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The neighbor network in a two-dimensional polydisperse hard-disk fluid with diameter distribution
p�����−4 is examined using constant-pressure Monte Carlo simulations. Graphs are constructed from vertices
�disks� with edges �links� connecting each vertex to k neighboring vertices defined by a radical tessellation. At
packing fractions in the range 0.24���0.36, the decay of the network degree distribution is observed to be
consistent with the power law k−� where the exponent lies in the range 5.6���6.0. Comparisons with the
predictions of a maximum-entropy theory suggest that this apparent power-law behavior is not the asymptotic
one and that pk�k−4 in the limit k→�. This is consistent with the simple idea that for large disks, the number
of neighbors is proportional to the disk diameter. A power-law decay of the network degree distribution is one
of the characteristics of a scale-free network. The assortativity of the network is measured and is found to be
positive, meaning that vertices of equal degree are connected more often than in a random network. Finally, the
equation of state is determined and compared with the prediction from a scaled-particle theory. Very good
agreement between simulation and theory is demonstrated.
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I. INTRODUCTION

For over four decades the science of complex networks
was based on results for random graphs, obtained by Erdös
and Rényi in 1959 �1�. Recent analyses reveal that the to-
pologies of most large, real networks deviate from those of
random networks �2�. Examples of real networks include the
World Wide Web �3,4�, the Internet �5�, metabolic systems
and protein-protein interactions �6–8�, sexual contacts �9�,
collaborations between scientists �10� and between movie
actors �11�, and scoring totals of Brazilian football players
�12�. The most significant deviations from random-network
behavior appear in the tail of the degree distribution pk,
which is the probability of a given vertex possessing connec-
tions to k other vertices. In random networks pk is Poisso-
nian, while pk for many real networks varies asymptotically
like k−�, where � is a positive exponent �11�. In qualitative
terms, a scale-free network is characterized by a small num-
ber of highly connected vertices called “hubs”; for a general
introduction, see Ref. �13�. Many authors identify scale-free
networks as those possessing power-law degree distributions
but as discussed fully in Ref. �14�, this is a necessary but not
sufficient condition. In what follows, we will be largely con-
cerned with power-law degree distributions and the term
“scale free” will be employed, but it should be borne in mind
that, strictly speaking, other properties are required for the
network to be termed scale free �14�.

It has been suggested—but not yet confirmed—that
growth and preferential attachment are possible mechanisms
by which real-world, scale-free networks can emerge �2�; the
addition of nodes to networks may capture the intrinsic evo-
lutionary behavior of some real-world examples. Dynamical
models of the growth of cellular networks—including the
effects of cell division and disappearance—can also give rise
to scale-free neighbor networks �15,16�. Stochastic models

have been proposed and studied which can successfully re-
produce certain features of real networks �11,17�; however,
there are some features which cannot yet be reproduced. An
example is the assortativity of a network �18�, which mea-
sures the extent to which vertices with equal degree link with
one another: in assortative networks, vertices with equal de-
gree are linked to one another more frequently than in a
random network; in disassortative networks, vertices with
equal degree are linked to one another less frequently than in
a random network. To quote Newman, “An interesting obser-
vation is that essentially all social networks measured appear
to be assortative, but other types of networks �information
networks, technological networks, biological networks� ap-
pear to be disassortative. It is not clear what the explanation
for this result is, or even if there is any one single explana-
tion. �Probably there is not.�” �19�. Nonetheless, it has been
shown that assortativity and clustering �which means more
linked vertices share a common neighbor than would be ex-
pected by chance� can arise if social networks are divided
in to distinct groups or communities �20�.

