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In this paper, the investigation is first motivated by showing two examples of simple regular symmetrical
graphs, which have the same structural parameters, such as average distance, degree distribution, and node
betweenness centrality, but have very different synchronizabilities. For a given network with identical node
dynamics, it is further shown that two key factors influencing the network synchronizability are the network
inner linking matrix and the eigenvalues of the network topological matrix. Several examples are then provided
to show that adding new edges to a network can either increase or decrease the network synchronizability. In
searching for conditions under which the network synchronizability may be increased by adding edges, it is
found that for networks with disconnected complementary graphs, adding edges never decreases their synchro-
nizability. Moreover, it is found that an unbounded synchronized region is always easier to analyze than a
bounded synchronized region. Therefore to effectively enhance the network synchronizability, a design method
is finally presented for the inner linking matrix of rank 1 such that the resultant network has an unbounded
synchronized region, for the case where the synchronous state is an equilibrium point of the network.
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I. INTRODUCTION AND PROBLEM FORMULATION

The subject of network synchronization has recently at-
tracted increasing attention from various fields �see �1–10�
and references therein�. Of particular importance is how the
synchronizability depends on various structural parameters
of the network, such as average distance, clustering coeffi-
cient, degree distribution, and weight distribution, among
others. Some important results have been established for
such concerned problems based on the notions of master sta-
bility function and synchronized region �1,5,11–14�. Some
interesting relationships between synchronizability and struc-
tural parameters of networks have also been reported, e.g.,
smaller average network distance does not necessarily mean
better synchronizability �15�, therefore the betweenness cen-
trality was proposed as a good indicator for synchronizability
�16�; and two networks with the same degree sequence were
constructed in a probabilistic sense to demonstrate that they
can have different synchronizabilities �17�, showing that syn-
chronizability has no direct relations with degree distribu-
tions. Moreover, the effect of perturbations of coupling ma-
trices on the synchronizability was studied in �18�. Motivated
by all these research works, this paper attempts to further
explore the analysis and control problems of synchronizabil-
ity for various complex dynamical networks.

Consider a dynamical network consisting of N coupled
identical nodes, with each node being an n-dimensional dy-
namical system, described by

ẋi = f�xi� − c�
j=1

N

aijH�xj�, i = 1,2, . . . ,N , �1�

where xi= �xi1 ,xi2 , . . . ,xin��Rn is the state vector of node i,
f�·� :Rn→Rn is a smooth vector-valued function, constant

c�0 represents the coupling strength, H�·� :Rn→Rn is called
the inner linking function, and A= �aij�N�N is called the outer
coupling matrix or topological matrix, which represents the
coupling configuration of the entire network. This paper only
considers the case that the network is diffusively connected,
i.e., its entries satisfy aii=−� j=1,j�i

N aij, i=1,2 , . . . ,N. Further,
suppose that, if there is an edge between node i and node j,
then aij =aji=−1, i.e., A is a Laplacian matrix. If the graph
corresponding to A is connected, i.e., A is irreducible, then 0
is an eigenvalue of A with multiplicity 1, and all the other
eigenvalues of A are strictly positive, which are denoted by

0 = �1 � �2 � �3 � ¯ � �N. �2�

The dynamical network �1� is said to achieve �asymptoti-
cal� synchronization if x1�t�→x2�t�→¯→xN�t�→s�t�, as
t→�, where, because of the diffusive coupling configura-
tion, the synchronous state s�t��Rn is a solution of an indi-
vidual node, i.e., ṡ�t�= f(s�t�).

As shown in �5,13�, the local stability of the synchronized
solution x1�t�=x2�t�= ¯ =xN�t�=s�t� can be determined by
analyzing the following so-called master stability equation:

�̇ = �Df„s�t�… + �DH„s�t�…�� , �3�

where ��R, and Df(s�t�) and DH(s�t�) are the Jacobian
matrices of functions f and H at s�t�, respectively.

The largest Lyapunov exponent Lmax of network �1�,
which can be calculated from system �3� and is a function of
�, is referred to as the master stability function. In addition,
the region S of negative real � where Lmax is also negative is
called the synchronized region. Based on the results of
�5,13�, the synchronized solution of dynamical network �1� is
locally asymptotically stable if, and only if,*duanzs@pku.edu.cn
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− c�k � S, k = 2,3, . . . ,N . �4�

The synchronized region S can be an unbounded region, a
bounded region, an empty set, or a union of several such
regions.

