when |agq| is small (cf. [8])—we see imme-
diately that there are two circumstances in which a separate
consideration is warranted (a,<1 and |¢| < 1); we shall re-
turn to this important point below, in Sec. V C.

1. No damping

We begin by summarizing relevant results in the absence
of damping. When u=0 we recover from (24) the secondary
stability results obtained by Tribelsky and Velarde [8] and
elsewhere by ourselves [7]: there is monotonic instability of
the rolls with ¢>0, and such rolls are unstable to distur-
bances with wave numbers [ in the range 0<|l| <[,
= (ajq)"*; there is oscillatory instability for ¢ <0, and here
the instability strikes for 0<|l| <I,,=(~2a2q/25)"*. Thus
all rolls are unstable at onset in the undamped problem.

It is instructive to extend the linearized analysis by con-
sidering the weakly nonlinear development of these instabili-
ties, according to (24). We shall focus on computing the
coefficients of the nonlinear terms in Landau equations for
the amplitudes of the disturbances; the signs of the real parts
of these coefficients will indicate the direction of bifurcation
to the perturbed state. We consider first the monotonic insta-
bility for ¢ >0, and examine the evolution of a disturbance
whose wave number satisfies |/-1,,|=0(5), where 0
< 6« 1. Expanding
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=0+ Pr+ 1, (25)
where
¢, =A(T,)sin IX
and T,=5T, we find at O(57) that
dA _ aj
dT,  180g

3

Thus the bifurcation is always subcritical and hence leads to
the observed explosive growth of the instability in simula-
tions of the undamped Nikolaevskiy equation [7,8]. For the
oscillatory instability for ¢<<0, we instead suppose that |/
-1,,] =0(6); again expanding ¢ as in (25), but now with

&, = “T(B(Ty)e™ + C(T,)e ™) + c.c.,
where w=(-48a3q/25)"%, we find at O(8?) the Landau

equations
jd_B_( 740 55\6 >| 8P+ ( 40 10\"%')|c|2
2BdT, \ 72639 " 8071 1197~ 399 ')"%1
(26)
_
—q dC ( 740 55\, )|C|2 ( 40 10V6 .)|B|2
- — —_— = i
ayCdT, 72639 * 8071 1197 399
(27)

Since g <0, both traveling waves and standing waves branch
supercritically, with the traveling wave stable. In practice we
expect the explosive development of the monotonic instabil-
ity to dominate the smooth onset of the oscillatory instability
in simulations of the undamped Nikolaevskiy equation, ex-
cept under extremely controlled (and contrived) conditions.

2. Nonzero damping

For >0, we again begin by examining the linearized
behavior of (24). A monotonic instability again occurs for all
rolls with ¢>0, with the stability margin being given by
I+ lem—qagzo It thus follows that

(lu’) qa() un < qa() - l4 (0) )

and hence the rolls are unstable to a smaller range of distur-
bance wave numbers than in the undamped case. An oscilla-
tory instability arises for rolls with g<<gq, where ¢
=—u?/ (Za%); such rolls are unstable to disturbances with 0
<|1] <l,,, where now 51>, =—u+(-2qa3)">. We may rewrite
the condition g <g for instability as

72q(1 —4¢°) < — u?. (28)

Then since the cubic function in (28) has a minimum value
of =843 at q——\3/6 this oscillatory instability can occur
only for u? <83, that is, for sufficiently weak damping (this
is consistent with no oscillatory instability being observed in
the previous scaling of stronger damping in Sec. V A). In the
limit of small w the stability boundaries in (28) approach g
=0 and g=-1/2, so that all rolls with ¢ <0 are predicted to
be unstable to an oscillatory disturbance, just as in the un-
damped case.
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FIG. 6. Stability boundaries of rolls, based on analysis of the
case of intermediate damping, v=e"?u. Rolls exist between the
dashed lines and are stable or unstable as indicated. The solid ver-
tical straight line represents the onset of a monotonic bifurcation
and the solid curve represents a Hopf bifurcation.