Scale-free networks are rare in real and model condensed-
matter systems. One important example is the scale-free con-
tact network in the Apollonian packing of circles �21�, in
which the circle diameter distribution decays according to a
power law with an exponent of about 1.3 �22�. The mechani-
cal, percolation, and conductive properties of materials pos-
sessing Apollonian-packing networks have been shown to
exhibit unusual dependences on the number of vertices �21�.
Such models may describe the distribution of force in granu-
lar materials such as concrete and networks of voids in po-
rous media. The percolation properties of such networks
�21,23� will clearly be of relevance to the characteristics of
certain porous media. Apollonian packing has also been
identified as a model for networks of connected minima on
potential-energy surfaces of atomic clusters �24�; the transi-
tion states �edges� between minima �vertices� exhibit a scale-
free distribution �25–27�.

This article is concerned with the possibility of generating
a simple scale-free network in molecular simulations of a*philip.camp@ed.ac.uk
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simple fluid. The model consists of polydisperse hard disks
in two dimensions, in which the distribution of disk diam-
eters ��� varies asymptotically like �−�, where � is a positive
exponent. The equilibrium structure of the fluid phase is de-
termined using Monte Carlo �MC� simulations, conducted at
constant pressure �strictly tension�. Naively one might expect
the number of neighbors of a given disk to be proportional to
the circumference and hence �. Due to the broad distribution
of particle diameters, neighbors are identified using the radi-
cal tessellation �28� proposed as a suitable alternative to the
Voronoï construction which is usually applied to one-
component systems. If the tail of the diameter distribution
follows a power law, then perhaps the neighbor distribution
will vary in a similar way. Identifying particles with vertices,
and the separation vectors between neighboring disks as
edges, this situation could give rise to a scale-free neighbor
network, with the large particles playing the role of the hubs.
In this article it is shown that �i� there are indications that the
neighbor network in the polydisperse hard-disk fluid pos-
sesses a power-law degree distribution, which is one
of the properties of a scale-free network, and �ii� the
neighbor network is highly assortative; i.e., vertices with
equal degree are directly connected more often than in a
random network. This is an interesting situation, because the
equilibrium properties of the fluid are static, and hence dy-
namic mechanisms of scale-free network formation—e.g.,
preferential attachment—are not applicable.

Polydisperse hard-disk fluids are of considerable intrinsic
interest, for example, as models of colloidal monolayers,
froths and foams, and packing and segregation in granular
materials. The packing of binary mixtures of hard disks has
been studied extensively and is shown to be highly nontrivial
�29–31�; for instance, the distributions of neighbors and of
cell area �as obtained from radical tessellations� show dis-
tinct contributions arising separately from the small and large
disks, indicating the clustering of disks with equal size. Flu-
ids with more than two components have received far less
attention, although it has been noted than in some respects
the statistics of the radical tessellations may conform to those
of a random tessellation �29�. Specifically, it has been found
that fluids of disks with a linear, decreasing diameter distri-
bution obey the Aboav-Weaire law, which states that the av-
erage total number of sides of the cells �determined by tes-
sellation� neighboring a cell with k sides increases linearly
with k �32–34�. It has been shown that the Aboav-Weaire law
is a consequence of a maximum-entropy �ME� principle
�35,36�, the argument being that it can be written as a linear
superposition of two basic constraints, these being that
�kpk=1 and for a two-dimensional �2D� tessellation
�kkpk=6 �Euler�; therefore, the Aboav-Weaire law provides
no new constraints and so it leads to the ME distribution. It
might therefore be anticipated that in the polydisperse hard-
disk fluid considered in this work, a maximum-entropy dis-
tribution may provide an adequate description of the nearest-
neighbor network measured in simulations.

From the viewpoint of liquid-state physics, it is interest-
ing to construct expressions for the equations of state of
highly polydisperse fluids. In statistical mechanical terms,
this may stimulate progress in understanding dense, complex
fluids, such as the mixtures of macromolecules found inside

living cells �37�. Therefore, a simple equation of state is
derived using scaled-particle theory �SPT� �38� and com-
pared with �essentially exact� results from MC simulations.

This article is organized as follows. Section II details the
hard-disk model, summarizes the MC and SPT approaches to
be employed, and presents the derivation of a ME estimate of
pk. The results are reported and discussed in Sec. III, and
Sec. IV concludes the paper.