Obviously, for given node dynamics of a linearly coupled
network, two key factors influencing the synchronizability
are the inner linking matrix H�·�=H and the eigenvalues of
the topological matrix A. The inner linking matrix is directly
related to the synchronized region, as studied in �11,13,19�.
The larger the synchronized region, the easier the synchroni-
zation. The topological matrix, on the other hand, is directly
related to condition �4�. If S is an unbounded sector
�−� ,��, the eigenvalue �2 of A determines the synchroniz-
ability �8�; if S is a bounded sector ��1 ,�2�, the ratio r�A�
=

�2

�N
determines the synchronizability �1�. No matter what the

synchronized region is, the larger the �2 and r�A� are, the
easier the synchronization is. This paper will further study
this issue with more careful analysis.

The rest of this paper is organized as follows. In Sec. II,
two simple graphs on six nodes are given to show that net-
works with the same structural parameters, such as average
distance, degree distribution, and betweenness centrality, can
have different synchronizabilities. If the synchronized region
S is unbounded, adding edges never decreases the synchro-
nizability, but this may not be true if S is bounded. In Sec.
III, a class of networks with disconnected complementary
graphs are discussed. For such networks, adding edges never
decreases the synchronizability no matter what type of re-
gion S is. In Sec. IV, an inner linking matrix of rank 1 is
designed for realizing unbounded synchronized regions in
the case that the synchronous state is an equilibrium point. In
Sec. V, some network synchronization examples are pro-
vided to illustrate the theoretical results. The paper is con-
cluded by the last section.

Throughout this paper, for any given undirected graph G,
eigenvalues of G mean eigenvalues of its corresponding La-
placian matrix. Notations for graphs and their corresponding
Laplacian matrices are not differentiated, and networks and
their corresponding graphs are not distinguished, unless oth-
erwise indicated.

II. TWO SIMPLE GRAPHS THAT TELL THE MAIN IDEA

In this section, the two simple graphs G1 and G2 on six
nodes, shown in Figs. 1 and 2, are considered, where G1 is a

typical bipartite graph with many interesting properties.
Obviously, graphs G1 and G2 have the same degree se-

quence, where the degree of every node is 3; the same aver-
age distance 7

5 ; and the same node betweenness centrality 2
�16,20�. Although these two graphs have the same structural
characteristics, their corresponding networks have different
synchronizabilities, as shown below. Their Laplacian matri-
ces are

�
− 3 1 1 1 0 0

1 − 3 0 0 1 1

1 0 − 3 0 1 1

1 0 0 − 3 1 1

0 1 1 1 − 3 0

0 1 1 1 0 − 3

� ,

�
− 3 1 0 0 1 1

1 − 3 1 1 0 0

0 1 − 3 1 0 1

0 1 1 − 3 1 0

1 0 0 1 − 3 1

1 0 1 0 1 − 3

� ,

respectively. The eigenvalues of G1 are 0 ,3 ,3 ,3 ,3, and 6;
the eigenvalues of G2 are 0 ,2 ,3 ,3 ,5, and 5. Obviously,
�2�G1�=3��2�G2�=2, and r�G1�=0.5�r�G2�=0.4. There-
fore the synchronizability of network G1 is better than that of
network G2.

Graphs G1 and G2 have the same structural parameters,
but it is clear that they have different average clustering co-
efficients, denoted by C�Gi� , i=1,2, with C�G2��C�G1�.
As mentioned above, the clustering coefficient does not have
direct relation to synchronization �15�. For example, globally
coupled graphs have the largest clustering coefficient, 1, and
they have the best synchronizability. However, for the above
two graphs, the larger clustering coefficient does not indicate
better synchronizability. This is demonstrated by the follow-
ing process of adding edges.

Consider enhancing �2 and r by adding edges to G2. For
this purpose, the following result is needed �21�. For any
given connected undirected graph G of size N, its nonzero
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FIG. 1. Graph G1.
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FIG. 2. Graph G2.
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eigenvalues indexed as in Eq. �2� grow monotonically with
the number of added edges, that is, for any added edge e,
�i�G+e�	�i�G�, i=1, . . . ,N.

