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The fluctuation spectra and the intermembrane interaction of two membranes at a fixed average distance are
investigated. Each membrane can either be a fluid or a solid membrane, and in isolation, its fluctuations are
described by a bare or a wave-vector-dependent bending modulus, respectively. The membranes interact via
their excluded-volume interaction; the average distance is maintained by an external, homogeneous pressure.
For strong coupling, the fluctuations can be described by a single, effective membrane that combines the elastic
properties. For weak coupling, the fluctuations of the individual, noninteracting membranes are recovered. The
case of a composite membrane consisting of one fluid and one solid membrane can serve as a microscopic
model for the plasma membrane and cytoskeleton of the red blood cell. We find that, despite the complex
microstructure of bilayers and cytoskeletons in a real cell, the fluctuations with wavelengths ��400 nm are
well described by the fluctuations of a single, polymerized membrane �provided that there are no inhomoge-
neities of the microstructure�. The model is applied to the fluctuation data of discocytes �“normal” red blood
cells�, a stomatocyte, and an echinocyte. The elastic parameters of the membrane and an effective temperature
that quantifies active, metabolically driven fluctuations are extracted from the experiments.
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I. INTRODUCTION

In this paper, we present theoretical predictions for the
fluctuation spectra and the repulsive pressure of two interact-
ing membranes that are maintained at a fixed average dis-
tance. Each individual membrane can show either fluid or
solid fluctuation behavior. In the first part of this article, we
discuss the theoretical aspects of the coupled membrane
model. In the second part, we apply our model to analyze
experimental data for fluctuation spectra of the red blood cell
�RBC� membrane.

The theoretical description of noninteracting fluid mem-
branes, such as bilayers or amphiphilic monolayers, is well
known �1� and is confirmed by experiment �2� and simula-
tion �3�. Solid membranes, which have a fixed connectivity
of molecules and thus a shear elasticity, have been exten-
sively studied in the past, mainly in connection with the
crumpling transition. The properties of an isolated solid
membrane are, for example, discussed in Refs. �4–6�. We are
interested in the flat phase of solid membranes, since in the
coupled-membrane model, this phase is additionally stabi-
lized by the excluded-volume interaction between the two
membranes. The initial self-consistent analytical models for
solid membranes have been refined by simulations and per-
turbative calculations; for an overview, see Ref. �6�.

The interaction between fluid membranes at fixed average
distance is investigated in Refs. �7,8�; one membrane con-
fined by parallel walls is discussed in Ref. �9�. The interac-
tion of two solid membranes that fluctuate at fixed average
distance is investigated in Ref. �10�; one membrane in be-
tween two parallel walls is discussed in Refs. �11,12�. A fluid
membrane that interacts with a rough or a chemically pat-
terned substrate is discussed in Refs. �13–15�; the influence
of the discrete coupling of a fluid membrane to a substrate is
studied in Ref. �16�.

We generalize these studies and compare the fluctuation
properties and interactions of two membranes. We particu-
larly emphasize the interaction of one solid and one fluid
membrane. Our theory goes beyond the model of two mem-
branes coupled by a harmonic potential, since we use a mi-
croscopic model that takes into account the excluded volume
of two membranes at fixed distance. We then derive the ef-
fective harmonic interaction potential that depends on the
interaction constant v0 and the elastic moduli � �bending�
and/or � �shear�, as well as the average intermembrane
distance d.

We model the membranes by two surfaces in the Monge
parametrization with appropriate elastic moduli. The mem-
branes interact by the universal and generic excluded-volume
interaction; the spacing is maintained by an external, homo-
geneous pressure pe �see Fig. 1�a��. If strongly coupled, the
surfaces fluctuate as if they were one effective membrane
with combined elastic properties �see Fig. 1�b��. In this re-
gime, the fluctuation in the intermembrane distance is rela-
tively small in order to minimize the excluded volume inter-
actions that arise from fluctuations at smaller wavelengths
�17�. For weak coupling, both membranes only interact over
small contact areas �see Fig. 1�c��. Weak or strong coupling
can be defined for specific ranges of fluctuation wave vec-
tors. In the limit of very small wave vectors, the fluctuations
are strongly coupled; for very large wave vectors, the fluc-
tuations are weakly coupled.

The real-space Hamiltonian is treated in Fourier space
where fluctuations with different wave vectors decouple. The
propagators have a simple form, but the spectra show com-
plex behavior. We predict that if one membrane is a solid
membrane, three crossovers in the fluctuation spectrum as a
function of the wave vector appear in the system. One cross-
over is due to the interaction of the bending and shear modes
of the solid membrane: the effective bending rigidity is wave

PHYSICAL REVIEW E 76, 051910 �2007�

1539-3755/2007/76�5�/051910�18� ©2007 The American Physical Society051910-1

http://dx.doi.org/10.1103/PhysRevE.76.051910


vector independent at large wave vectors and renormalizes to
larger values at small wave vectors. The second crossover is
due to the transition between the coupled fluctuations of both
membranes at small wave vectors and the mainly indepen-
dent fluctuations at large wave vectors. Yet another crossover
is found for the fluctuation pressure of a pair of one fluid and
one solid membrane. If the solid membrane has a small con-
stant bending modulus—like, for example, a polymerized
membrane—the system acts like a solid membrane next to a
wall at small spacings d. At large spacings, coherent long-
wavelength fluctuations are possible and the bending modu-
lus of the solid membrane is strongly renormalized. The sys-
tem is well approximated by a fluid membrane next to a wall.

The architecture of a composite membrane that contains
one fluid and one solid layer is used by cells to provide
mechanical stability. One example are RBCs, which are con-
stantly exposed to mechanical stresses in the blood flow. In
vivo, RBCs live in the human vascular system for
�120 days, despite constant exposure to flow and repeated
strong deformations as they are squeezed through narrow
capillaries �18,19�. Their lifetime is two orders of magnitude
longer than that of artificial vesicles designed for use in drug
delivery �20�. A network of flexible, spectrin polymers forms
a two-dimensional cytoskeleton that completely covers the
inner surface of the bilayer �21,22�. Within the approach pre-
sented in this article, the spectrin cytoskeleton is modeled as
a solid membrane and the bilayer as a fluid membrane. RBCs
are of obvious importance on their own; furthermore, the

RBC membrane can serve as a model system for other mam-
malian cells �22–24�. Our model of a fluid and a solid mem-
brane is one approach to take into account the microscopic
features of the RBC membrane; we focus on the finite spac-
ing between bilayer and cytoskeleton. Other recent ap-
proaches are discussed in Refs. �25–27�; in Ref. �28�, a two-
component network is studied by computer simulations that
represents bilayer and cytoskeleton.

The shape transformations of RBCs as a function of the
elastic moduli and the spontaneous curvature are well under-
stood, although the microscopic origin of the spontaneous
curvature is still unclear �29�. Much less is understood about
the fluctuations of the cell membrane that have been mea-
sured in numerous studies that followed the seminal publica-
tion of Brochard and Lennon �30�. Apparently contradictory
experimental results for the elastic properties and the fluc-
tuations pose yet unresolved puzzles �31�. On the one hand,
static deformation experiments show the cell membrane to
be very stiff �32–35�. On the other hand, interferometric mi-
croscopy data suggest a very floppy membrane at fluctuation
wavelengths of about 1 �m �36,37�. Furthermore, the fact
that depletion or addition of adenosine triphosphate �ATP�
changes the magnitude of the fluctuations indicates that ther-
mal effects alone cannot explain the observations. ATP can
be used to control the fluctuations in a physically interesting
manner �38,39�.

Bilayer-cytoskeleton interactions can be rather complex,
depending on the architecture of the cytoskeleton and the
chemical processes involved �40�. Electron micrographs sug-
gest that the cytoskeletal spectrin network of RBCs as-
sembles with a mesh size of 60–100 nm �41�. The average
spacing between the spectrin and the bilayer is about d
=30 nm and is of the same order of magnitude as the root-
mean-squared fluctuation amplitudes of the bilayer
�36,42–44�. The analysis of the fluctuation spectrum allows
us to characterize the elastic properties of the RBC mem-
brane. The spectrum relates large-scale properties measured
in static deformation experiments to the small length scales
at which active effects of single ATP molecules are supposed
to take place.

In the theoretical sections, we derive the coupled mem-
brane model in Sec. II and we review the effective bending
modulus of a solid membrane in Sec. III. In Sec. IV, we
discuss the results of the coupled membrane model and com-
pare them with simple scaling arguments. Details of the ana-
lytical calculations and further results can be found in the
Appendixes.

