
Control of unstable steady states by extended time-delayed feedback

Thomas Dahms, Philipp Hövel, and Eckehard Schöll*
Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany

�Received 27 July 2007; published 1 November 2007�

Time-delayed feedback methods can be used to control unstable periodic orbits as well as unstable steady
states. We present an application of extended time delay autosynchronization introduced by Socolar et al.
�Phys. Rev. E 50, 3245 �1994�� to an unstable focus. This system represents a generic model of an unstable
steady state which can be found, for instance, in Hopf bifurcation. In addition to the original controller design,
we investigate effects of control loop latency and a bandpass filter on the domain of control. Furthermore, we
consider coupling of the control force to the system via a rotational coupling matrix parametrized by a variable
phase. We present an analysis of the domain of control and support our results by numerical calculations.
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I. INTRODUCTION

For over a decade, the stabilization of unstable and cha-
otic systems has been a field of extensive research. A variety
of control schemes have been developed to control periodic
orbits as well as steady states �1–3�. A simple and efficient
scheme, introduced by Pyragas �4�, is known as time delay
autosynchronization �TDAS�. This control method generates
feedback from the difference of the current state of a system
to its counterpart some time unit � in the past. Thus, the
control scheme does not rely on a reference system and has
only a small number of control parameters, i.e., the feedback
gain K and time delay �. It has been shown that TDAS can
stabilize both unstable periodic orbits, e.g., embedded in a
strange attractor �4,5�, and unstable steady states �6–8�. In
the first case, TDAS is most efficient if � corresponds to an
integer multiple of the minimal period of the orbit. In the
latter case, the method works best if the time delay is related
to an intrinsic characteristic time scale given by the imagi-
nary part of the system’s eigenvalue �8�. A generalization of
the original Pyragas scheme, suggested by Socolar, Sukow,
and Gauthier �9�, uses multiple time delays. This extended
time delay autosynchronization �ETDAS� introduces a
memory parameter R, which serves as a weight of states
further in the past. A variety of analytic results about time-
delayed feedback control are also known �10–13�, for in-
stance, in the case of long time delays �14� or the odd num-
ber limitation �15�, which was refuted recently �16�.

Although there has been a lot of research on the original
Pyragas method �17,18�, much less is known in the case of
extended time-delayed feedback �19–24�. Recently it was
shown that the additional memory parameter introduces a
second time scale which leads to a strong improvement of
the stabilization ability, for instance, arbitrary large correla-
tions of stochastic oscillations without inducing a bifurcation
�25�.

In the present paper, we apply the ETDAS control
method, which was initially invented to stabilize periodic
orbits, to an unstable steady state realized as an unstable
focus. This can be seen as a system close to but above a

supercritical Hopf bifurcation. As a modification, we also
consider an additional control loop latency, a bandpass filter,
and different couplings.

This paper is organized as follows. In Sec. II, we intro-
duce our model equations and develop the analytic tools used
throughout the paper. Section III deals with a nondiagonal
coupling implemented by a rotational matrix. In Sec. IV, we
consider latency time effects, which arise if a time lag exists
between calculation of the control force and reinjection into
the system. Section V introduces a specific modification of
ETDAS that includes a bandpass filtering of the control sig-
nal. This is important if high-frequency components are
present in the system. Finally, we conclude with Sec. VI.

II. EXTENDED TIME-DELAYED FEEDBACK

We consider an unstable fixed point of focus type. With-
out loss of generality, the fixed point z� is located at the
origin. In complex center manifold coordinates z the linear-
ized system can be written as ż�t�= ��+ i��z�t�, where � and
� are real numbers corresponding to the damping and oscil-
lation frequency, respectively. The stability of the steady
state is determined by the sign of the real part of the complex
eigenvalue �+ i�. Since we consider an unstable focus, e.g.,
just above a Hopf bifurcation, we choose the parameter � to
be positive and � nonzero. Separated in real and imaginary
parts, i.e., z�t�=x�t�+ iy�t�, the dynamics of the system is
given by

ẋ�t� = Ax�t� − F�t� , �1�

where x is the state vector composed of the real and imagi-
nary part x and y of the variable z, the matrix A denotes the
dynamics of the uncontrolled system

A = � � �

− � �
� , �2�

and F is the ETDAS control force, which can be written in
three equivalent forms

F�t� = K�
n=0

�

Rn�x�t − n�� − x�t − �n + 1���	 �3�
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=K�x�t� − �1 − R��
n=1

�

Rn−1x�t − n��� �4�

=K�x�t� − x�t − ��� + RF�t − �� , �5�

where K and � denote the �real� feedback gain and time
delay, respectively. R� �−1,1� is a memory parameter that
takes into account those states that are delayed by more than
one time interval �. Note that R=0 yields the TDAS control
scheme introduced by Pyragas �4�.