II. MODEL AND METHODS

The model consists of N hard disks confined to a square
cell of area A. The disk-diameter distribution is given by

p��� =
C

1 + ��/�0�� , �1�

where ��0, �0 is a reference diameter, � is a positive ex-
ponent, and C is the normalization constant. This particular
choice of distribution was chosen so that there is a finite
number of small particles �important for the simulations�
and because it rapidly approaches the asymptotic form
p�����−�. The value of � should be small enough to give a
long tail to the distribution, but large enough such that the
first few moments are well defined. The second moment is
required to exist so that one can define a packing fraction,
given by �=	
��2� /4, where the angular brackets denote an
average over p��� and 
=N /A is the number density. The
second moment is finite only for ��3, so the present work
is focused on the distribution with �=4, the normalization
constant and first two moments of which are

C =
2	2

	�0
, �2�

��� =
�0

	2
, �3�

��2� = �0
2. �4�

p��� is plotted in Fig. 1 on a log-log scale to show the
crossover to a power-law decay for ���0.
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FIG. 1. Normalized disk-diameter distribution p���
=C / �1+ �� /�0�4� plotted on a log-log scale to highlight the
asymptotic �−4 behavior.
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A. Monte Carlo simulations

Constant-temperature, constant-pressure MC simulations
of N=104 polydisperse hard disks were performed in a
square cell with periodic conditions applied �39�. The hard-
disk system is athermal, and so the reduced pressure em-
ployed in the simulations is defined as P*= P�0

2 /kBT, where
kB is Boltzmann’s constant and T is the temperature. Ten
different simulation configurations were used, each consist-
ing of particles with diameters drawn randomly from p���.
Results obtained with the ten configurations at a given re-
duced pressure were averaged.

On average, one MC cycle consisted of N attempted dis-
placements of randomly selected disks, NA trial displace-
ments of ln A �39�, and one cluster move, the latter imple-
mented using Dress and Krauth’s cluster algorithm �40� with
reflection rather than rotation �41�. The cluster moves are
vital for equilibration, because the displacements of large
disks are severely hampered by the large number of neigh-
boring small disks. In a few words, each cluster move begins
with the selection of a random pivot point within the simu-
lation box. A disk is chosen at random and is subjected to a
point reflection about the pivot. Any disks that overlap with
the reflected disk are themselves reflected, and this process is
repeated until there are no more overlaps. This algorithm
works particularly well at low to intermediate densities, but
it fails at high densities due to all of the particles being
part of the same “cluster” �41�. For each state point the
equilibration phase consisted of about 105 MC cycles with
NA=1–20, depending on the pressure. Production runs con-
sisted of a further 105 MC cycles. At intervals of 10 MC
cycles, radical tessellations �28� were computed and the net-
work statistics were incremented. In the standard 2D Voronoï
construction, the edges of the tessellation are perpendicular
bisectors of the lines joining the centers of neighboring
disks. When neighboring disks are of very different size, the
bisectors may intersect with the larger disks. In the radical
tessellation, this problem is avoided by forming edges with
the loci of points from which the lengths of the tangents to
neighboring disks are equal.

B. Scaled particle theory

The derivation of a simple equation of state from SPT
�38� is now summarized. To begin, the excess chemical po-
tential �in units of kBT=
−1� of a scaled disk with diameter
�� is given in the limit of small � by the Widom insertion
formula �42�


�ex���� 
 − ln�1 − 
� p����v���,���d��
 , �5�

where v��� ,��� is the excluded “volume” of two hard disks
with diameters �� and ��:

v���,��� =
	

4
��� + ���2. �6�

The combination of Eqs. �5� and �6� can be expanded about
�=0 up to a linear term. An additional �2 term is chosen to
yield the correct limit when �→�; in the case of a scaled

disk with area 	�2�2 /4, the reversible work of expanding
the particle against the macroscopic pressure is 	P�2�2 /4.
The result of these manipulations is an approximation to the
excess chemical potential at fixed density and temperature:


�ex���� � − ln�1 − �� +
	
�����
2�1 − ��

� +
	

4

P�2�2. �7�

To obtain an equation of state, appeal is made to a relation
for hard particles derived by Smith and Labík �43,44�. Con-
sider the quantity Y defined by the derivative of 
�ex with
respect to � at �=1, averaged over the diameter distribution
of the inserted particle:

Y =� p����d
�ex���
d�

�
�=1

d� . �8�

In microscopic terms, this derivative is related to the infini-
tesimal work of expanding a full-sized particle against the
surrounding fluid. This is given by �45�

Y = 
� p���p����g��,���� �v���,���
��

�
�=1

d� d��

=
1

2
	
� p���p����g��,������ + ���d� d��, �9�

where g�� ,��� is the partial pair correlation function for par-
ticles with diameters � and ��, at contact. The right-hand
side of this equation is simply related to the compressibility
factor, Z=
P /
, which is easily obtained from the virial
equation �46�

Z = 1 +
1

8
	
� � p���p����g��,����� + ���2d� d��.

�10�

Comparing Eqs. �9� and �10� leads to the simple relationship

Y = 2�Z − 1� . �11�

This is the two-dimensional version of a result derived by
Smith and Labík in Ref. �44�. Inserting the SPT result for

�ex���� �Eq. �7�� into Eq. �8� yields

Y =
2�s

�1 − ��
+ 2Z� , �12�

where the packing fraction �=	
��2� /4 and s= ���2 / ��2�.
Equating Eqs. �11� and �12� furnishes the final expression for
the compressibility factor

Z =
1 + �s − 1��

�1 − ��2 . �13�

The expansion of Eq. �13� to first order in 
 is

Z = 1 +
	

4
�1 + s���2�
 + ¯ , �14�

which yields the correct second-virial coefficient �equal to
half of the average excluded volume�
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B2 =
1

2
� � p���p����

	

4
�� + ���2d� d�� =

	

4
�1 + s���2� .

�15�

For the disk-diameter distribution in Eq. �1� with �=4, s
= 1

2 and Z= �1−� /2� / �1−��2=1+3� /2+ ¯ . Note that for
the monodisperse hard-disk fluid, s=1 and the familiar SPT
result Z=1/ �1−��2 is recovered.

C. Degree distribution from maximum-entropy theory

We derive a simple, ME estimate of pk���, this being the
joint probability distribution of neighbors for a disk with
given diameter �. The overall degree distribution pk is then
obtained by integration of pk���. The derivation relies on
there being constraints on the mean and mean-square number
of neighbors for a disk with given diameter. A very small
disk is essentially an ideal point particle, and because such
small disks are so numerous, the neighbor network will be
essentially random with moments that will not depend sen-
sitively on �. �The degree distribution for Voronoï tessella-
tions of random sets of points in a plane—the 2D Poisson-
Voronoï tessellation—is known �47,48�.� On the other hand,
a very large disk is expected to have an average number of
neighbors which scales linearly with �. We make the follow-
ing ansatz: the average number of neighbors for a disk with
diameter � is

K1��� �
�

k

kpk���

p���
= a1 + b1f��� , �16�

where we have used the fact that �kpk���= p��� and the
sums are restricted to k�3 because triangles are the smallest
polygons in the tessellation. a1 and b1 are parameters, and
f��� is a function with the properties f�0�=0 and
lim�→��f����0 /��=1. Given the form of p���, an obvious
choice for f��� is

f��� =
��/�0��+1

1 + ��/�0�� . �17�

The mean-square number of neighbors, K2���
=�kk

2pk��� / p���, is assumed to be such that the width
of the distribution for a given � is constant:

K2��� − K1
2���

K1
2���

= a2. �18�

The parameters a1, b1, and a2 are then chosen so that

� p���K1���d� = �k� , �19�

� p���K2���d� = �k2� , �20�

where �k�=6 �Euler� and �k2� are the averages for the whole
network, and �k2� is to be taken from simulation. This leads
to the relationships

b1 =
�k� − a1

�f����
, �21�

a2 =
�k2�

a1
2 + 2a1b1�f���� + b1

2�f2����
− 1, �22�

where a1 will be retained as an adjustable parameter. The
quantity K1�0�=a1 should be less than 6 because the average
of K1��� over the whole diameter distribution—including the
large disks—should be precisely 6. For the present diameter
distribution �1� with �=4, �f����=1/ �2	2� and �f2����
=21/32. We now seek a ME solution for pk��� subject to the
following constraints:

�
k

pk��� = p��� , �23�

�
k

kpk��� = p���K1��� , �24�

�
k

k2pk��� = p���K2��� . �25�

Maximizing the entropy S=−�k�3pk���ln pk��� with respect
to pk��� �with the method of Lagrange multipliers� leads to
the result

pk��� = exp��0��� + �1���k + �2���k2� , �26�

where the �i���s are adjusted to satisfy the constraints
�23�–�25�. Finally, pk is obtained from the relation

pk =� pk���d� . �27�

III. RESULTS

A. Equation of state

Reliable simulation results were obtained for pressures up
to P*=2, corresponding to a packing fraction ��0.45. For
higher pressures the cluster moves were seen to result in
point reflections of increasingly large clusters, which ulti-
mately precludes effective equilibration of the system. Pre-
sumably there is no crystallization at very high pressure. The
equation of state—plotted as P* versus �—for the polydis-
perse hard-disk fluid is shown in Fig. 2. The raw data are
given in Table I. The SPT �13� and virial-expansion �14�
results are shown for comparison. The SPT is surprisingly
good, being accurate for packing fractions up to about 0.3.

B. Radical tessellation and degree distribution

Simulation snapshots at P*=1 are shown in Fig. 3; the
packing fraction at this pressure is ��0.36. For clarity, only
a subdomain �containing 1600 particles� of a particular con-
figuration is shown. Three different views are displayed: �a�
the actual hard-disk configuration, �b� the radical tessellation,
and �c� the Delaunay triangles formed by the links between
neighboring vertices �defined by disks that share cell edges�.
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On the basis of the radical tessellations, the degree distri-
bution pk was constructed, being the probability that a disk
has k neighboring disks. Given that ten configurations were
simulated, each containing 104 particles, the lower limit on
pk accessible from our simulations is �10−5. In all cases it
was confirmed that the average number of links, �k�, is pre-
cisely equal to 6. Figure 4 shows pk as measured and aver-
aged from simulations at P*=0.01, 0.1, 0.5, 1, 1.2, and 2.
Error bars on pk represent the statistical uncertainty in the
mean obtained from averaging over the ten distinct configu-
rations. The small-k portions of pk �k�10� show only small
variations over the entire range of pressures simulated. At
low pressures �P*�0.5�, pk shows no sign of a long tail. At
such low packing fractions, the particle positions are uncor-
related and the degree distribution resembles that of the 2D
Poisson-Voronoï tessellation �47,48�. At pressures in the
range 0.5� P*�1 it was observed that the tail of pk for k
�21 appears as a straight line on a log-log plot, indicating
consistency with the power-law decay k−�. At higher pres-
sures, no power-law tail is apparent over the range of k ac-
cessible in simulations. For all pressures P*�0.1, a kink is

apparent in pk at the point where pk�10−4. Since the propor-
tions of particles contributing to pk before and after the kink
appear constant, this suggests that pk is partitioned into
“small-particle” and “large-particle” contributions, the latter
possibly corresponding to an asymptotic scale-free regime.

Figure 5 shows the tails of pk as measured in simulations
with pressures in the range 0.5� P*�1. The kinks at
pk�10−4 are more clearly visible. The asymptotic decay of
pk is consistent with a power law, but it is far from being
unambiguous. It is difficult to access larger values of k be-
cause of limitations on the number of particles that can be
simulated; this restricts the form of the diameter distribution
and, in particular, necessitates the regularization of the dis-
tribution at ���0. Nevertheless, least-squares fitting of
power laws to the tails of pk yields the lines shown in Fig. 5.
The corresponding fitting ranges and exponents ��� are re-
ported in Table I.