In Sec. V, we apply our model to analyze the experimental
RBC fluctuation spectra. In Sec. V A, we review the experi-
mental papers and the theoretical models found in the litera-
ture. In Sec. V B, we analyze the fluctuation data of disco-
cytes, an echinocyte, and a stomatocyte with the coupled
membrane model and extract the elastic parameters. Using
the phenomenological concept of an active temperature, we
extract a measure for active, ATP-driven fluctuations in Sec.
V C. In the Appendixes, we motivate the functional form of
the effective bending modulus and show that the fluctuations
of bilayer and cytoskeleton are strongly coupled for wave-
lengths ��400 nm.
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FIG. 1. �Color online� �a� Definition of the height fields h1�x ,y�
and h2�x ,y�. A homogeneous pressure pe keeps both membranes at
average mean distance d. The membranes interact if h1�xi ,yi�
=h2�xi ,yi�. �b� If strongly coupled, both membranes fluctuate like a
single membrane. �c� If weakly coupled—e.g., for fluctuation am-
plitudes that are small compared to the average intermembrane
spacing—both membranes fluctuate independently. They only inter-
act over relatively small areas, due to fluctuations on longer length
scales.
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II. CONTINUUM COUPLED MEMBRANES

We calculate the fluctuation spectra of two adjacent mem-
branes that interact via their excluded volume. Height fields
h1�x ,y� and h2�x ,y� describe the conformations of the mem-
branes; see Fig. 1. The height variables are chosen relative to
the average position of each membrane. The membrane fluc-
tuations are governed by their curvature moduli �1 and �2.
For fluid membranes, the curvature moduli are constants;
solid membranes are represented by wave-vector-dependent,
effective curvature moduli �4,5�. The functional forms of the
bending moduli �i �i=1,2� do not need to be further speci-
fied at this point and will be discussed later �45�.

The real-space Hamiltonian for an almost flat system of
two interacting membranes is

H =� d��1

2
�1��2h1����2 +

1

2
�2��2h2����2

+ v0�„h2��� − h1��� − d… + pe„h2�	� − h1�	�…� , �1�

where �= �x ,y� is the coordinate pair in the plane. The only
interaction between both membranes is the generic and uni-
versal excluded-volume interaction v0�(h2���−h1���−d).
The interaction term is analogous to the classical treatment
of self-avoiding polymers �47�, and the interaction parameter
v0 has units of energy per length. The external pressure pe
acts as a Lagrange multiplier and constrains the constant av-
erage distance d between both membranes.

We use the �-function interaction for mathematical con-
venience, and we estimate v0 with an approximation similar
to the Flory interaction for the excluded-volume interaction
of polymers. If v0 is large, the membranes are almost impen-
etrable and for two fluid membranes our results are very
similar to those derived by Helfrich �8�. For the red blood
cell, the volume of the spectrin molecules is smeared out
over the entire area �200 nm filament contour length, 5 nm
diameter, 2900 nm2 area per filament�; this yields an effec-
tive membrane thickness ds�3 nm. The thickness of the bi-
layer membrane is taken to be db� 5nm. The probe volume
is estimated by the spectrin diameter to be a cube with edge
length Lp= 5nm. After integrating out the in-plane compo-
nents, the interaction constant reads v0=kBT�ds+db� / �2Lp

2�
�0.2kBT nm−1 �7�.

The statistical mechanical properties of the real-space
Hamiltonian are most easily treated with the help of a model
Hamiltonian in Fourier space; all Fourier modes besides the
zero-wave-vector mode q=0 serve as generalized coordi-
nates �48�. The model Hamiltonian is taken to be a simple
quadratic form in 	hi�q�hj�q�	2 �i , j=1,2�,

H0 = 
2


L
�2

kBT�
q
G1�q�

2
h1�q�h1�− q�

+
G2�q�

2
h2�q�h2�− q�

+
Gm�q�

2
�h1�q�h2�− q� + h2�q�h1�− q��� , �2�

including all combinations 	h1
2	, 	h2

2	, and 	h1h2	 �49�. The
q-dependent coefficients G1�q�, G2�q�, and Gm�q� are termed
propagators in the remainder of the paper. The propagators
G1 and G2 exactly account for the fluctuations of the nonin-
teracting membranes, while the coefficient of the mixed
term, Gm, accounts for the interaction.

The Bogoliubov inequality �7�,

F � F0 + �H − H0�0, �3�

where F is the free energy of the system and �¯�0 is the
average with respect to the model Hamiltonian, is employed
and gives the upper bound for the exact free energy by mini-
mizing with respect to G1, G2, and Gm. The Fourier transfor-
mations are defined by

h��� =
1

2

� dqh�q�exp�− iq · �� �4�

for the height fields and

G��� =
1

�2
�2 � dqG�q�exp�− iq · �� �5�

for the propagators. Instead of real-space coordinate pairs �,
now wave vectors q= �2
 /�x ,2
 /�y� and wavelengths �x

and �y characterize the system. Transformation from con-
tinuous to discrete variables in Fourier space and vice versa
is defined by


2


L
�2

�
q

=� dq , �6�

where L is the system size, the sum runs from �2
 /L ,2
 /L�
to �2
 /a ,2
 /a�, and a is the lattice constant �7�.

The total free energy to be minimized, F̃=F0+ �H
−H0�0, is

F̃ = cF +
kBT

2 �
q

ln�G1�q�G2�q� − Gm
2 �q��

+
1

2�
q

�1�q�q4 G2�q�
G1�q�G2�q� − Gm

2 �q�

+
1

2�
q

�2�q�q4 G1�q�
G1�q�G2�q� − Gm

2 �q�
+ v0L2e−d2/�2�2�

�2
�
,

�7�

with � the average root-mean-squared intermembrane dis-
tance,

4
2�2 = 
2


L
�2�� d��h1��� − h2����2� , �8�

and all constant terms are collected in cF. The statistical
averages in phase space can only be calculated if Gm

2 �q�
�G1�q�G2�q�, so that the quadratic form is positive definite.
In the case Gm

2 �q��G1�q�G2�q�, the statistical integrals
would lead to divergent fluctuations and our Hamiltonian
would be incorrect �46�. The solutions for the propagators
have the form
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Gi�q� =
�i�q�q4 + kBT−4

kBT
�i = 1,2� �9�

and

Gm = − −4, �10�

with Gm completely independent of q and G1�q� and G2�q� a
sum of a q-dependent term and a constant excluded-volume
potential kBT−4. The constant term

kBT−4 = v0�2
�9/2 �d2 − �2�
�2
��5 e−d2/�2�2� �11�

is the same for all propagators. The excluded-volume poten-
tial kBT−4 has dimensions of energy over length to the
power of 4. The interaction length  represents an effective
distance between collisions. From the equations, we expect
small intermembrane interactions in two cases: �i� for small
relative mean-squared fluctuation amplitudes, ��d, when
the term e−d2/�2�2� is small, and �ii� for large relative mean-
squared fluctuation amplitudes, at ��d, but only just before
the model fails, such that the prefactor �d2−�2� / ��5� is
small, but still non-negative. Note that the latter situation
does not occur for real systems, since with increased crossing
of the membranes, the repulsive interaction must increase.

Despite the simplicity of the propagators, the fluctuation
spectra show complex behavior. The calculation of the fluc-
tuation amplitudes involves combinations of propagators, so
that, in general, both �effective� bending rigidities determine
the fluctuations of each membrane. The mean values of the
fluctuation amplitudes are

�	h1�q�	2� = 
 L

2

�2 G2�q�

G1�q�G2�q� − Gm
2 �q�

, �12�

for the membrane described by h1, while an analogous ex-
pression with exchanged indices, 1↔2, holds for the mem-
brane described by h2. The mean-squared fluctuation of the
intermembrane distance is

�	h2�q� − h1�q�	2� = 
 L

2

�2G1�q� + G2�q� + 2Gm�q�

G1�q�G2�q� − Gm
2 �q�

.