The control force applied to the ith component of the
system consists only of contributions of the same compo-
nent. Thus, this realization is called diagonal coupling. We
will consider a generalization to a nondiagonal coupling
scheme in Sec. III. The first form of the control force �Eq.
�3�� indicates the noninvasiveness of the ETDAS method
because x��t−��=x��t� if the fixed point is stabilized. The
third form �Eq. �5�� is best suited for an experimental imple-
mentation since it involves states further than � in the past
only recursively.

While the stability of the fixed point in the absence of
control is given by the eigenvalues of matrix A, i.e., �± i�,
one has to solve the following characteristic equation in the
case of an ETDAS control force:

� + K
1 − e−��

1 − Re−�� = � ± i� . �6�

Due to the presence of the time delay �, this characteristic
equation becomes transcendental and possesses an infinite
but countable set of complex solutions �. In the case of
TDAS, i.e., R=0, the characteristic equation can be solved
analytically in terms of the Lambert function �8,26–28�. We
stress that for nonzero memory parameter R, however, such a
compact analytic expression is not possible. Thus, one has to
solve Eq. �6� numerically.

Figure 1 depicts the dependence of the largest real parts of
the eigenvalue � upon the time delay � according to Eq. �6�
for different memory parameters R and fixed feedback gain
K=0.3. The dashed, dotted, solid, dash-dotted, and dash-
double-dotted curves �red, green, black, blue, and magenta�
of Re��� correspond to R=−0.7, −0.35, 0, 0.35, 0.7, respec-
tively. The parameters of the unstable focus are chosen as
�=0.1 and �=�. Note that the time delay � is given in units
of the intrinsic period T0=2� /�. When no control is applied
to the system, i.e., �=0, all curves start at � which corre-
sponds to the real part of the uncontrolled eigenvalue. For
increasing time delay, the real part of � decreases and even-
tually changes sign. Thus, the fixed point becomes stable.
Note that there is a minimum of Re��� indicating strongest
stability if the time delay � is equal to half the intrinsic
period. For larger values of �, the real part increases and
becomes positive again. Hence, the system loses its stability.
Above �=T0, the cycle is repeated but the minimum of
Re��� is not so deep. The control method is less effective
because the system has already evolved further away from
the fixed point. For vanishing memory parameter R=0
�TDAS�, the minimum is deepest, however, the control inter-
val, i.e., values of � with negative real parts of �, increases

for larger R. Therefore the ETDAS control method is supe-
rior in comparison to the Pyragas scheme.

Figure 2 shows the domain of control in the plane param-
etrized by the feedback gain K and time delay � for different
values of R :0 ,0.35,0.7,−0.35 in Figs. 2�a�–2�d�, respec-
tively. The grayscale �color code� indicates only negative
values of the largest real parts of the complex eigenvalue �.
Therefore, Fig. 1 can be understood as a vertical cut through
Fig. 2 for a fixed value of KT0=0.6. Each panel displays
several islands of stability which shrink for larger time de-
lays �. Note that no stabilization is possible if � is equal to an
integer multiple of the intrinsic period T0. The domains of
control become larger if the memory parameter R is closer to
1.

In order to obtain some analytic information of the do-
main of control, it is helpful to separate the characteristic
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FIG. 1. �Color online� Largest real part of the complex eigen-
values � as a function of � for different values of R. The dashed,
dotted, solid, dash-dotted, and dash-double-dotted curves �red,
green, black, blue, and magenta� correspond to R=−0.7, −0.35, 0,
0.35, 0.7, respectively. The parameters of the unstable focus are
chosen as �=0.1 and �=� which yields an intrinsic period T0

=2� /�=2. The feedback gain K is fixed at KT0=0.6.
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FIG. 2. �Color online� Domain of control in the �K ,�� plane for
different values of R :0 ,0.35,0.7,−0.35 in panels �a�, �b�, �c�, and
�d�, respectively. The grayscale �color code� shows only negative
values of the largest real part of the complex eigenvalues � accord-
ing to Eq. �6�. The parameters of the system are as in Fig. 1.
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Eq. �6� into real and imaginary parts. This yields using �
= p+ iq