It has been pointed out that the least-squares fitting pro-
cedure may give rise to biased, and hence erroneous, results
for the power-law exponent ��� due to large fluctuations in
the tail of the distribution �49,50�. There is an alternative
fitting scheme based on a maximum likelihood estimator
�MLE�, which for power laws yields a simple, closed-form
expression for the exponent �49,50�. We implemented this
scheme on the cumulative probability ck=�k

�pk�k−�+1,

TABLE I. Results from MC simulations of the polydisperse hard-disk fluid with �=4: packing fraction �; mean and mean-square degree,
�k� and �k2�; relative width of the degree distribution, w=	�k2� / �k�2−1; power-law exponent � for the tail of pk �and the range over which
power-law behavior is observed� from least-squares �LS� fitting and a maximum likelihood estimator �MLE� �49,50�; assortativity r. Figures
in parentheses are statistical uncertainties in the last digits based on one standard deviation.

P* � �k� �k2� w � �LS� � �MLE� Range r

0.01 0.0078�2� 6.00 37.758�4� 0.2210 0.475�8�
0.1 0.068�1� 6.00 37.78�7� 0.2220 0.472�14�
0.3 0.171�2� 6.00 37.88�3� 0.2285 0.467�10�
0.5 0.245�3� 6.00 38.18�3� 0.2445 6.0�1� 5.7 21�k�28 0.456�9�
0.6 0.276�3� 6.00 38.33�4� 0.2525 5.8�1� 5.7 22�k�29 0.448�7�
0.7 0.302�3� 6.00 38.44�4� 0.2581 5.9�1� 5.6 23�k�31 0.441�7�
0.8 0.324�3� 6.00 38.55�5� 0.2641 5.7�1� 5.5 23�k�32 0.433�7�
0.9 0.346�3� 6.00 38.67�4� 0.2698 5.6�1� 5.4 24�k�33 0.424�7�
1 0.362�2� 6.00 38.76�4� 0.2744 5.6�1� 5.4 24�k�34 0.420�6�
1.2 0.389�2� 6.00 38.67�7� 0.2724 0.408�3�
2 0.454�6� 6.00 39.0�1� 0.2901 0.377�6�

�
� ��

��

��
��

��
��

�
� �
���
��
��
��
��

��

��
��

0.0 0.1 0.2 0.3 0.4 0.5
η

0.0

0.5

1.0

1.5

2.0
P

*
SPT
B

2
MC��

��

FIG. 2. Equation of state and reduced pressure P*=
P�0
2 versus

packing fraction �: MC simulations �points�, SPT �solid line�, and
virial expansion with B2 �dashed line�.

(a) (b) (c)

FIG. 3. �Color online� Subdomain �N=1600 particles� of a
simulation configuration at P*=1 and ��0.36: �a� the actual hard-
disk configuration, �b� the radical tessellation, and �c� the Delaunay
triangles formed by the links between neighboring vertices.
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which serves to reduce statistical errors. We report the result-
ing MLE exponents in Table I; the values are slightly smaller
than, but generally consistent with, those obtained from
least-squares fitting.

Interestingly, � is relatively insensitive to the packing
fraction, being in the region 5–6; the uncertainties quoted in
Table I are associated with the fitting procedure, and so they
are underestimates. Naively, if the number of neighbors is
proportional to the disk diameter, then one might expect
pk�k−4; in reality, � is significantly greater than 4. The ap-
parent exponent ��� can be understood by comparing the
MC simulation results with the predictions from the ME
theory derived in Sec. II C. Figure 6 shows pk from simula-
tions with P*=0.5 and P*=1, along with plots of Eq. �27�
computed using the best-fit parameters a1=5.50 and
a1=5.39, respectively, and values of �k2� reported in Table I.
The ME results are in quite good agreement with those from
simulations, although the kink at pk�10−4 is not captured so
well. But the main points are that in the region of
k=20–30, where the simulation results are consistent with a
power-law decay, the ME predictions have apparent expo-
nents greater than 4 �at k=20, �=−d ln pk /d ln k�5.8� and
that, as k→�, pk approaches the anticipated k−4 behavior �at
k=100, ��4.3�. Of course, this is largely a consequence of