�13�

For small mean-squared fluctuation amplitudes compared
with the squared intermembrane spacing d2, the parameter 
becomes comparable to d; this occurs for high bending ri-
gidities �i, or small interaction parameter v0. In the lowest-
order terms in a series expansion of Eqs. �12� and �13�, for
small values of −4, the fluctuations of both membranes de-
couple �i.e., when v0=0, for large values of �i or d→��. We
then recover the mean-squared fluctuation amplitudes of the
isolated membranes,

�	hi�q�	2� = 
 L

2

�2 kBT

�i�q�q4 �i = 1,2� . �14�

In that case, the mean-squared amplitudes of the intermem-
brane distance are

�	h2�q� − h1�q�	2� = 
 L

2

�2
 kBT

�1�q�q4 +
kBT

�2�q�q4� . �15�

In the strong-coupling limit →0 �appropriate for small
values of �1, �2, or d�, both membranes fluctuate as if they
were a single composite membrane. The mean-squared fluc-
tuation amplitudes

�	h1�q�	2� = �	h2�q�	2� = 
 L

2

�2 kBT

�1�q�q4 + �2�q�q4 �16�

are identical for both membranes. In this case, the mean-
squared amplitudes of the intermembrane distance vanish,

�	h2�q� − h1�q�	2� = 0. �17�

The expansions of the fluctuation amplitudes of two mem-
branes for small and for large , as well as further details of
the calculations in this section, can be found in Appendix A.

III. EFFECTIVE BENDING RIGIDITY OF A SINGLE
SOLID MEMBRANE

In this section, we review the fluctuation properties of an
isolated solid membrane and summarize the results found in
the literature.

For large wave vectors, a solid membrane has a wave-
vector-independent bending modulus. This constant bending
modulus can be estimated from the energy of a bent, thin
elastic plate �51�. Its value

�c =
b2�

6

1 + �

1 + �2 �18�

depends on the two-dimensional shear modulus �, the thick-
ness of the solid membrane, b, and the Poisson ratio �. Rea-
sonable values for the Poisson ratio are �=−1/3, for a solid
membrane represented by a free polymer network �which
expands laterally if it is stretched� �6�, or �=1/2, if a poly-
mer network is coupled to a fluid membrane that preserves
the area �51�.

For networks of flexible polymers, typical bond stretching
energies are of the order of kBT and typical bond lengths �
are in the range of a hundred nanometers to micrometers.
The thickness of the spectrin cytoskeleton of red blood cells
is estimated by the radius of gyration of the spectrin tet-
rameres, b=Rg�10–25 nm. Because ��kBT /�2, this leads
to a constant bending modulus of the network that is small
compared with the typical bending moduli of lipid bilayer
membranes �52�. Using a typical two-dimensional shear
modulus of the RBC spectrin network �see Secs. V B and
V C�, �=10−2kBT nm−2, we obtain �c= �0.1–0.6�kBT. The
wave-vector-independent part of the bending modulus can
also be estimated with an excluded-volume approach in a
model of beads connected by tethers. The excluded-volume
approach provides an upper bound to the wave-vector-
independent bending modulus, �c�1.1kBT �4�.

For small wave vectors, the bending constant is consider-
ably renormalized to higher values by the interaction be-
tween bending and shear modes �4,5�. The effective bending
rigidity is given by �53,54�
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�rq
−1 =�3�kBT

4


1

q
; �19�

see Appendix B �55�. Comparing the asymptotically constant
bending rigidity �c for large q and the renormalized bending
rigidity for small q given by Eq. �19�, a crossover wave
vector q*=�3�kBT / �4
� /�c can be determined. For q�q*,
the bending rigidity is strongly renormalized as in Eq. �19�;
for q�q*, the bending rigidity is constant as in Eq. �18�.

For intermediate wave vectors, a perturbative treatment of
the interaction between bending and shear modes may be
appropriate. Instead of the summation of the entire set of
diagrams from the perturbation expansion, which leads to the
q−1 term, only the first two terms of the expansion need to be
considered. The effective, renormalized bending rigidity is
then given by �53,54�

�c + �pq−2 = �c +
9�kBT

16
�c

1

q2 . �20�

For details of the derivation, see Appendix B.
In addition to the constant bending rigidity and the renor-

malization due to the interaction of bending and shear
modes, the presence of a nonzero average curvature of a
solid membrane acts as a confining potential �51,56�. The
strength of this potential,

� =
4�

A
�

A

dS�2H2 − K� , �21�

depends on the local mean curvature H and the local Gauss-
ian curvature K, and is determined by an average over the
membrane area A. Locally different values for the confine-
ment potential can be obtained if A is not chosen to be the
entire area of the system, but rather a smaller area around
each point of the membrane. The confinement potential can
be derived from the in-plane stretching energies that occur if
the radius of a sphere or a cylinder is changed; for details,
see Appendix B.

For the theoretically motivated calculations in Sec. IV, we
only use the self-consistent result of Eq. �19� for all calcula-
tions that involve the effective bending rigidity of the solid
membrane. We restate this in the next section, which starts
with a more general discussion in the introduction. The per-
turbative treatment of the shear-bending interaction and the
confinement potential, given in Eqs. �20� and �21�, will be
used for the analysis of the red blood cell fluctuation data in
Secs. V B and V C. We show in Appendix E that the pertur-
bation form of Eq. �20� is more appropriate than the self-
consistently calculated Eq. �19� when considering the experi-
mental data.

IV. RESULTS OF THE COUPLED MEMBRANE MODEL:
FLUCTUATION PRESSURE

In this section, we first discuss limiting cases for a fluid-
solid system: coupled and uncoupled fluctuations of both
membranes, shear-bending renormalized, and wave-vector-
independent bending moduli of the solid membrane. In the
rest of the section, we assume the bending constant of the

solid membrane to be strongly renormalized as described by
Eq. �19�. Thus the solid membrane considered in this section
is always assumed to be flat on average, such that �=0 �Eq.
�21��. The fluctuations of the fluid membrane are governed
by a wave-vector-independent bending modulus � f.

If a solid membrane fluctuates next to a fluid membrane,
there are four possible combinations of limiting cases for the
fluctuation behavior for small and large q. In the case of
weak interactions between both membranes and for wave
vectors q�q* �q* defined after Eq. �19��, Eqs. �14� and �18�
apply. The fluctuations of each membrane are determined by
its individual, wave-vector-independent, bending modulus.
This case is analogous to the fluctuations of two fluid mem-
branes. For weak interactions between the membranes and
for q�q*, Eqs. �14� and �19� apply. The fluctuations of the
fluid membrane are described by its wave-vector-
independent bending modulus, while the fluctuations of the
solid membrane are governed by its renormalized bending
modulus at small wave vectors, �rq

−1. In the strongly
coupled regime of Eq. �16�, both membranes fluctuate to-
gether with negligible fluctuations of their intermembrane
distance, Eq. �17�. These strongly coupled fluctuations are
governed by the sum of the bending rigidities of the fluid and
the solid membrane. Instead of �c, now � f +�c must be used
to calculate the new crossover wave vector for the bending-
shear interaction, q*. For q�q*, the combined bending rigid-
ity is a constant. For q�q*, the bending rigidity is renormal-
ized due to the shear-bending interaction.

In Appendix C, simple scaling arguments for the mutual
confinement of the fluctuations of both membranes, valid in
the limit v0→�, are presented. We also introduce a cross-
over wave vector q+, below which the fluctuations of the two
membranes are coupled and above which the fluctuations are
uncoupled �17�. The free energy per membrane area, needed
to evaluate the fluctuation pressure, is discussed in Appendix
D. Here, we calculate the repulsive fluctuation pressure with
the coupled membrane model for different system param-
eters. We apply simple scaling arguments to discuss the ori-
gin of the crossover in the fluctuation behavior for a fluid-
solid system. The crossover is correlated to the fraction of
the intermembrane spacing occupied by the fluctuations of
the fluid, df /d, and by the solid membrane, ds /d.

Fluctuation pressure. The repulsive pressure between
both membranes, p=−�F /�d, can be calculated from the free
energy. With simple scaling arguments, the fluctuation pres-
sure of a membrane is obtained from the negative derivative
of the free energy difference, given for two fluid and two
solid membranes in Eqs. �D1� and �D2�, with respect to the
confinement d. The fluctuation pressure of a fluid membrane
with root-mean-squared fluctuation df is

pf �
�kBT�2

� fdf
3 . �22�

The fluctuation pressure of a solid membrane with root-
mean-squared fluctuation ds is

ps �
�kBT�2

�ds
5 . �23�

For a fluid-solid membrane pair, one can determine whether
the fluctuations of the fluid or of the solid membrane at a
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specific d dominate the scaling behavior by comparing their
fluctuation pressures. The fluctuations of the membrane with
the largest fluctuation pressure at the midplane, d /2, domi-
nate.