K�1 − e−p� cos q�� = � − p − Re−p�

� ��� − p�cos q� ± �� − q�sin q��
�7�

and

Ke−p� sin q� = ± �� − q� + Re−p�

� ��� − p�sin q� ± �� − q�cos q�� . �8�

The boundary of the domain of control is determined by a
vanishing real part of �, i.e., p=0. With this constraint, Eqs.
�7� and �8� can be rewritten as

K�1 − cos q�� = � − R�� cos q� ± �� − q�sin q�� ,

K sin q� = ± �� − q� + R�� sin q� ± �� − q�cos q�� . �9�

At the threshold of control �p=0,q=��, there is a certain
value of the time delay, which will serve as a reference in the
following section, given by

� =
�2n + 1��

�
= �n +

1

2
�T0, �10�

where n is any non-negative integer. For this special choice
of the time delay, the range of possible feedback gains K in
the domain of control becomes largest as can be seen in Fig.
2. Hence, we will refer to this � value as optimal time delay
in the following. The minimum feedback gain at this � can
be obtained:

Kmin�R� =
��1 + R�

2
. �11�

Extracting an expression for sin�q�� from Eq. �9� and insert-
ing it into the equation for the imaginary part leads after
some algebraic manipulation to a general dependence of K
on the imaginary part q of �

K�q� =
�1 + R���2 + �� − q�2�

2�
. �12�

Taking into account the multivalued properties of the arcsine
function, this yields in turn analytical expressions of the time
delay in dependence on q

�1�q� =
arcsin� 2��1−R2���−q�

�2�1−R2�2+��−q�2�1+R�2� + 2n�

q
,

�2�q� =
− arcsin� 2��1−R2���−q�

�2�1−R2�2+��−q�2�1+R�2� + �2n + 1��

q
, �13�

where n is a non-negative integer. Together with Eq. �12�,
these formulas describe the boundary of the domain of con-
trol in Fig. 2. Note that two expressions �1 and �2 are neces-
sary to capture the complete boundary. The case of TDAS
control was analyzed in Ref. �14� and is included as special
choice of R=0.

For a better understanding of effects due to the memory
parameter R, it is instructive to consider the domain of con-
trol in the plane parametrized by R and the feedback gain K.
The results can be seen in Fig. 3, where the black, medium
gray, dark gray, and light gray areas �blue, green, red, and
yellow� correspond to the domain of control for �T0=0.2, 1,
5, and 10, respectively. The other system parameter is chosen
as �=�. We keep the time delay constant at �=T0 /2. Note
that the K interval for successful control increases for larger
values of R. In fact, while the original Pyragas scheme, i.e.,
R=0, fails for �T0=10, the ETDAS method is still able to
stabilize the fixed point. The upper left boundary corre-
sponds to Eq. �11�. The lower right boundary can be de-
scribed by a parametric representation which can be derived
from the characteristic Eq. �6�:

R =
�� − � tan��/2�
�� + � tan��/2�

, �14�

K� =
�2 + ����2

�� + � tan��/2�
, �15�

where we used the abbreviation �= �q−��� for notational
convenience. The range of � is given by �� �0,��. A linear
approximation leads to an analytic dependence of R and the
feedback gain K given by a function R�K� instead of the
parametric Eqs. �14� and �15�. A Taylor expansion around
�=� yields

Kmax�R� =
�2 + �2

2�
�R + 1� + 2�R − 1� . �16�

Another representation of the superior control ability of
ETDAS is depicted in Fig. 4. The domain of control is given
in the �K ,�� plane for different values of R. The light gray,
dark gray, medium gray, and black areas �yellow, red, green,
and blue� refer to R=−0.35, 0 �TDAS�, 0.35, and 0.7, respec-
tively. The time delay is chosen as �=T0 /2. One can see that
for increasing R, the ETDAS method can stabilize systems in
a larger � range. However, the corresponding K interval for
successful control can become small. See, for instance, the

FIG. 3. �Color online� Domain of control in the �K ,R� plane for
different values of �. The black, medium gray, dark gray, and light
gray domains �blue, green, red, and yellow� correspond to �T0

=0.2, 1, 5, and 10, respectively, as indicated. The time delay is
chosen as �=T0 /2 and �=�.
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black �blue� area �R=0.7� for large �. A similar behavior was
found in the case of stabilization of an unstable periodic orbit
by ETDAS �29�. We stress that, as in the case of periodic
orbits, the boundaries of the shaded areas can be calculated
analytically from the following expression:

K� =
�1 − R��
tan��/2� 
�1 + R

1 − R
�2

+ tan2��/2�� , �17�

�� =
�

tan��/2��1 + R

1 − R
� , �18�

where we used �= �q−��� with �� �0,�� as in Eqs. �14�
and �15�. The maximum value for �, which can be stabilized,
is given by the special case �=0:

�max� = 2
1 + R

1 − R
. �19�

In this section, we have focused our discussion to the
ETDAS method in the simplest realization of diagonal cou-
pling. In the following, we will investigate the effects of
nondiagonal coupling introduced by a variable phase.