By this statement, obviously, if the synchronized region is
unbounded, adding edges never decreases the synchroniz-
ability. However, for bounded synchronized regions, this is
not necessarily true. For example, adding an edge between
node 1 and node 3 in graph G2 �Fig. 2�, denoted by e�1,3	,
leads to a new graph G2+e�1,3	, whose eigenvalues are
0 ,2.2679,3 ,4 ,5, and 5.7321. Thus r�G2+e�1,3	�=0.3956 is
even smaller than r�G2�=0.4. This means that the synchro-
nizability of network G2+e�1,3	 is worse than that of net-
work G2. Adding a new edge between node 1 and node 4
instead, one gets r�G2+e�1,3	��r�G2+e�1,3	+e�1,4	�
=0.3970�r�G2�. This means that the synchronizability of
network G2+e�1,3	+e�1,4	 is better than G2+e�1,3	, but
still worse than G2. Therefore by adding edges, the network
synchronizability may increase or decrease, for which no
general rule has been found to date.

On the other hand, during the process of adding edges,
average distance decreases and average clustering coefficient
increases; but this does not indicate better synchronizability,
consistent with the conclusion in �15�.

It was shown �16� that the synchronizability is always
improved as the maximum betweenness centrality is re-
duced, which is consistent with the conclusion of �15�. In the
above two graphs, however, it shows that the same
betweenness centrality does not necessarily mean the same
synchronizability. On the other hand, adding three edges
between nodes 1 and 6, 2 and 3, 3 and 4, respectively, in
graph G1, and then computing their corresponding eigenval-
ues, it can be verified that the networks built on graphs
G=G1+e�1,6	+e�2,3	+e�3,4	 and G1 have the same syn-
chronizability. However, in this case, the maximum between-
ness centrality of G, 11

6 , is smaller than that of G1, 2. This
shows that the smaller betweenness centrality does not nec-
essarily indicate better synchronizability, revealing the com-
plexity in the relationship between synchronizability and net-
work structural parameters.

Note that adding edges in G1 also increases the clustering
coefficient and decreases the average distance, but this does
not result in the increase of synchronizability. In the follow-
ing, it explains why adding three edges in G1 does not in-
crease the synchronizability.

III. NETWORKS WITH DISCONNECTED
COMPLEMENTARY GRAPHS

For a given graph G, the complement of G is the graph
containing all the nodes of G, and all the edges that are not in
G. The complementary graph of G is denoted by Gc. For
example, the complementary graphs of G1 and G2 in Figs. 1
and 2 are shown in Figs. 3 and 4, respectively. In the previ-
ous section, it shows that adding edges sometimes decreases
the synchronizability. However, for a class of graphs with
disconnected complementary graphs, this never occurs. In
order to discuss such networks, the following results are
needed �21�.

For any given graph G, one has:
�i� �N�G�, the largest eigenvalue of G, satisfies �N�G�

�N.
�ii� �N�G�=N if, and only if, Gc is disconnected.
�iii� If Gc is disconnected and has �exactly� q connected

components, then the multiplicity of �N�G�=N is q−1.
�iv� �i�Gc�=N−�N−i+2�G�, 2� i�N.
The complementary graph of G1 is shown in Fig. 3, which

is disconnected. The largest eigenvalue of G1 is 6, which
remains the same when the graph receives additional edges.
Hence combining with the previous discussions, the synchro-
nizability of the networks built on graph G1 never decrease
with adding edges. Although this is true, adding any three
edges to graph G1 does not enhance the synchronizability,
since the least nonzero eigenvalue �2=3 of G1 has multiplic-
ity 4 �the multiplicity of the largest eigenvalue in G1

c�. This is
due to the fact that, for any graph G, rank(�iI− �G+e�)
� rank��iI−G�+1.