For small enough d, the fluctuation pressure of the solid
membrane always exceeds the fluctuation pressure of the
fluid membrane, due to the d−5 scaling compared to the d−3

scaling. For large d, the pressure of the fluid membrane de-
cays slower than the pressure of the solid membrane; thus,
the fluctuation pressure of the fluid membrane dominates.
The crossover d* occurs for pf�d* /2�= ps�d* /2�. Numerical
results for the fluctuation pressure are shown in Fig. 2, for
the same systems used for  in Fig. 7. The fit to the result of
the fluid membranes scales like d−2.9, close to the d−3 scaling
found in Refs. �7–9�. The fit to the result of the solid mem-
branes gives a scaling exponent −4.5, close to the d−5 scaling
derived in Ref. �10�. Again, the values in the literature are
obtained with our model in the limit v0→�, because in this
limit there is no other length scale in the model besides d.
For the pair of one fluid and one solid membrane, we find a
crossover between solidlike scaling at small d and fluidlike
scaling at large d, similar to the behavior observed for  in
Fig. 7.

Simple scaling arguments explain the crossovers between
fluidlike and solidlike scaling of the fluid-solid system. A
virtual wall separates the membranes, and the fraction of the
average spacing occupied by the fluctuations of each mem-
brane, dx /d, can be calculated from the d that minimizes the
sum of the free energies, �f f +�fs �Eqs. �D1� and �D2��.

For two identical membranes, both membranes have the
same “effective thicknesses”; see Fig. 3�b�. For two mem-
branes of the same type with different elastic constants, the
two “effective thicknesses” are not equal, but their ratio does
not depend on d. For one solid and one fluid membrane, the
behavior is more complex, as evident by the crossovers
found for the fluctuation pressure, the interaction length, and

the free energy differences and in Figs. 2, 7, and 9, respec-
tively. The ratios between the effective thicknesses of both
membranes vary with d. For small d and a small renormal-
ization of the bending modulus of the solid membrane, the
solid membrane occupies the larger fraction of the volume
between both membranes and dominates the scaling. For
large d, where long-wavelength fluctuations are allowed and
the bending modulus of the solid membrane is considerably
renormalized, the fluctuations of the fluid membrane domi-
nate.

The fractions dx /d are plotted in Fig. 4 for the same pa-
rameters as used in Figs. 2 and 7. As discussed earlier, for
large enough d the solid membrane acts as a wall; see also
Ref. �25� where this approximation is used to describe the
red blood cell bilayer and the spectrin cytoskeleton. The
crossover of the effective thicknesses of both membranes
occurs roughly at the value of d where also the crossover in
Figs. 2 and 7 has been observed.

V. RBC FLUCTUATIONS

We apply the coupled membrane model to analyze the
experimental RBC fluctuation data of Refs. �36,37�. We first
review other theoretical approaches found in the literature
and investigate the applicability of the coupled-membrane
approach. We then analyze the fluctuation data, extract the
bilayer bending modulus �b and the spectrin shear modulus
�, and introduce a phenomenologically motivated effective
temperature to account for actively driven fluctuations.

A. Experimental data and theoretical models

In this subsection, we review the current status of the
theory for the RBC membrane fluctuations and highlight the
gaps that exist in our present knowledge.
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FIG. 2. Repulsive pressure p between both membranes as a
function d for different systems: two fluid membranes �dashed line�,
two solid membranes �dash-dotted line�, and one solid and one fluid
membrane �dotted line�. Same parameters as in Fig. 7. The numeri-
cal result for the solid membranes has been multiplied by 104, the
result for the fluid-solid membrane by 102. For the fluid-solid sys-
tem, a crossover between solidlike and fluidlike scaling is observed.

(a)

(b)
(c)

FIG. 3. �Color online� �a� Coupling of fluctuations at small wave
vectors due to fluctuations at large wave vectors. �b� For two iden-
tical membranes, both membranes have the same effective thick-
nesses. �c� For two different membranes, generally the effective
thicknesses of both membranes are not the same. For a pair of one
solid and one fluid membrane, at small d the effective thickness the
solid membrane is greater than the effective thickness of the fluid
membrane; vice versa at large d.
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In Refs. �36,37�, specialized experimental and evaluation
techniques were used to measure the fluctuation spectra of
RBCs. The fluctuation data indicate that the effective bend-
ing modulus for fluctuations at small wave vectors is larger
than the bending modulus for fluctuations at large wave vec-
tors; see Figs. 5 and 6. This is consistent with the theoretical
expectations for a system with a nonzero shear modulus and
of finite area �57�. In Secs. V B and V C, we analyze the
experimental data using our coupled membrane model
�58,59�.

In Ref. �25�, the fluctuation data of Ref. �36� was plotted
as a function of the wave vector after normalization by the
fluctuations of a free, fluid bilayer. This emphasizes the data

at large wave vectors, and a jump in the spectrum becomes
apparent. Above a threshold wave vector q0�0.008 nm−1,
the fluctuation amplitudes show an unexpected increase. Ref-
erence �25� provided a good phenomenological description
of the experimental data using an effective bending rigidity
�eff�q�=�b+�q−2+�q−4. The wave-vector-independent bend-
ing modulus of the lipid bilayer, �b, surface tensions �1 for
q�q0 and �2��1 for q�q0, and a confining potential �
were used as fit parameters. It was shown that this descrip-
tion can be used to fit both the static as well as the dynamic
data.

It was beyond the scope of Ref. �25� to discuss details of
the physical origin of the fluctuation spectrum. The potential
term was motivated by thinking of the cytoskeleton as a rigid
wall that confines the fluctuations of the bilayer. A typical
distance between bilayer and cytoskeleton was found
�d�30 nm� that matches experimental measurements of the
thickness of the spectrin layer �42�. For large wave vectors,
the fluctuation amplitudes are mainly determined by the con-
stant, bare bending modulus of the lipid bilayer. An apparent
jump in the surface tension was proposed to be the origin of
the jump in the experimental data. For small wave vectors, a
large surface tension was attributed to the periodic attach-
ment of the bilayer to the skeleton. A tension term that origi-
nates from a periodic, sparse confinement of a bilayer was
further discussed in Refs. �16,60�. For large wave vectors,
the surface tension was found to have a small value that can
be explained by the closed shape of the cell �57�.

Two more detailed, recent theoretical models also repro-
duce the jump observed in the experimental data using dif-
ferent physical approaches. In Ref. �26�, the bilayer experi-
ences a surface tension due to its connections to a two-
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FIG. 4. Fraction of the spacing occupied by the effective thick-
ness of the solid membrane, ds /d �solid line�, and the fluid mem-
brane, df /d �dashed line�, in a pair of one solid and one fluid mem-
brane as function of the intermembrane spacing d. The same elastic
parameters as in Fig. 7 have been used, but with the model sketched
in Fig. 3�c� instead of the full self-consistent coupled membrane
calculation.
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brane, represented by a single, effective membrane with bending
modulus �s�q�=�b+�pq−2+�q−4. The fluctuation amplitudes are
normalized by the fluctuation amplitudes of a free membrane with
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FIG. 6. Fit of the experimental data of Refs. �36,37� with a
strongly coupled bilayer and polymerized membrane, represented
by a single, effective membrane with bending modulus �s�q�=�b

+�pq−2+�q−4: discocyte 1 ��, dashed line, Ref. �37��, discocyte 2
�*, dotted line, Ref. �36��, stomatocyte �triangles, solid line, Ref.
�36��. The fluctuation amplitudes are normalized by the fluctuation
amplitudes of a free membrane with �=25kBT, �h25

2 �. Values of the
shear moduli and effective temperatures are given in the main text.
Some of the experimental data points at high q for the discocytes
are out of the plotted range because of their large fluctuation
amplitudes.
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dimensional network of sparsely attached springs that model
the spectrin skeleton. In Ref. �61�, this picture was further
advanced and cytoskeletal defects were added to the model.
By identifying the wave vector of the jump with the inverse
mesh size of the cytoskeleton, the authors claim to explain
the experimental data �26�. However, the usual relation be-
tween wave vector and wavelength is q=2
 /� and not q
=1/� as stated in Ref. �26�. Using q=2
 /�, the jump in the
experimental data corresponds to wavelengths ��500 nm,
which are much larger than the mesh size of the spectrin
network that forms the skeleton of the RBC
��60–100 nm�. The mismatch of the wave vector at which
the increased fluctuation amplitudes are found in the experi-
ment ��0.008 nm−1� and the wave vector that corresponds
to the mesh size of the cytoskeleton anchors
��0.03–0.05 nm−1� raises questions on the relevance of the
bilayer-spring model to interpret the data of Ref. �36�.