III. PHASE DEPENDENT COUPLING

Time-delayed feedback has been widely used in optical
systems both to study the intrinsic dynamics and to control
the stabilization of, for instance, a laser device �30–35�. In
these systems, the optical phase is an additional degree of
freedom. We consider this additional control parameter as a
generalization of the ETDAS feedback scheme using a non-
diagonal coupling as opposed to the diagonal coupling dis-
cussed in the previous section. This nondiagonal coupling is
realized by introducing a coupling matrix containing a vari-
able phase 	:

�ẋ

ẏ
� = � � �

− � �
��x

y
� − �cos 	 − sin 	

sin 	 cos 	
�F�t� . �20�

In optical systems such as semiconductor lasers with ex-
ternal optical feedback �36,37�, this feedback phase can be

seen as the phase of the electric field. Experimentally, this
phase of the feedback can be varied by tuning an external
Fabry-Perot cavity. It has also been demonstrated that the
feedback phase plays an important role in the suppression of
collective synchrony in a globally coupled oscillator network
�38�.

The stability of the fixed point is again given by the larg-
est real part of the complex eigenvalues �, which are calcu-
lated as the solutions of the following modified characteristic
equation:

� + Ke
i	 1 − e−��

1 − Re−�� = � ± i� . �21�

Note that this equation differs from the characteristic equa-
tion in the diagonal case �see Sec. II� by an additional expo-
nential term. This is due to the choice of phase-dependent
coupling by a rotational matrix. We stress that a similar
phase factor has recently been used �16� to overcome a to-
pological limitation of time-delayed feedback control known
as the �odd number limitation theorem,� which refers to the
case of an unstable periodic orbit with an odd number of real
Floquet multipliers larger than unity �15,39�.

In analogy to Sec. II a minimum feedback gain can be
calculated:

Kmin =
��1 + R�
2 cos 	

. �22�

Note that the time delay that corresponds to this value of
Kmin is no longer given by Eq. �10� and is not the optimal
time delay in the general case of nonzero phase. Neverthe-
less, Eq. �22� can be used as a coarse estimate of the mini-
mum feedback gain for the regime of small values of 	, if
the time delay is chosen as Eq. �10�.

Figure 5 depicts the dependence of the largest real part of

FIG. 4. �Color online� Domain of control in the �K ,�� plane for
different memory parameters R. The light gray, dark gray, medium
gray, and black domains �yellow, red, green, and blue� areas corre-
spond to R=−0.35, 0 �TDAS�, 0.35, and 0.7, respectively. The time
delay is fixed at �=T0 /2.
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FIG. 5. �Color online� Largest real part of the eigenvalues � as
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=0, � /8, � /4, and 3� /8, respectively. The other control parameters
are fixed as R=0.7 and KT0=0.6. The parameters of the system are
as in Fig. 1.
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the eigenvalues � on the time delay � for fixed values of R
=0.7 and KT0=0.6 but different values of the phase. The
solid, dashed, dotted, and dash-dotted curves �black, red,
green, and blue� correspond to 	=0, � /8, � /4, and 3� /8,
respectively. It can be observed that the control is overall less
effective for larger 	, as the curves are shifted up toward
positive real parts for increasing the phase. The range of
possible values for the time delay shrinks. The optimal time
delay is shifted toward smaller values for larger 	, which can
be seen for the case of 	=3� /8, where the optimal time
delay is in the range of �=0.1T0 instead of 0.5T0, which was
the optimal time delay for 	=0 according to Eq. �10�.