The stability boundaries for this scaling are illustrated in
Fig. 6. Note that the curved line of the Hopf bifurcation is
consistent with the numerical stability results for the full
damped Nikolaevskiy equation (6) shown in Fig. 2 (except,
of course, that the analysis above does not capture the finite-
wavelength instability denoted by f in Fig. 2). Figure 6 sug-
gests that two regions of stable rolls, near ¢g=0 and ¢
=-1/2, extend right down to zero damping. But in each of
these cusped regions, =|6¢(1-44*)'"?| <1, and we re-
call that the present scaling is not valid in this limit. Thus we
should disregard the two cusps in Fig. 6 at small damping
and instead examine more closely the stability of rolls in this
limit; to resolve the correct behavior of the stability bound-
ary at small damping, we consider in the next section a fur-
ther (and final) scaling for v.

C. Weak damping: s=2

The final small-e asymptotic description of the roll stabil-
ity boundary may be described by setting s=2, so that v
=€’ w. In this case, the damping rate of the mean mode is of
the same order as the growth rate of the pattern-forming
mode. There are two cases to consider where the scaling of
the previous section breaks down, corresponding to |g| <1
and ap< 1.

1. Central corner (|q| < 1)

As Tribelsky and Velarde [8] have pointed out for the case
of no damping, the scalings of Sec. V B break down when ¢
is small. To resolve the small-g behavior, we adopt Tribelsky
and Velarde’s scalings (but in an amplitude-equation frame-
work) and consider

u~ day+ ea(X, T)]eixeifqueif’b(x’r) +cc.+ o+ Ef(X,T)
+ e, (29)

where now X=ex and T=¢€’t and a,=6. Note that, whereas
(20) concerns basic roll wave numbers k=1+0(e), (29), by
contrast, concerns the much narrower wave-number band k
=1+0(€?). We find, after a substitution of (29) in (6),

¢ _, 7
o~ Yo (30)
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FIG. 7. Stability boundaries of small-¢ rolls, according to (33),
in the undamped case u=0 (cf. [8]). To the right is the monotonic
stability boundary for rolls; to the left is the oscillatory stability
boundary.

af  &f da
T o M 2a07 s (31)
(9_61_ & LZ + (EZ 8 +12i)ﬂ_¢)
gT x24T A0 50T AL )y
g \? af
—4610(&) —(105(. (32)

These three equations may then be reduced to the single
nonlinear phase equation

(i 4i><i 42 Lz)(i > )
ar Yo \ar Yo T\ sr e T
=2a%(£a(2)—8q+i+8i>az—q5 2[?_9{"?2_¢

54 aT " Cox?)oxt T N ax ax?
(33)

We now consider the linearized version of (33) and exam-
ine the dispersion relation for infinitesimal disturbances pro-
portional to exp(oT+ilX). It is helpful first to recall the sta-
bility results of Tribelsky and Velarde [8] for the case u=0,
which are summarized in Fig. 7, and which are a special case
of the more general analysis to be presented below. As can be
seen in the figure, all rolls are unstable for u=0.

For general values of u, rolls undergo a monotonic insta-
bility (6=0) when g=gq,,(, u), where

72q,, (L) =21* + 2 —T1) > + 66 + .

Since g,,(1, w) > q,,(1,0), it follows that the stability margin
tends to move to the right as the damping is increased, tend-
ing to stabilize the rolls (see Fig. 8). Rolls undergo an oscil-
latory instability (c=iw) when

w2+ uw? 3w 91 Su 6771,

g=——"cc "=\ z+—-—7—-\5+73 !
288 72 16 144 36 288
25

_2p 34
P (34)

with onset frequency given by
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FIG. 8. Stability boundaries of rolls with damping coefficient
v=€>u, according to (33), for values of w as indicated. To the right
are the monotonic stability boundaries; to the left are the oscillatory
stability boundaries. As the damping coefficient increases, the rolls
become less unstable. For sufficiently large u, a stable band of
wave numbers emerges.

=24 +2(4p+ 41+ 2u.

The oscillatory stability boundary is plotted in Fig. 8 for
various values of . Damping is seen to shift the oscillatory
stability curve to the left, again stabilizing the rolls. A further
effect of nonzero damping is to stabilize rolls to oscillatory
disturbances in the limit that the perturbation wave number
[—0.