In the theoretical model in Ref. �27�, the bilayer is
coupled to a three-dimensional, elastic gel. Using a three
dimensional gel to model the spectrin layer is questionable,
because the distance between cross-links in the cytoskeleton
is 60–100 nm and thus of the same order as �or even larger
than� its thickness �2d�60 nm� �42,43�. The model does
explain the jump in the experiment at large q, but is not able
to explain the spectrum at small q. It is argued in Ref. �27�
that the experimental data are not reliable at long wave-
lengths, since the boundary effects due to the closed shape of
the cell are not properly taken into account by the Fourier
transformation. However, the fit in Ref. �27� already begins
to fail for wavelengths ��1 �m, which are small compared
to the cell diameter dc=7–8 �m. In addition, we expect the
fluctuation Fourier amplitudes in a closed system to be
smaller than the amplitudes of a free membrane with the
same elastic constants. If the closed-shape argument were to
apply, the fluctuation amplitudes predicted by the theory of
Ref. �27� for a flat membrane would be larger than those
found in experiment. The Fourier amplitudes predicted in
Ref. �27� are considerably smaller than those measured in the
experiment. Thus, the model of the three-dimensional elastic
gel does not seem to be appropriate to describe the thin spec-
trin network of the RBC.

Our coupled membrane model focuses on the finite spac-
ing between the lipid bilayer and the spectrin layer. At small
wave vectors, bilayer and spectrin layer are strongly coupled
�17�. At large wave vectors, bilayer and spectrin layer fluc-
tuate independently. This decoupling could �qualitatively�
lead to an increase of the fluctuation amplitudes of the bi-
layer �compared with the coupled bilayer and cytoskeleton
fluctuations� that explains the jump observed in the experi-
ments. The coupled membrane approach is applied to disco-
cyte fluctuation data in Appendix E. We find that for wave-
lengths ��400 nm—i.e., for the available experimental
data—the fluctuations are well described by a single mem-
brane with an effective bending rigidity of the form �2�q�
=�b+�pq−2+�q−4. Thus, similar to the other theoretical
models, our coupled-membrane model does not reproduce
the jump in the experimental spectra, but gives a good de-
scription of the data for q�0.008 nm−1.

However, in contrast to the models discussed before, our
model is, in principle, free of fit parameters; all parameters

can be measured independently in different experiments. In
practice, not all the parameters needed to predict the fluctua-
tion spectrum have been measured for those cells for which
the spectrum has been measured �e.g., the shear modulus�.
For typical values of the parameters, the model is not sensi-
tive to exact values of the spacing d and the interaction pa-
rameter v0. The interaction parameter v0=0.2kBT nm−1 is es-
timated using a Flory-type argument in Sec. II, and we use
d=30 nm �42�. The model crucially depends on the values of
the elastic constants �b and �. These elastic constants vary
for different cells and strongly depend on the experimental
conditions �18,32–35,62–65�. We are thus forced to consider
the bilayer bending rigidity and the spectrin shear modulus
as fit parameters, within a plausible range of values. In the
following subsections, we analyze the experimental RBC
fluctuation data of Refs. �36,37�.

B. Echinocyte, discocyte, stomatocyte

A single composite membrane with an effective bending
modulus �2�q�=�b+�pq−2+�q−4 is fit to the bilayer fluctua-
tion data of several cells from Refs. �36,37�.

In Fig. 5, we are able to fit the data for a RBC with the
echinocyte shape from Ref. �36� in the entire q range, where
�b, �, and the value of the shape integral that enters � �Eq.
�21�� are independent fit parameters �since we do not know
the exact shape of the echinocyte�. We find �b=25kBT, �p
=8.8�10−8kBT nm−2 and �=7.4�10−8kBT nm−4. The shear
modulus that corresponds to this value of �p is �=6
�10−3kBT nm−2. The confinement potential of the echi-
nocyte, �, is a factor of 5 larger than the corresponding term
for the discocyte analyzed in Appendix E �66�. From Eq.
�21�, a larger value of � is expected for the echinocyte due to
the larger average curvature of the spicules that decorate the
cell.

For the other cells, as shown in the fits in Fig. 6, we
obtain �b=14kBT and �=0.7�10−2kBT nm−2 for discocyte
1, �b=10kBT and �=1.2�10−2kBT nm−2 for discocyte 2,
and �b=9kBT and �=0.3�10−2kBT nm−2 for the stomato-
cyte �if the data is associated with fluctuations of the concave
side of the stomatocyte �67��. The shear moduli are obtained
from the values of � �68�. The confinement potential ��� is
estimated to be �=1.2�10−6� nm−2 for the discocyte, �
=3.0�10−6� nm−2 for the concave, and �=3.9
�10−7� nm−2 for the convex side of the stomatocyte, using
the cell shapes provided in Ref. �69�.

The shear moduli � from the fits are in the range or
slightly above the values found in many static deformation
experiments, ��10−3kBT nm−2 �32–35�. All fit values are far
below the value of ��5�10−2kBT nm−2, measured in Ref.
�65�. The various values for �b extracted from these fits are
puzzling since we expect the lipid bilayer bending constant
to be independent of the shape of the RBC. This puzzle is
resolved by �phenomenologically� taking into account the
different “effective temperatures” of the cells, Teff, due to
cell activity �38,39�. Since the data only provide us with the
ratio �bT /Teff, cells with different effective temperatures can
have different apparent bending moduli when measured rela-
tive to kBT. We show in the next section that the lipid con-
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tribution to the bending moduli of all cells is the same, rela-
tive to the effective thermal energy kBTeff.

C. Effective temperature

We introduce the effective temperature as a phenomeno-
logical concept to quantify active, nonthermal fluctuations
�38,39,70–73�. We do not aim to identify the source of active
processes in this article; cytoskeletal processes �39,74–76� as
well as conformation changes of transmembrane proteins
�70–72,77,78� have been suggested in the literature. In Refs.
�38,39�, active �ATP-driven� fluctuations for discocytes have
been quantified by an effectively higher temperature Teff
�2T−3T. We thus reinterpret the bare bilayer bending con-
stants to be a factor Teff /T larger than the values obtained
from the fits �79�. The larger values of the bare bilayer bend-
ing modulus ��b�25kBT� are indeed consistent with the val-
ues expected for such membranes from tether pulling �62�,
frequency spectra �63�, simulations of cells in flow �18�, and
artificially produced phospholipid bilayers �64�.

The fluctuation spectrum with an effective temperature
Teff is given by

�	h�q�	2� =
kBTeff

�2�q�q4 =
kBTeff

�bq4 + �p,Teffq
2 + �

=
kBT

fT�bq4 + �p,Tq2 + fT�
, �24�

where fT= �T /Teff��1 and �p,Teff refers to �p,Teff

=9�kBTeff / �16
�b��kBTeff. Note that the effective tempera-
ture cancels in the q2 term, �p,T=9�kBT / �16
�b��kBT. Af-
ter normalization, the fluctuation spectrum is

�	h�q�	2�
�	h25�q�	2�

=
25kBT

�T/Teff��b + �pq−2 + �T/Teff��q−4 . �25�

The echinocyte shape can be obtained experimentally by
depletion of ATP, while the presence of ATP is known to
increase the fluctuation amplitudes �38,39�. It thus seems
reasonable to use the high-q plateau value of the fluctuation
amplitudes of the echinocyte to estimate the bare bilayer
bending modulus for all cells in the absence of active effects
�Teff=T�, �b=25kBT. The smaller values obtained in the fits
can then be used to quantify the active effects of the disco-
cytes and the stomatocyte.

The effective temperatures and the shear moduli are
Teff /T=1.8 and �=1.3�10−2kBT nm−2 for discocyte 1 in
Fig. 2, Teff /T=2.5 and �=3.0�10−2kBTnm−2 for discocyte 2
in Fig. 2, Teff /T=2.8 and �=3.4�10−2kBT nm−2 for the dis-
cocyte in Fig. 1, and Teff /T=2.8 and �=0.8
�10−2kBT nm−2 for the stomatocyte in Fig. 2 �if the data are
associated with fluctuations of the concave side �80��. With
these values of Teff, all cells, independent of their shape,
show the same bare bending rigidity �b�25kBT that is ex-
pected for a lipid bilayer.