The four-dimensional parameter space is now given by
the feedback gain K, time delay �, memory parameter R, and
feedback phase 	. At first, we consider the domain of control
in the plane parametrized by K and 	. Hence, we keep the
other remaining control parameters R and � fixed. Figures 6
and 7 show the domain of control for a time delay of T0 /2
and 0.1T0, respectively. In each figure, the memory param-
eter R is chosen as R=0, 0.35, 0.7, and −0.35 in panels �a�,
�b�, �c�, and �d�, respectively. The grayscale �color code� cor-
responds to the largest real part of the complex eigenvalues
as calculated from Eq. �21�. Only negative values are de-
picted, i.e., those combinations of K and 	 for which the
control scheme is successful. Note that the case R=0 corre-
sponds to the TDAS control method �37�. An increase of the
memory parameter R leads to a larger domain of control.
Even though the system can be stabilized for a larger range
of K and 	, the system becomes less stable overall, since the
real part of � is closer to zero. For negative values of R, the
domain of control shrinks. Note that also in the case of non-
optimal time delay as in Fig. 7 the range of choice for pos-
sible feedback gain and phase is enlarged.

For a better understanding of the effects of the feedback
phase, Fig. 8 depicts the domain of control in the �K ,R�
plane. The black, medium gray, dark gray, and light gray
areas �blue, green, red, and yellow� correspond to successful
control for 	=0, � /8, � /4, and 3� /8, respectively. Figure
8�a� shows the case of optimal time delay, i.e., �=T0 /2; Fig.

8�b� displays the case of �=0.1T0. Note that an increase of 	
leads to a smaller domain of control in the case of �=T0 /2.
This effect, however, is reversed for nonoptimal choices of �,
where the phase 	 compensates for the bad choice of the
time delay. Thus, control is possible again, for instance, in
the TDAS case �R=0� for 	=3� /8. Following the strategy
introduced in Sec. II, one can also derive parametric formu-
las for the boundary of the domain of control in the case 	
�0:
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FIG. 6. �Color online� Domain of control in the �	 ,K� plane for
optimal time delay �=T0 /2. Panels �a�, �b�, �c�, and �d� correspond
to a memory parameter R of 0, 0.35, 0.7, and −0.35, respectively.
The grayscale �color code� shows the largest real part of the com-
plex eigenvalues � as given by Eq. �21�. Only negative values are
displayed. The parameters of the system are as in Fig. 1.
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FIG. 7. �Color online� Domain of control in the �	 ,K� plane for
time delay �=0.1T0. Panels �a�, �b�, �c�, and �d� correspond to a
memory parameter R of 0, 0.35, 0.7, and −0.35, respectively. The
grayscale �color code� shows the largest real part of the complex
eigenvalues � as given by Eq. �21�. Only negative values are de-
picted. The parameters of the system are as in Fig. 1.

FIG. 8. �Color online� Domain of control in the �K ,R� plane for
different values of the feedback phase 	. The black, medium gray,
dark gray, and light gray areas �blue, green, red, and yellow� corre-
spond to 	=0, � /8, � /4, and 3� /8, respectively. Panel �a� displays
the domain of control for optimal �=T0 /2 and panel �b� for �
=0.1T0. The parameters of the system are as in Fig. 1.
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R =
��cos��� + � + 	� − cos 	� + ���sin 	 − sin��� + � + 	��
��cos 	 − cos��� + � + 	�� − ���sin 	 + sin��� + � + 	��

, �23�

K� =
��2 + �2�2�cos� 1

2 ��� + ���
�� cos� 1

2 ��� + �� − 	� − � sin� 1
2 ��� + �� − 	� . �24�

We stress that it is possible to derive expression of K�q� and
��q� similar to Eqs. �12� and �17� also in the case of 	�0.
These calculations are lengthy and do not produce more in-
sight and thus are omitted here.

IV. CONTROL LOOP LATENCY

After the investigation of nondiagonal coupling, we con-
sider in this section an additional control loop latency. This
latency is associated with time required for the generation of
the control force and its reinjection into the system. In an
optical realization, for instance, the latency time is given by
the propagation time of the light between the laser and the
Fabry-Perot control device. We stress that in the case of un-
stable periodic orbits, Just has shown that longer latency
times reduce the control abilities of the time-delayed feed-
back of TDAS type �29�. Similar results were found for ET-
DAS �24�.

The latency time � acts as an additional time delay in all
arguments of the control force of Eq. �3�. Using the recursive
form of F as given by Eq. �5�, this yields

F�t� = �x�t − �� − x�t − � − ��� + RF�t − �� . �25�

The characteristic Eq. �6� is now modified by an additional
exponential factor

� ± i� = � + Ke−�� 1 − e−��

1 − Re−�� . �26�

In contrast to the previous section, this exponential term de-
pends on the eigenvalue � itself.