As can be seen from Fig. 8, with increasing damping the
two stability boundaries separate and eventually part, allow-
ing a small band of stable rolls. We find that stable rolls exist
for u> u.~8.445 (the corresponding critical value of v is
v,=u.€); thus, for a given value of the supercriticality pa-
rameter, there is a threshold value of the damping coefficient
to allow stable rolls near k=k,, as previously shown by Tri-
belsky [16]. Figure 9 shows the region of stable rolls in
(m,q) space (thus the apparent small-g cusp in Fig. 6, which
appears to extend down to zero damping, is in fact a wedge
terminating at finite damping).

The results above seem at odds with the numerical results
presented in Fig. 2, since there is no central wedge in the
numerical stability boundary. However, it turns out that for
the values of € used in Fig. 2, the small-¢g wedge is masked

FIG. 9. Stability boundary for rolls with wave number 1+ €q,
according to (33), for weak damping, with v=€?u. Rolls are stable
inside the wedge. At the right-hand boundary they become suscep-
tible to a monotonic instability, at the left-hand boundary an oscil-
latory instability. The wedge terminates at the point (u,q)
~(8.445,-4.049).
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FIG. 10. Stability boundary for rolls in (6), for €=0.01, near the
central wedge region corresponding to Fig. 9. Crosses indicate nu-
merical results and the solid line corresponds to our analytical re-
sults (cf. Fig. 9). Note that for this value of € (and presumably also
for even smaller values) the numerical stability boundary contains
this central wedge rather than a section corresponding to that
marked f in Fig. 2.

by an additional finite wave number instability. For a smaller
value of e, the theory in this section does indeed correctly
predict the shape of the stability boundary, as shown in Fig.
10 for €=0.01. (It becomes increasingly challenging to com-
pute the entire stability boundary numerically, so only the
relevant part is presented for this value of €.) Rolls are stable
in the wedge down to v= 8.445€%, and the last rolls to de-
stabilize have wave number approximately 1-4.049¢.
These results agree with corresponding results of Tribelsky

[16].

2. Left-hand corner (ay< 1)

We now examine the second case in which the asymptotic
results of Sec. V B break down: ay<1. This regime proves
to include the last rolls to become destabilized as the damp-
ing is reduced. We thus investigate the stability of rolls close
to the marginal stability boundary. Recall from Sec. V B and
in particular Fig. 6 that we expect stable rolls to persist to
small values of the damping near the left-hand side of the
marginal stability curve.

We introduce the notation k=k,, ,k;, for the left- and right-
hand marginal stability boundaries, respectively (that is, for
given values of r and v, rolls exist for wave numbers k in the
range k, <k<k; ). We shall begin by considering both left-
and right-hand parts of the marginal stability curve, since
both lead to ay< 1. Our analysis will then show that only the
left-hand part of the marginal curve is relevant, being ca-
pable of supporting stable rolls. We find, from substitution in
the equation k2[€>—(1-k2)*]- € u(1-k*)*>=0 for the mar-
ginal curve, that

KE=ltie—t@+(E-twe+ .

It turns out that the correct scaling to resolve the stability
boundary of the rolls is obtained by setting [k—k%|=0(€?), in
which case |it| =0(€¥?), with the relevant space and time
scales for the evolution of perturbations being X=ex and T
=é€%t. We consider here only the linearized secondary stabil-
ity problem and we are thus at liberty to scale arbitrarily the
absolute sizes of the three perturbation quantities, keeping
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their relative sizes fixed. Thus we suppose that
+EfX,T) + -+,
(35)

u~ eXay+a(X,1))e™e ™D ycc + -

where the wave number of the rolls under consideration is
just inside the marginal curve, so that

k=k;1 K.