The shear moduli obtained by our fits are large compared
with the value found in many static deformation experi-
ments, ��10−3kBT nm−2 �32–35�. However, all values from
the fit are still below the value of ��5�10−2kBT nm−2,

measured in Ref. �65�. The shear modulus of the stomatocyte
is small compared to the shear moduli of the discocytes, due
to its weak cytoskeleton �39�. The small shear modulus of
the stomatocyte is consistent with strong active effects and a
high effective temperature.

VI. CONCLUSIONS

A. Coupled-membrane model

We have presented a continuum model for pairs of mem-
branes that fluctuate at a fixed average distance. Our model
can be applied to membranes with arbitrary wave vector de-
pendence of their effective bending moduli �this includes, for
example, polymer-decorated membranes �81,82��, and arbi-
trary combinations of different membranes can be analyzed.
The two membranes interact via the universal and generic
excluded-volume interaction and the average distance is
fixed by a homogeneous pressure. We applied our model to a
pair of fluid membranes, to a pair of solid membranes, and to
adjacent fluid and solid membranes.

For large interaction parameter v0 and a fluid-fluid or a
solid-solid system, our calculations agree with simple scaling
relations for the interaction length , the characteristic wave
vector q̃, and the repulsive fluctuation pressure p as a func-
tion of the average distance between the membranes, d. A
crossover wave vector q+ is introduced, below which the
membranes fluctuate in a strongly coupled manner and above
which the fluctuations are only marginally coupled. Strong
coupling arises due to the excluded-volume interactions from
fluctuations at smaller wavelengths �17�.

Several forms of effective bending rigidities are relevant
for the coupled-membrane system. For weak coupling, the
membrane fluctuations are governed by their individual
bending constants. In the strongly coupled limit, both mem-
branes fluctuate like a single surface with an effective bend-
ing rigidity that is the sum of the individual bending rigidi-
ties. In addition, if a solid membrane is involved, for small q,
the interaction between bending and shear modes renormal-
izes the bending modulus to higher values. The crossover
wave vector below which the renormalization becomes im-
portant, q*, depends on the values of the shear and the bare
bending modulus; it thus has different values if the mem-
brane fluctuations are strongly coupled �in which case the
relatively large, lipid bending modulus must be included in
the calculation of q*� compared to the case in which the
fluctuations are uncoupled �when for a polymer network only
the small, solid bending modulus is used to find q*�.

For a pair consisting of one solid membrane and one fluid
membrane, we also find a crossover with respect to the in-
termembrane distance d. For small d, all physical quantities
related to the interaction show the scaling expected for a
solid membrane next to a wall. For large d, the scaling of a
fluid membrane next to a wall is found. The “effective thick-
ness”, or relative occupied intermembrane volume �Fig. 3�,
of both membranes can be calculated: for small d the fluc-
tuations of the solid membrane occupy most of the inter-
membrane volume, while for large d the fluctuations of the
fluid membrane almost fill the entire volume between both
membranes.
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We have also calculated the free energy difference per
membrane area between the coupled and uncoupled mem-
branes for a fluid-solid membrane pair. Numerical results are
presented for different spacings d and for elastic parameters
and an interaction parameter that are appropriate to biologi-
cal systems such as red blood cells. The free energy differ-
ence is calculated as a function of the shear modulus, and the
effect of the fluctuations of a solid membrane compared to a
hard wall at the same average distance can be estimated.
Strong fluctuations of the solid membrane considerably in-
crease the free energy needed to keep the two membranes at
an average distance d.

Simple scaling arguments explain the crossovers found
for the interaction length and the fluctuation pressure with
the coupled membrane model for a fluid-solid membrane
pair. The solid membrane is assumed to be on average flat
and to fluctuate at wave vectors well below the crossover q*,
where the shear-bending renormalization is significant. The
membrane, the fluctuations of which fill the larger fraction of
the volume in between both membranes, dominates the scal-
ing relations. At small d, solidlike scaling is observed, while
at large d, fluidlike scaling is found.

Our results about the scaling, intermembrane pressure,
and fluctuation spectrum of two coupled membranes can be
applied to various cellular membranes—e.g., to the red blood
cell as well as to the nuclear envelope �83�. The results are
also relevant for synthetic systems where a fluid and a poly-
merized membrane are coupled; this architecture might be
used for drug-delivery schemes. Currently, more rigid actin
networks are attached to artificial lipid bilayers for scaffold-
ing purposes �84,85�.

B. Red blood cell fluctuations

The coupled membrane model suggests that at wave vec-
tors relevant to the experimental data in Refs. �36,37�, q
�0.015nm−1, both the cytoskeleton and the bilayer fluctuate
in a strongly coupled manner. The physical origin of this
effect is the excluded-volume interaction between the two
layers due to fluctuations at shorter wavelengths �17�. Be-
cause of the complex architecture of the lipid bilayer and
spectrin skeleton, this finding is not trivial. Using a micro-
scopic model, we argue that the discrete, sparse coupling of
and the finite spacing between lipid bilayer and spectrin cy-
toskeleton are only relevant for fluctuation wavelengths
shorter than 400 nm.

For fluctuation wavelengths larger than 400 nm, our work
justifies using a single effective membrane to model the red
blood cell membrane. Its fluctuations are governed by the
lipid bilayer bending rigidity and a two-dimensional shear
modulus that arises from the spectrin network in this range
of wave vectors. The coupled bending-shear fluctuations give
rise to a surface-tension-like contribution as well as a con-
finement potential term that must be added to the lipid bi-
layer bending rigidity. This is consistent with the phenom-
enological treatment of Ref. �25�.

The continuum model can reproduce all the experimental
fluctuation data for the echinocyte, the stomatocyte, and, al-
though in a limited range of q only, for the discocytes. The

model assumes a homogeneous bilayer; we therefore propose
that the spectrin networks of the echinocyte and the stoma-
tocyte have a regular structure since the continuum model
applies for these cells. Irregularities in the spectrin cytoskel-
eton of the discocytes might lead to local fluctuations whose
description is beyond the scope of the model presented here.

The echinocyte has little ATP, a strongly connected cy-
toskeleton with few defects, and—according to our
analysis—can be fit with no need to account for active ef-
fects. The stomatocyte has an abundance of ATP and a high
effective temperature and shows strong active effects. A large
amount of ATP might lead to a weak cytoskeleton with many
defects and a low value of � �39,75�. The cytoskeleton of the
echinocyte, which has little ATP, may be idealized as an
hexagonal lattice. On the other hand, the discocyte that has
significant ATP may show many defects and larger “holes” in
its spectrin network. These defect regions may be respon-
sible for the fact that our model cannot fit the discocyte data
for q�0.008 nm−1. The skeleton of the stomatocyte, with
even more ATP than the discocyte, may have so many ATP-
induced defects that the cytoskeleton behaves almost as a
uniform amorphous network �86� and that there are no longer
any strong inhomogeneities. This interpretation is consistent
with our fits using the continuum model, but with different
values of the parameters.

Our model describes the fluctuation spectrum at wave
vectors q�0.008 nm−1 with elastic parameters that are simi-
lar to those found in other experiments. At these small wave
vectors, the shear modulus obtained from the fluctuation ex-
periments is even larger than the values found in many static
deformation experiments. The larger values of � compared
to values obtained by static deformations might be qualita-
tively explained by dynamic rearrangement of the cytoskel-
eton and strain softening �35,39,86,87�. The puzzle of an
apparently very soft membrane, found in fluctuation mea-
surements, and a stiff membrane, found in static deformation
experiments, thus seems to be due to processes that mainly
contribute to the spectrum at wave vectors q�0.008 nm−1.