According to the above results, the multiplicity of the
largest eigenvalue of a graph G is related to the number of
connected components of its complement Gc. In order to
reduce the number of edges needed to enhance the synchro-
nizability, the multiplicity of the largest eigenvalue of Gc

�i.e., the multiplicity of the least nonzero eigenvalue of G�
should be large. Therefore better understanding and careful
manipulation of complementary graphs are useful for en-
hancing the network synchronizability; and, at least for dense
networks, the complementary graphs are easier to analyze
than the original graphs, e.g., G1

c is simpler than G1.
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FIG. 3. Graph G1
c.
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FIG. 4. Graph G2
c.
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The graphs shown in Figs. 1 and 2 can be generalized to
graphs of size N=2n. Suppose that graph G1 is bipartite in
the sense that it contains two sets of nodes, each set contain-
ing n isolated nodes, and each node in one set connects to all
the nodes in the other set, i.e., the complementary graph of
G1 is two separated fully connected subgraphs of size n.
Graph G2 is composed of two fully connected subgraphs of
size n and n edges connecting each node in one subgraph to
the corresponding node in the other subgraph. In this case,
the least nonzero and maximum eigenvalues of G1 are N

2 and
N, respectively, and r�G1�= 1

2 . On the other hand, the least
nonzero and maximum eigenvalues of G2 are 2 and N

2 +2
�21�, respectively, with r�G2�= 4

N+4 →0 as N→ +�. There-
fore these two graphs have the same structural parameters
but have very different synchronizabilities.

IV. DESIGNING THE INNER LINKING MATRIX

From the above discussions, it can be seen that the
bounded synchronized regions are more complicated than the
unbounded synchronized regions. Thus the synchronizability
is easier to analyze when the synchronized region is un-
bounded. Hence it is interesting to find out how to design the
inner linking matrix such that the network synchronized re-
gion is unbounded.

If the synchronous state is an equilibrium point, then both
Df(s�t�) and DH(s�t�) in Eq. �3� reduce to constant matrices,
denoted by F and H, respectively. In this case, system �3�
becomes

�̇ = �F + �H�� . �5�

Hence the synchronized region S becomes the stability re-
gion of F+�H with respect to parameter �. In this section,
consider the design of an H such that F+�H has an un-
bounded stable region. It is well-known �8� that if H is an
antistable matrix �e.g., H= In�, F+�H has an unbounded
stable region. However, if H is of full rank, it means that the
coupling in the network is a full state coupling among nodes,
so the coupling cost may be high. For this reason, consider
the design of an H of rank 1 such that the stable region for
F+�H is unbounded. In this case, the coupling can be
viewed as an input-output coupling as in control systems
�22�, or an observer-based coupling �23�.

Given a matrix F�Rn�n, there exists a matrix H�Rn�n

of rank 1 such that the stability region of F+�H with respect
to parameter � contains �−� ,�1�, �1�0, if and only if every
unstable eigenvalue of F is corresponding to only one el-
ementary factor.

Without loss of generality, suppose �1=−1. By the ca-
nonical control method �24,25�, the matrix H can be de-
signed as follows. First, one may take a column vector b
such that �F ,b� is stabilizable. Then, there exists a matrix
P= PT such that FP+ PFT−2bbT�0, where the superscript
means the transpose of the corresponding matrix. Conse-
quently, taking q=bTP−1 leads to the stability of F+�bq for
all �� �−� ,−1�. Therefore H=bq is the matrix to be found.

On the other hand, if F+�H is stable and H is of rank 1,
it means that �F ,H� is stabilizable, so that every unstable

eigenvalue of F must be corresponding to only one elemen-
tary factor �i.e., one Jordan block� �25�.

Let zi=qxi and the inner linking function H�xj�=bqxj in
network �1�. Then zi can be viewed as the output of node i of
Eq. �1� and the linking function bqxj can be viewed as the
influence of the output of node j to the other nodes. Clearly,
the above coupling is simpler than full state couplings.

If F is stable, i.e., the node system is locally stable, then
there is always a matrix H of rank 1 such that the resulting
network has an unbounded synchronized region, as shown by
the examples given below.

Moreover, one may also design an H such that the un-
stable region of F+�H is unbounded, if desired, which is
useful for desynchronization problems. Such an H can be
obtained as follows. If every eigenvalue of F corresponds to
only one elementary factor, one may take a column vector b
such that �F ,b� is controllable �25�. By control theory
method, using the similar transformation, one can transfer F
and b into the following standard forms:

F =�
0 1 ¯ 0


 ¯ � 

0 0 ¯ 1


0 
1 ¯ 
n−1

�, b =�
0



0

1
� .