Figure 9 depicts the dependence of the largest real part of
the eigenvalues � on the time delay � for fixed values of R
=0.7 and KT0=0.6, but different latency times. The solid,
dashed, dotted, and dash-dotted curves �black, red, green,
and blue� correspond to �=0, 0.1, 0.3, and 0.5, respectively.
It can be seen that the control scheme is less successful for
longer latency times. The � interval with negative real parts
of � becomes smaller. In the case of �=0.25T0, for instance,
control can only be achieved in a narrow range of small �
and the second minimum does not reach down to negative
Re��� anymore. In addition, the minima of the real parts are
distorted and shifted toward smaller time delays.

Taking also a varying feedback gain K into account, the
domain of control can be seen in Fig. 10. The other control
parameters are fixed at �=T0 /2 and R=0.7. Figures
10�a�–10�d� correspond to values of �=0, 0.1�, 0.2�, and
0.3�, respectively. As in Figs. 6 and 7 of the previous section,
the grayscale �color code� corresponds to the largest real part
of the complex eigenvalues which are calculated from
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FIG. 9. �Color online� Largest real part of the eigenvalues � as
a function of � for different latency times �. The solid, dashed,
dotted, and dash-dotted curves �black, red, green, and blue� corre-
spond to �=0, 0.05T0, 0.15T0, and 0.25T0, respectively. The other
control parameters are fixed as R=0.7 and KT0=0.6. The param-
eters of the system are as in Fig. 1.
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FIG. 10. �Color online� Domain of control in the �K ,�� plane for
different values of the latency time � and fixed R=0.7. Panels �a�,
�b�, �c�, and �d� correspond to values of �=0, 0.05T0, 0.1T0, and
0.15T0, respectively, where the time delay is fixed at �=T0 /2. The
grayscale �color code� shows the largest real part of the complex
eigenvalues � as given by Eq. �26�. Only negative values are dis-
played. The parameters of the system are as in Fig. 1.
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Eq. �26�. Note that only negative values are depicted. For
increasing latency time, the domains of control shrink. Simi-
lar to the discussion in the one-dimensional projection of
Fig. 9, the islands are distorted toward smaller time delays.

Separating the characteristic Eq. �26� into real and imagi-
nary part, one can derive, in analogy to Sec. II, an expression
for the minimum feedback gain

Kmin��� =
��1 + R�

cos��2n + 1���/��
, �27�

which is consistent with the TDAS case investigated in Ref.
�8�.

As another two-dimensional projection of the parameter
space, Fig. 11 displays the domain of control in the �K ,R�
plane for different values of the latency time �. The black,
medium gray, dark gray, and light gray areas �blue, green,
red, and yellow� refer to values of �=0, 0.05T0, 0.1T0, and
0.15T0, respectively. Similar to Fig. 8, Fig. 11�a� shows the
case of optimal choice of the time delay �=T0 /2 and Fig.
11�b� refers to �=T0 /8. In the first case, the domain of con-
trol shrinks considerably for increasing �, whereas in the
latter case, this change is less pronounced.

Similar to the previous sections, it is possible to derive a
parametric expression for the boundary of the domain of
control �R��� and K����:

R =
− � cos���� + �� �

� � + � cos���� + ���1 + �
� �� + ���sin���� + �� �

� � − sin���� + ���1 + �
� ��	

� cos���� + �� �
� � − � cos���� + ���1 − �

� �� − ���sin���� + �� �
� � + sin���� + ���1 − �

� ��	 , �28�

K� =
��2 + ����2�cos� 1

2 ��� + ���
�� cos�� �

� − 1
2���� + ��� + � sin�� �

� − 1
2���� + ��� .

�29�

V. BANDPASS FILTERING

In the context of semiconductor lasers, it has been shown
both theoretically and experimentally that delayed, bandpass
filtered optical feedback is able to suppress the undamping of
relaxation oscillations �36,40�. Recently, filtering of an opti-
cal feedback signal �41� was also investigated for laser mod-
els of Lang-Kobayashi type �42�. In addition, filtered feed-
back has also been proven important in the investigation of
Hopf bifurcation �43�, and in the stabilization of unstable
periodic orbits by ETDAS in semiconductor superlattices
�44�. In order to model this type of modification of the con-
trol force, a bandpass filter acting on the feedback force is
introduced as a Lorentzian in the frequency domain with the
transfer function