An extended experimental study with several stomato-
cytes, discocytes, and echinocytes would be desirable. The
evaluation of averages �h�q1�h�−q2�� with q1�q2 could shed
light on the nature of possible noncontinuum fluctuations at
larger wave vectors, while a change of the viscosity of the
buffer, starvation, or blocking of ATP processes could further
clarify the role of active effects.
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APPENDIX A: DETAILS FOR COUPLED-MEMBRANE
FLUCTUATIONS

The total free energy in Eq. �7� consists of �a� the free
energy of the model Hamiltonian,

F0 =
kBT

2 �
q

ln�G1�q�G2�q� − Gm
2 �q�� + cF0

, �A1�

where cF0
is independent of all propagators Gx; �b� the aver-

age over the model Hamiltonian, which is a constant; �c� the
averages over the bending terms with respect to the model
Hamiltonian,

�H1�0 =
1

2�
q

�1�q�q4 G2�q�
G1�q�G2�q� − Gm

2 �q�
�A2�

and

�H2�0 =
1

2�
q

�s�q�q4 G1�q�
G1�q�G2�q� − Gm

2 �q�
; �A3�

and �d� the interaction term

�Hm�0 = �2
v0L2e−2
2d2/�2

�
, �A4�

with �2=s1+s2+2sm and sx= �2
 /L�2�qGx�q� / �G1�q�G2�q�
−Gm

2 �q��.
The total free energy in Eq. �7� is minimal at equilibrium;

thus, its derivatives with respect to the three propagators
need to vanish. The set of coupled equations

0 =
�F

�G1�q�
=

kBT

2

G2�q�
G1�q�G2�q� − Gm

2 �q�

−
q4

2

�1G2
2�q� + �2Gm

2 �q�
�G1�q�G2�q� − Gm

2 �q��2

−
−4

2

G2
2�q� + Gm

2 �q� + 2G2�q�Gm�q�
�G1�q�G2�q� − Gm

2 �q��2 , �A5�

0 =
�F

�G2�q�
=

kBT

2

G1�q�
G1�q�G2�q� − Gm

2 �q�

−
q4

2

�1Gm
2 �q� + �2G1

2�q�
�G1�q�G2�q� − Gm

2 �q��2

−
−4

2

G1
2�q� + Gm

2 �q� + 2G1�q�Gm�q�
�G1�q�G2�q� − Gm

2 �q��2 , �A6�

and

0 =
�F

�Gm�q�
= − kBT

Gm�q�
G1�q�G2�q� − Gm

2 �q�

+ q4Gm�q�
�1G2�q� + �2G1�q�

�G1�q�G2�q� − Gm
2 �q��2

+ −4G12m�q�Gm�q� + G1�q�G2�q�
�G1�q�G2�q� − Gm

2 �q��2 . �A7�

where G12m�q�=G1�q�+G2�q�+Gm�q� needs to be solved
self-consistently, together with

−4 = v0�2
�5/24
2d2 − �2

�5 e−2
2d2/�2
. �A8�

Equations �A5�–�A7� can be shown to reduce to

G1�q� =
�1�q�q4 + kBT−4

kBT
, �A9�

G2�q� =
�2�q�q4 + kBT−4

kBT
, �A10�

Gm�q� = − −4. �A11�

The limits for small and large −4 can be discussed in
general for a coupling of membranes with arbitrary propaga-
tors. The effective propagators are

G1�q� =
M1�q� + kBT−4

kBT
, �A12�

G2�q� =
M2�q� + kBT−4

kBT
, �A13�

Gm�q� = − −4, �A14�

with the propagators of the independent membranes Mx. The
expansions for small −4 are

�	h1�q�	2� = 
 L

2

�2 kBT

M1�q�1 −
1

M1�q�
−4

+
M1�q� + M2�q�
M1

2�q�M2�q�
�−4�2� , �A15�

�	h2�q�	2� = 
 L

2

�2 kBT

M2�q�1 −
1

M2�q�
−4

+
M1�q� + M2�q�
M2

2�q�M1�q�
�−4�2� , �A16�

�	h2�q� − h1�q�	2� = 
 L

2

�2kBT�M1�q� + M2�q��

M1�q�M2�q�

�1 −
M1�q� + M2�q�
M1�q�M2�q�

−4

+
�M1�q� + M2�q��2

M1
2�q�M2

2�q�
�−4�2� ,

�A17�

up to second order in −4. The expansions for large −4 are

�	h1�q�	2� = 
 L

2

�2 kBT

M1�q� + M2�q�1 +
M2

2�q�
M1�q� + M2�q�

1

−4

−
M2

3�q�M1�q�
�M1�q� + M2�q��2

1

�−4�2� , �A18�
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�	h2�q�	2� = 
 L

2

�2 kBT

M1�q� + M2�q�1 +
M1

2�q�
M1�q� + M2�q�

1

−4

−
M1

3�q�M2�q�
�M1�q� + M2�q��2

1

�−4�2� , �A19�

�	h2�q� − h1�q�	2�

= 
 L

2

�2

kBT 1

−4 −
M1�q�M2�q�

M1�q� + M2�q�
1

�−4�2� , �A20�

up to second order in 4.

APPENDIX B: EFFECTIVE BENDING RIGIDITY
FOR SOLID MEMBRANES

In this appendix, details of the renormalization of the
bending rigidity of a nearly planar solid membrane and an
effective fluctuation potential that occurs for solid mem-
branes with an average local curvature are presented. The
discussion is based on Refs. �51,53,54�.

1. Shear-bending renormalization
for almost planar membranes

The fluctuations of a nearly flat solid membrane can be
described at large wave vectors by a wave-vector-
independent bending rigidity. The interaction between bend-
ing and shear modes leads to a renormalization of the wave-
vector-independent bending rigidity that increases the
effective bending rigidity at small wave vectors �53,54�,

�R�q� = �c + K0kBT� d2k

�2
�2

�q̂iPij�k�q̂j�2

�	k + q	4
. �B1�

The projection operator Pij�k�=�ij −kikj /k2 is Pxx=1−kx
2 /k2

for q̂i= q̂j = q̂x. The renormalized bending rigidity in x direc-
tion is

�R�q� = �c +
K0kBT

�2
�2 �
0

�

dk�
0

2


d�
k�1 − cos2 ��2

��k2 + q2 + 2kq cos ��2 .

�B2�

In the limit of small q, �R in Eq. �B1� can be calculated
self-consistently using the assumption �R=�=�rq

−1 and �c
=0. We obtain �55�

�rq
−1 =�kBTK0

4


1

q
. �B3�

For large q, we use �=�c �which is independent of q� in
the integral in Eq. �B2�. After substituting y=k /q, we evalu-
ate the integral and obtain the perturbative result for the
shear-bending interaction:

�R�q� = �c +
3kBTK0

16
�c

1

q2 . �B4�

In both equations, the bulk compression modulus K0 is
�51�

K0 =
4��� + ��

2� + �
, �B5�

where �=−2�� / ��−1�. If the area is fixed �e.g., if a polymer
network is attached to a lipid bilayer�, �=1/2 and K0=3�.
For a free polymer network, �=−1/3 �6� and K0=4� /3.

2. Confinement potential for a membrane with shear
that has a nonzero average curvature

For a membrane with shear elasticity, the fluctuation be-
havior differs considerably depending whether the average
membrane shape is curved or planar. If the average mem-
brane shape is planar, only the wave-vector-independent
bending term or the renormalized bending rigidity due to the
interaction between bending and shear modes contributes. If
the average membrane shape is curved, an additional con-
finement potential contribution appears.

The free energy to stretch a membrane with shear elastic-
ity can be written as integral over the membrane area S �51�,

Fp =
hs

2
�

S

dSu�����. �B6�

The thickness of the solid membrane, hs, the deformation
tensor u��, and the stress tensor ��� enter the integral. The
stress tensor is given by

��� =
E

1 − �2 ��1 − ��u�� + ����u��� , �B7�

with Young modulus E and the Poisson ratio �.
In order to calculate the confinement potential, the

stretching contributions due to a homogeneous increase h of
the radii of a sphere and a cylinder with radii R are calcu-
lated. Only in-plane stretching can balance the forces of in-
creased radii. Thus the nonzero components for the stretch-
ing tensor for a sphere are u��=h /R and u��=h /R, and for a
cylinder, u��=h /R. The stretching energies for sphere and
cylinder become

Fp,sph =
Ehs

1 − �2 � dS
 h

R
�2

�B8�

and

Fp,cyl =
Ehs

2�1 − �2� � dS
 h

R
�2

�B9�

respectively. Expressed in terms of mean curvature
H= �c1+c2� /2 and Gaussian curvature K=c1c2, where c1 and
c2 are the two principal curvatures, the potential term in the
Hamiltonian is

Hp =
Ehs

1 − �2 � dS�2H2 − K�h2 �B10�

=4�� dS�2H2 − K��h2, �B11�

where �=Ehs /2 / �1+�� and �=1/2 have been used.
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APPENDIX C: INTERACTION LENGTH �,
CHARACTERISTIC WAVE VECTOR q̃,
AND CROSSOVER WAVE VECTOR q+

The confinement potential term due to the excluded-
volume interaction, kBT−4, and thus the interaction length ,
as well as a characteristic wave vector q̃, can be estimated
for the fluid-fluid and the solid-solid system by extension of
Helfrich’s original argument for one fluid membrane be-
tween two walls �8�. The sum of the mean-squared fluctua-
tion amplitudes of both membranes must cover the available
volume, so that

�h1
2�r�� + �h2

2�r�� = �d2, �C1�

with � a number of the order of unity, but ��1. An ansatz in
which an excluded-volume potential � is added to each
propagator,

1

4
2�
0

�

dq kBT

�1q4 + �1
+

kBT

�2q4 + �2
� = �d2, �C2�

is used to restrict fluctuation amplitudes subject to the con-
straint of Eq. �C1� �88�. When both membranes are identical,
�=�1=�2 and �=�1=�2, the confinement potential can be
expressed through a characteristic wave vector q̃. In the case
of two fluid membranes, �= q̃4� f, and in the case of two solid
membranes, �= q̃3�r. The physical meaning of q̃ is to char-
acterize the typical in-plane distance between interactions of
the membranes.