A necessary condition for the stability of F is that 
i�0 for
all 0� i�n−1. Based on this point, one can take a row
vector q= ��0 , . . . ,�n−1� such that 
0+��0�0 for all
�� �−� ,−1�. Then H=bq is the matrix to be found such that
F+�H has an unbound unstable region with respect to pa-
rameter �.

V. EXAMPLES

Example 1. Consider the network �1� consisting of the
third-order smooth Chua’s circuits �26�, in which each node
is described by

ẋi1 = − k�xi1 + k�xi2 − k��axi1
3 + bxi1� ,

ẋi2 = kxi1 − kxi2 + kxi3,

ẋi3 = − k
xi2 − k�xi3. �6�

The vector xi in Eq. �1� is �xi1 ,xi2 ,xi3�T here. Linearizing Eq.
�6� at its zero equilibrium gives

ẋi = Fxi, F = �− k� − k�b k� 0

k − k k

0 − k
 − k�
� . �7�

Take k=1, �=−0.1, 
=−1, �=1, a=1, and b=−25. Then
F is stable, i.e., the node system �6� is locally stable about
zero. Further, take the inner linking matrix
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H = � 0.8348 9.6619 2.6591

0.1002 0.0694 0.1005

− 0.3254 − 8.5837 − 0.9042
� .

Then, by simple computation, one knows that F+�H has
two disconnected stable regions: S1= �−0.0099,0� and
S2= �−2.225,−1�. Therefore the entire synchronized region is
S1�S2. Moreover, suppose that the number of nodes is
N=6, and the outer coupling matrix A is equal to the G1 in
Sec. II. According to the eigenvalues of G1 given in Sec. II,
one may take the coupling strength c= 1

2.9 . Then, for every
eigenvalue of G1, one has c�i�S2. By Eq. �4�, network �1�
specified with the above data achieves synchronization.
However, for the outer coupling matrix G2 given in Sec. II,
for any coupling strength c� �0.002, + � �, Eq. �4� does not
hold. Therefore for the above node equation, inner coupling
matrix and coupling strength, the network built on graph G1
in Fig. 1 achieves synchronization, but the network built on
G2 in Fig. 2 does not synchronize. Figures 5 and 6 show the
states of node 1 in two networks, respectively, the other
nodes behave similarly.

Example 2. Consider designing the inner coupling matrix
such that the corresponding network has an unbounded syn-
chronized region, where the node system is as in example 1.
In this case, F is stable, so for any column vector b, �F ,b� is

stabilizable, e.g., b= �0,0 ,1�T. By the above method, one
gets q= �0.0708,−0.155 90,0.4296�. Then, change the inner
coupling matrix H in example 1 to H=bq, while keeping the
other parameters unchanged. This F+�H is stable for
�� �−� ,−1�. Consequently, the corresponding network has
an unbounded synchronized region. Figures 7 and 8 show
their similar states of node 1 in two networks built on graphs
G1 and G2, respectively, the other nodes behave similarly.

VI. CONCLUSION

In this paper, the synchronizability of complex dynamical
networks, which is directly related to the inner linking matrix
and the topological matrix, has been carefully discussed.
Two simple graphs have been given to show that networks
can have different synchronizabilities even when they have
the same average distance, node betweenness centrality, and
degree distribution. It has also been shown that the larger
clustering coefficient, smaller betweenness centrality, and
shorter average distance do not necessarily imply better syn-
chronizability. This demonstrates the complexity in the rela-
tionship between the synchronizability and network struc-
tural parameters. The most significant discovery of this paper
is that if the synchronized region is bounded, adding edges
can either increase or decrease the network synchronizabil-
ity; however, for networks with disconnected complementary
graphs, adding edges never decreases their synchronizability.
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FIG. 5. Network on G1.
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FIG. 6. Network on G2.
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FIG. 7. Network on G1.
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FIG. 8. Network on G2.
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Therefore better understanding and more careful manipula-
tion of complementary graphs are essential for enhancing
network synchronizability. Moreover, unbounded synchro-
nized regions are easier to analyze than the bounded ones.
Therefore to effectively enhance the network synchronizabil-
ity, a design method for the inner linking matrix of rank 1 is
finally provided such that the resulting network has an un-

bounded synchronized region for the case where the synchro-
nous state is an equilibrium point of the network.
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