T��� =
1

1 + i
�−�0

�

, �30�

where �0 denotes the peak of the transfer function and � is
half the full width at half maximum of the function. To in-
troduce the filter into the system in the time domain, one can
add two additional differential equations to Eq. �1� such that
the original two-dimensional system becomes four dimen-
sional:

ẋ�t� = Ax�t� − F�x�t�� ,

ẋ̄�t� = ��x�t� − x̄�t�� − �0ȳ�t� ,

ẏ̄�t� = ��y�t� − ȳ�t�� + �0x̄�t� , �31�

where x̄ and ȳ denote the filtered versions of x and y, respec-
tively. Note that the feedback force F�x�t�� is now generated
from the filtered state vector x�t� which consists of the two
filtered variables x̄ and ȳ:

FIG. 11. �Color online� Domain of control in the �K ,R� plane
for different values of the latency time �. The black, medium gray,
dark gray, and light gray areas �blue, green, red, and yellow� refer to
values of �=0, 0.05T0, 0.1T0, and 0.15T0, respectively. Panel �a�
corresponds to an optimal time delay �=T0 /2 and panel �b� to �
=T0 /8. The parameters of the system are as in Fig. 1.
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F�x�t�� = K�
n=0

�

Rn�x�t − n�� − x�t − �n + 1���	 . �32�

Equivalently to the additional differential equations in Eq.
�31�, the filtering, for instance, in the case of a low pass filter,
i.e., �0=0, can be expressed by convolution integrals, where
the filtered counterparts of x�t� and y�t� are given as follows:

x̄�t� = ��
−�

t

x�t��e−��t−t��dt�, �33�

ȳ�t� = ��
−�

t

y�t��e−��t−t��dt�. �34�

The system of differential Eqs. �31� yields a characteristic
equation of the form

±i��0�� − �� + ��� + ���

= �K
1 − e−��

1 − Re−�� + �0� − �� − ���� + �� . �35�

The minimum feedback gain can be calculated in depen-
dence on �0 and � in similarity to Eq. �11�:

Kmin��0,�� =
��1 + R�

2

1 +

��0 + ��2 +
2�0��

�

�� − ��2 � . �36�

Note that at this special value of the feedback gain K, the
time delay is no longer given by the intrinsic value �=� /�,
neither is it the optimal time delay in the general case of
nonzero �0 and finite values of �. Adjusting the time delay
according to the choice of �0 and � leads to boundaries of
the domain of control that can only be understood in the
scope of a parametric representation of the boundaries in the
�K ,R� plane. Such parametric equations can be derived in
analogy to Eq. �15�. However, the resulting equations for the
case of the filtered system are not shown here due to the
complexity of the terms.

Figures 12 and 13 depict numerical solutions of the char-
acteristic Eq. �35� for different choices of the parameters �
and �0. In Fig. 12 the largest real part of the eigenvalues is
shown in dependence on the time delay for different values
of the filter width � in dependence on the time delay. The
parameter �0 is fixed to 0, which corresponds to the case of
a low pass filter. The solid, dashed, dotted, and dash-dotted
curves �black, red, green, and blue� correspond to �T0
=2000, 40, 10, and 2, respectively. The other control param-
eters are fixed as R=0.7 and KT0=0.6. It can be seen that
large values of � show similar behavior as in the unfiltered
system in Fig. 1. Decreasing � flattens the curves and shifts
them up toward positive real parts. Therefore, no control is
possible for the case of �T0=2. Additionally, the optimal
time delay is shifted to smaller values, which can be seen
from the case �T0=10.

In Fig. 13 similar curves are shown for fixed �T0=10 and
different choices of the filter’s mean value �0. The solid,
dashed, dotted, and dash-dotted curves �black, red, green,

and blue� correspond to �0T0=0, �, 2�, and 4�, respec-
tively. The other control parameters are fixed as R=0.7 and
KT0=0.6. It can be observed that the increase of �0 shifts the
curves further upwards to positive real parts, leading to a less
stable system. The range of the time delay for successful
control shrinks.