the prescription for K1���. But the agreement between simu-
lation and theory at moderate k suggests that, at large enough
k, the simulated network degree distribution would follow
the power law pk�k−4.

C. Assortativity

The assortativity of a network, as defined by Newman
�18�, reflects the tendency of vertices with equal degrees to
cluster. A convenient measure of assortativity is clearly de-
fined in Ref. �18�, but for clarity the derivation is reproduced
here. The degree distribution of vertices attached to ran-
domly selected edges is not equal to pk, because high-degree
vertices have more links. Instead, the distribution is propor-
tional to kpk and the distribution of the remaining vertices
�not including that attached to the randomly selected edge� is
qk� �k+1�pk+1. The assortativity can then be related to the
joint probability distribution function of there being j and k
remaining vertices at each end of the selected edge �17�.
Denoting this function by ejk, the following properties are to
be noted: for an undirected graph ejk=ekj, � jkejk=1, and
� jejk=qk. For networks which are neither assortative nor dis-
assortative, the degrees of the vertices at the ends of the edge
are uncorrelated and so ejk=qjqk. A correlation function
between degrees can therefore be defined as �jk�− �j��k�
=� jkjk�ejk−qjqk� where the angular brackets denote an aver-
age over all edges in the graph. For the comparison of di-
verse graphs, it is convenient to normalize this correlation
function by its maximal value, which corresponds to the case
of a perfectly assortative network, i.e., the degrees of con-
nected vertices are identical. In this case ejk=qk� jk and
� jkjk�ejk−qjqk� is equal to the variance �q

2 of k according to
the distribution qk. Finally, then, the measure of assortativity
is defined as

r =

�
jk

jk�ejk − qjqk�

�q
2 , �28�

where r ranges from −1 for a perfectly disassortative net-
work through 0 for a network with no disassortative or as-
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FIG. 4. �Color online� Near-neighbor distribution functions pk at
reduced pressures in the range 0.01� P*�2.
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FIG. 5. �Color online� Tails of the near-neighbor distribution
functions pk at reduced pressures in the range 0.5� P*�1. The
lines are fitted power-law extrapolations pk�k−�; the least-squares
exponents are reported in Table I.
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sortative mixing �such as a random network �1,18�� to +1 for
a perfectly assortative network. The average values of r ob-
tained for the hard-disk neighbor networks are reported in
Table I. The results indicate that the hard-disk fluid is
strongly assortative at all pressures considered. If the degree
of a disk is dictated by its diameter, then in physical terms,
the results indicate that “small” disks are preferentially sol-
vated by other small “disks”; the “large” disks—with high
degree—are more likely to be solvated by small disks, due to
the form of the diameter distribution. Nonetheless, some
weak clustering of large disks is apparent in Fig. 3, particu-
larly in Figs. 3�b� and 3�c�; note the associations between
different “sparse” regions of the network. The physical driv-
ing force for the clustering of large disks might be identified
with a depletion interaction �51–53� mediated by the osmotic
pressure of the small disks, but of course what constitutes the
boundary between large and small is not well defined. r de-
creases slowly and monotonically with increasing packing
fraction. One possibility is that as the packing fraction is
increased, particle packing and correlations become more
pronounced, and the large disks develop links with an in-
creasing number of neighboring small disks, and the assorta-
tivity decreases. This process is, of course, accompanied by a
broadening of the degree distribution, as illustrated in Fig. 4
and as quantified by the relative width w=	�k2� / �k�2−1, re-
ported in Table I. The broadening of pk and the resulting
effects on qk are already taken into account in the definition
of r �Eq. �28��.