A weakly nonlinear calculation of the roll solution itself
shows that the amplitude and wave number are related by

aj = 144k, (36)

Then a consideration of the terms in (6) which are linear in
the perturbation quantities ¢, a, and f shows that their evo-
lution is governed by

aoji 4a0(92¢ aof £ 4— (37)
¥
o1 ax2 M 20y (38)
da Fa _ &_d)

These three equations may then be combined to yield a
single linearized phase equation in the form

A PR
a1 a2 P \ar Tox? o |7 T8 e

For modes proportional to exp(oT+ilX), this gives the dis-
persion relation

(0+ P+ p)(o+42)* - 161*] = +8ajl’. (41)

In the limit ay—0, (41) gives the growth rates o=—(u
+12)<0, 0=41(1-1) and 0=41(-1-1), and hence all rolls are
unstable (to a monotonic disturbance) sufficiently close to
the marginal curve. We gain some insight into the possible
existence of stable rolls near the marginal curve by next
considering the limit of small perturbation wave numbers, [
— 0. For fixed a( and w, in the limit /— 0, the leading-order
balance in (41) is

o~ 82 xal/u). (42)

Thus near k=k, rolls are unstable, to monotonic distur-
bances, since (2+a0/ u)>0. No further analysis of this case
is necessary: there is no pocket of stable rolls possible near
the right-hand marginal stability curve; this conclusion is
consistent with Fig. 2.

Near k=k,,, by contrast, the conclusion of monotonic in-
stability follows from (42) only if a0<2,u (i.e., sufficiently
close to the marginal curve). When a0>2,u, (42) instead
indicates oscillations, and we must go further in our consid-
eration of the small-/ problem in order to determine the sta-
bility of the rolls. By carrying out a small-/ expansion of the
growth rate in the form o=0,l+ 05>+ -, we find from (41)
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that o7=8(2~aj/ ) and o,=4(aj/u?~1). Thus, when
2u<ay< u?, (43)

rolls are stable in the small- limit (the lower threshold for a;
corresponding to a monotonic instability, the upper threshold
to an oscillatory instability). The relation (43) indicates that
rolls enjoy this region of stability only for sufficiently large
damping: u>w.=2. Note that since 2<8.445 this cusp
contains the last stable rolls as the damping is decreased.

In terms of the original variables in the damped Nikolae-
vskiy equation (6), we thus predict (for small ») the cusp to
be at v~ 2r=2€>. We may readily check these analytical re-
sults against the numerical secondary stability calculations of
Sec. IV. For €=0.1, as in Fig. 2, we thus predict the apex of
the cusp to lie at ¥=0.02 (which we do indeed find numeri-
cally). Similarly, for €=0.05 we predict the apex to lie at v
=0.005, and the smallest value of v for which we have been
able to compute the cusp is »=0.006, which provides reason-
able agreement with the theory. (As e—0 it becomes ex-
ceedingly difficult to compute accurately this part of the nu-
merical secondary stability boundary.)

For completeness, we note that we have also considered
numerically the full dispersion relation (41) for arbitrary val-
ues of I: we find that (at least for values of a; and u up to 4,
for which we have carried out calculations) the stability
boundary is indeed determined by the small-/ expansion.

VI. NUMERICAL SIMULATIONS

In this section, we present full numerical simulations of
the damped Nikolaevskiy equation (6), illustrating the tran-
sition from regular patterns to chaotic dynamics as the damp-
ing is reduced. The simulations use periodic boundary con-
ditions and employ a Fourier spectral method for the spatial
discretization. The time-stepping is an explicit second-order
Runge-Kutta form of the exponential time differencing
method [30] that computes the stiff linear part of the equa-
tion exactly, permitting O(1) time steps. The size of the do-
main is 20077, allowing a resolution of 0.01 in wave number.

In the simulations shown in Fig. 11, the initial condition
comprises rolls with wave number £=0.96, plus a small ran-
dom perturbation. In each case, the simulation was run for a
long time to remove transient features, and then plotted over
a subsequent relatively short time interval. Note that these
time intervals are not the same in each case. The driving
parameter was fixed at r=0.01 and the sequence of simula-
tions shows the effect of reducing v. For these parameters,
all rolls that fit into the computational domain are predicted
to be unstable for v<<wv, where v,~0.057. The bifurcation at
v=v, is the Hopf bifurcation whose stability boundary is
shown in Figs. 2 and 6.