The domain of control can also be investigated in the
�K ,R� plane. Results are shown in Fig. 14 for different val-
ues of the filter width � and fixed �0=0. The black, medium
gray, dark gray, and light gray areas �blue, green, red, and
yellow� refer to values of �T0=2000, 40, 10, and 2, respec-
tively. The time delay is fixed as �=T0 /2. The domain of
control for large values of �, here, for instance, �T0=2000
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FIG. 12. �Color online� Largest real part of the eigenvalues � as
a function of � for different filter widths � and fixed �0=0. The
solid, dashed, dotted, and dash-dotted curves �black, red, green, and
blue� correspond to �T0=2000, 40, 10, and 2, respectively. The
other control parameters are fixed as R=0.7 and KT0=0.6. The
parameters of the system are as in Fig. 1.
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FIG. 13. �Color online� Largest real part of the eigenvalues � as
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�T0=10. The solid, dashed, dotted, and dash-dotted curves �black,
red, green, and blue� correspond to �0T0=0, �, 2�, and 4�, respec-
tively. The other control parameters are fixed as R=0.7 and KT0
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looks very similar to the case of the unfiltered system that is
depicted in Fig. 3. Decreasing the value of �, the region of
control shrinks. The lower right boundary is shifted up to-
ward larger values of R. The left boundary, which corre-
sponds to Kmin is shifted toward larger values of K. This
effect is very small for �T0=40 and 10. For �T0=2, the
effect is much more pronounced.

Figure 15 shows the domain of control in the �K ,�� plane
for different values of the filter width � and fixed �0=0.
Figures 15�a�–15�d� correspond to values of �T0=2000, 40,
10, and 2, respectively, where the time delay is fixed at �
=T0 /2 and R=0.7. The case of �T0=2000 looks very similar
to the case of the unfiltered system, as shown in Fig. 2. For
decreasing value of �, the tongues shrink in the K direction.
The minimum value of K increases and the maximum value
becomes smaller. Additionally, the tongues are bent down
toward smaller values of the time delay � with decreasing �.

This leads to an optimal � that is smaller than in the unfil-
tered case.

In Fig. 16 the filter width is fixed to �T0=10, the domain
of control is shown for different values of the filter’s mean
values �0. Figures 16�a�–16�d� correspond to values of
�0T0=0, �, 2�, and 4�, respectively, where the time delay
is fixed at �=T0 /2 and R=0.7. The size of the domain of
control is only slightly changed with increasing �0. The do-
mains are flattened on the upper side for larger values of �0.
The region of optimal control, denoted by bright �yellow�
color, is additionally shifted slightly toward larger values of
the feedback gain K and shrinks in the � direction. Overall,
the variation of �0 has very little effect on the domain of
control in the �K ,�� plane.

VI. CONCLUSION

In conclusion, we have shown that extended time-delayed
feedback can be used to stabilize unstable steady states of
focus type. By introduction of an additional memory param-
eter, this method is able to control a larger range of unstable
fixed points compared to the original TDAS scheme. How-
ever, the degree of stability, measured by the absolute value
of the real part of the eigenvalue, is generally decreased. We
have investigated the domain of control in various one- and
two-dimensional projections of the space spanned by the
control parameters. Furthermore, we have also discussed ef-
fects of nondiagonal coupling, nonzero control loop latency,
and bandpass filtering of the control signal, which are rel-
evant in an experimental realization of the ETDAS control
method. We found that a proper adjustment of the time delay
is able to compensate for reducing stabilization abilities of
the control method, for instance, due to latency or feedback

FIG. 14. �Color online� Domain of control in the �K ,R� plane
for different values of the filter width � and fixed �0=0. The black,
medium gray, dark gray, and light gray areas �blue, green, red, and
yellow� refer to values of �T0=2000, 40, 10, and 2, respectively.
The time delay is fixed as �=T0 /2. The parameters of the system
are as in Fig. 1.

FIG. 15. �Color online� Domain of control in the �K ,�� plane for
different values of the filter width � and fixed �0=0. Panels �a�, �b�,
�c�, and �d� correspond to values of �T0=2000, 40, 10, and 2, re-
spectively, where the time delay is fixed at �=T0 /2 and R=0.7. The
grayscale �color code� shows the largest real part of the complex
eigenvalues � as given by Eq. �35�. Only negative values are dis-
played. The parameters of the system are as in Fig. 1.

FIG. 16. �Color online� Domain of control in the �K ,�� plane for
different values of the filter’s mean value �0 and fixed �T0=10.
Panels �a�, �b�, �c�, and �d� correspond to values of �0T0=0, �, 2�,
and 4�, respectively, where the time delay is fixed at �=T0 /2 and
R=0.7. The grayscale �color code� shows the largest real part of the
complex eigenvalues � as given by Eq. �35�. Only negative values
are displayed. The parameters of the system are as in Fig. 1.
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phase. We point out that the results obtained in this paper are
accessible for applications in the context of all-optical con-
trol of intensity oscillations of semiconductor lasers as inves-
tigated in Ref. �37�.
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