The assortativities of real networks vary widely. Most
“social” networks, such as scientific co-authorships and
movie-actor collaborations, are clearly assortative, with r
values up to about 0.4 �18�; successful individuals are often
attracted to others. On the other hand, the networks repre-
sented by the World Wide Web, the Internet, and most sig-
nificantly, many biological situations are disassortative �with
r values down to about −0.3� �18�; this property may make
the network more resilient to random attack, since the hubs
�which may play crucial roles in the function of the network�
are not connected �8�. The present simulation results indicate
that if scale-free neighbor networks do exist in the polydis-
perse hard-disk fluid at pressures in the range 0.5� P*�1,
then they are strongly assortative, with values of r compa-
rable to those found in social networks. It is tempting to
speculate that the analogues of groups and communities in
social networks �20� are “clusters” of small and large disks in
the polydisperse fluid.

IV. CONCLUSIONS

An attempt has been made to realize a scale-free near-
neighbor network in computer simulations of a polydisperse
fluid of hard disks. Each disk represents a vertex on a graph,
and the edges of the graph correspond to links between
neighboring disks as identified by a radical tessellation.
Working on the naive assumption that the number of links is
proportional to the disk diameter, an asymptotic power-law
diameter distribution was expected to give an asymptotic
power-law degree distribution. The simulation results are
consistent with power-law decay—within the limits imposed

by the simulated diameter distribution—but only for a spe-
cific range of disk densities in which particle correlations are
sufficiently pronounced. The apparent exponent of the degree
distribution � was found to depend weakly on the disk den-
sity and to differ from the exponent of the diameter distribu-
tion �. A comparison with predictions from a maximum-
entropy theory suggests that this decay is not the asymptotic
one and that for sufficiently large particles �not accessible in
simulations� � would approach �. The results therefore sug-
gest that, in principle, the near-neighbor network in the poly-
disperse hard-disk fluid may be scale free. It is anticipated
that a similar situation would be obtained with different
choices of �, but of course � should be as small as possible
if a sufficient number of hubs are to be found in a network of
finite size. Earlier results �29� and the form of the maximum-
entropy theory suggest that non-power-law diameter distribu-
tions will not give rise to a scale-free neighbor network. The
assortativity of the network was found to be positive over the
whole range of disk densities, reflecting a preference for
links between vertices of equal degree. In other words,
“small” particles, are preferentially solvated by other small
particles and “large” particles show some tendency to cluster
together. Finally, some effort was directed toward analyzing
the thermodynamic properties of the fluid. No evidence for
crystallization at high packing fractions was found. A simple
equation of state—derived from a scaled-particle theory—
was demonstrated to be accurate up to moderate packing
fractions.

In stochastic models of networks, the position of a vertex
on a graph does not influence its degree �i.e., the number of
other vertices with which it shares edges�. But in the case of
hard disks at equilibrium, the degree of a disk is dictated by
its size and the sizes of its immediate neighbors, through
packing constraints. The spatial correlations in fluids, and
therefore the properties of the neighbor network, are dictated
by the requirement to minimize the free energy of the sys-
tem. Hence, the apparent scale-free properties of the network
are static and do not arise from any dynamic mechanism,
such as preferential attachment. It would be interesting to
find out whether the formation of assortative, scale-free net-
works in other contexts can be rationalized using equilibrium
statistical mechanics.

An experimental realization of a polydisperse “fluid”
could actually be a granular material, with a scale-free size
distribution achieved by milling and grinding. Alternatively,
by analogy with cellular networks, froths and foams pro-
duced with an element of bubble division and disappearance
may exhibit a scale-free degree distribution �15,16�. It should
be pointed out, however, that in conventional colloidal fluids,
polydispersity is usually better described by log-normal or �
distributions. The physical properties of two-dimensional
materials possessing scale-free networks may be of interest
and demand further study.
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