The simulations confirm the predicted bifurcation type,
since for v<<w, a small oscillatory modulation to the rolls
grows. This bifurcation seems to be supercritical since the
oscillations equilibrate to a small periodic modulation of the
rolls. For v=0.04 this oscillation takes the form of a standing
wave, as shown in Fig. 11(a). At »=0.03, the solution is no
longer periodic in time and shows occasional irregular bursts
of instability. In this case, the dominant wave number is k
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FIG. 11. (Color online) Space-time plots of the numerical solu-
tion of (6) at r=0.01. v=(a) 0.04, (b) 0.03, (c) 0.02, and (d) O.

=0.95, at the left-hand boundary of the roll-existence region
(i.e., near k=k,), consistent with the analysis of the preced-
ing section and the behavior of (13). Also, counterintuitively,
the amplitude of the solution becomes significantly lower as
the damping is decreased. This is because of the transition
from the O(e) scaling in the strongly damped case to the
O(€?) scaling [7] in the undamped, unstable regime. For
vr=0.02, the bursts are more frequent and a broad spectrum
of wave numbers is present in the solution. Finally, Fig.
11(d) shows the case of zero damping. This is significantly
different from the weakly damped case, showing grain
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boundaries between regions of traveling rolls.

VII. DISCUSSION AND CONCLUSIONS

The Nikolaevskiy equation is an important model of a
wide range of physical systems, including certain convection
problems, phase instabilities, and transverse instabilities of
fronts. It arises naturally in systems with a finite-wave-
number instability and a translation symmetry for the depen-
dent variable. However, in many applications it is likely that
this symmetry will be weakly broken.

The damped Nikolaevskiy equation (6) allows us to inves-
tigate the effects of weak symmetry breaking, and describe
the transition between the appearance of spatiotemporal
chaos at onset when =0 and the more gradual development
of complex dynamics typical of damped systems when the
damping coefficient ¥>0. Our numerical investigation of the
secondary stability problem for steady roll solutions shows
how the instability of all roll states in the undamped case
evolves into the more common Eckhaus scenario, whereby
rolls with wave numbers sufficiently close to critical are
stable, when the damping is sufficiently great. If we fix the
supercriticality parameter r, then it follows from the
asymptotic results of Sec. V C 2 that there is a critical value
of the damping coefficient v=v, (given by v.~2r when r is
small) below which all rolls are unstable; for ¥> v, some
rolls are stable.

However, it is more common in applications to fix param-
eters such as the damping coefficient v and vary the super-
criticality parameter r. Then the results of Sec. V C 2 may be
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interpreted as indicating that, at least for small values of v,
there are stable rolls provided 2r<<v, i.e., close enough to
onset. Thus the damped Nikolaevskiy equation differs funda-
mentally from the undamped version in that there is not a
direct transition to complex dynamics at onset when v>0;
instead, there is a sequence of bifurcations beginning with
some initially stable roll state. Of course, when v is small
this bifurcation sequence may occur very close to onset [i.e.,
for r=0(v)].

Our work complements a recent study by Tribelsky [16],
but differs in some significant respects. The first and most
important difference is our discovery and analysis of the
cusp of small-amplitude stable rolls, as described in Sec.
V C 2. These rolls are the last to be destabilized as the damp-
ing is reduced, and so are particularly significant. Another
difference is that our numerical study of the secondary sta-
bility problem has shown that rolls in the central wedge of
apparent stability, which is predicted both by ourselves and
by Tribelsky using asymptotic arguments, are in fact unstable
to short-wave modes, except for exceedingly small values of
v. So this central wedge (see Sec. V C 1) in fact forms part
of the stability boundary only for very small damping.

Finally, we reiterate that our choice of damping term in
(6) is by no means unique: indeed, Tribelsky [16] made a
different choice, as discussed in Sec. III. We conclude by
noting that we have also computed numerically the second-
ary stability boundaries corresponding to those shown in Fig.
2, but for Tribelsky’s version of the damped Nikolaevskiy
equation, and find similar results.
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