In the limit v0→�, only one energy and one length enter
the equations. Thus all lengths in this subsection, , 1 / q̃, and
1/q+, show the same scaling with � f, �, and d. Because of
the different definitions of these physical quantities, the pref-
actors differ.

For two fluid membranes—i.e., �=� f—the result derived
by Helfrich is

q̃ =
1

2
�kBT

� f�

1

d
. �C3�

The characteristic wave vector increases for smaller d as well
as for smaller � f. The corresponding interaction length is

 = 
 kBT

�
�1/4

= 
 kBT

� fq̃
4�1/4

=
2�1/2� f

1/4d

�kBT�1/4 . �C4�

For two solid membranes, we obtain from Eq. �C2�

q̃ =
2

3�3

kBT

�r�d2 =
4�


9

�kBT

�d2��
. �C5�

The corresponding interaction length is

 = 
 kBT

�
�1/4

= 
 kBT

�rq̃
3�1/4

� d3/2�1/4. �C6�

In Fig. 7, we see that the predicted scaling behaviors for
both fluid and solid membranes are reproduced by our more
microscopic model described in Sec. II. The scaling expo-
nents obtained by numerical solution of our model �Eqs.
�9�–�11� and � given after Eq. �A4�� are slightly smaller than
those expected from simple scaling where the only energy

and length scales in the system are � �or �� and d. Our
theory, which includes an additional length scale associated
with the excluded volume, approaches the values obtained by
simple scaling in the limit v0→�. The free energy for the
solid membranes scales like d−4, and the free energy for the
fluid membranes scales like d−2; both increase strongly at
small d. Since the strength of the contact interaction, v0, is
finite, at small enough d the membranes will significantly
interpenetrate. This leads to a modification of the scaling,
which is clearly visible for the solid membranes in Fig. 7.

For the numerical result of the fluid-solid membrane pair,
a crossover is observed between the solidlike scaling of  at
small d where �d3/2 and fluidlike scaling at large d where
�d. At small d, coherent long-wavelength fluctuations are
suppressed. The bending modulus of the solid membrane for
small-wavelength fluctuations is small and the fluid mem-
brane is stiff compared with the solid membrane. The system
acts like a solid membrane next to a planar wall. At large d,
coherent long-wavelength fluctuations are permitted with a
consequent strong renormalization of the bending modulus
of the solid membrane. The solid membrane is stiff com-
pared to the fluid membrane; the system acts like a fluid
membrane next to a planar wall. This crossover is further
discussed in Sec. IV.

Consequently, for a fluid-solid system at a fixed spacing,
either fluid and solid scaling can be obtained for different
values of the elastic parameters. A large shear term and a
small bending term leads to fluidlike scaling behavior for the
interaction length , while a large bending term and a small
shear term leads to solidlike scaling behavior. If the rescaled
numerical results for several values of � and � are plotted as
a function of d /d* �d* defined in Sec. IV�, the crossover in
the slope for d�d* and d�d* is clearly visible; see Fig. 8.
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FIG. 7. Interaction distance  as a function of d for different
systems: two fluid membranes with � f =3kBT �dashed line�, two
solid membranes with �=30kBT nm−2 �dash-dotted line�, one solid
and one fluid membrane with � f =30kBT and �=30kBT nm−2 �dot-
ted line�. In all cases, v0=1kBT nm−1. The numerical result for the
solid membranes has been multiplied by 100, the result for the
fluid-solid membrane pair by 10. For the fluid-solid system, a cross-
over from the solidlike scaling at small d to the fluidlike scaling at
large d is observed.
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The scaling ̃�d /d* and ̃��d /d*�3/2 follows from Eqs.
�C4� and �C6�, respectively.

The wave vector that characterizes the crossover between
coupled and uncoupled fluctuations of both membranes, q+,
can be estimated by calculating the conditions under which
the ratio of the mean squared fluctuations of the distance of
both membranes compared with the relative mean squared
fluctuations of the distance of two non-interacting mem-
branes is of order unity �here taken to be 1/2�:

1

2
=

�	h2�q+� − h1�q+�	2�
�	h2�q+� − h1�q+�	2��

. �C7�

The index � indicates the limit d→� when the membranes
do not interact. In that case, the distance fluctuations of the
non-interacting membranes are given by the sum of the mean
squared fluctuation amplitudes of both membranes. This sum
is always finite and becomes larger when the values of the
elastic constants decrease—whereas the numerator of the
right-hand side of Eq. �C7� decreases for smaller values of
the elastic constants �see Eq. �13� and discussion thereafter�.

APPENDIX D: FREE ENERGY
PER MEMBRANE AREA

The differences between the free energy per unit area for
finite values of d and for free membranes �d→�� can be
derived using scaling arguments,

�f f �
�kBT�2

� f�d2 �D1�

for the fluid membranes and

�fs �
�kBT�2

��2d4 �D2�

for the solid membranes �7�. To calculate the d dependence
of the free energy and, hence, of the repulsive pressure be-
tween the membranes with the coupled membrane model,
Eqs. �9�–�11� must be solved self-consistently. Using Eq. �7�,
the difference between the free energy of the interacting
membranes and the free energy of two non-interacting mem-
branes �d→�� can then be evaluated numerically. For a
bending rigidity � f =10kBT, an interaction parameter v0
=0.1kBT nm−1, and several values of d, the free energy dif-
ferences per membrane area are plotted as a function of � in
Fig. 9. The parameters chosen are appropriate for the red
blood cell membrane �18,32–35,62–65�. In the context of the
red blood cell, this figure thus shows the influence of the
degrees of freedom of the spectrin network on the depen-
dence of the free energy on the bilayer-spectrin spacing and,
hence, the interactions �89�. The fluctuating membrane ap-
proach is an extension of models in which the spectrin is
considered as a hard wall that only restricts the bilayer fluc-
tuations; see, e.g., Ref. �25�.

For the distances d=30, 35, and 50 nm, a clear crossover
in the free energy as function of � can be observed. As
discussed above, for large shear moduli the fluid behavior
dominates; �f depends only marginally on �, since the solid
membrane acts like a hard wall. For small shear moduli,
fluctuations of the solid membrane dominate; �f ��−1 is
expected for simple scaling and two solid membranes. In
Fig. 9, the observed scaling exponent is larger than −1, due
to the finite values of v0 and � f. The decreasing slope of �f
for large � indicates the increasing importance of the fluc-
tuations of the fluid and the decreasing importance of the
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FIG. 8. Interaction parameter as function of d /d*, where d* is
the crossover between fluid and solid scaling upon changes of d.
The  values have been rescaled in order to allow easy comparison
of the slopes. All numerical results are for v0=103kBT nm−1, un-
scaled distances 2�d�1000nm, and membrane pairs with �1

=3kBT nm−1 and �1=300kBT �d1
*=48nm�, �2=30kBT nm−1 and �2

=300kBT �d2
*=15nm�, �3=30kBT nm−1 and �3=30kBT

�d3
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*=1.5nm�, and �6=300kBT nm−1
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FIG. 9. Free energy difference per unit area between the com-
posite membrane and the sum of the free energies of the noninter-
acting membranes for v0=0.1kBT nm−1 and several values of d
�from top to bottom: d=20,25,30,35, 50 nm�. The numerical re-
sults are plotted as function of � using � f =10kBT. Larger values of
� f decrease the free energy differences for small values of �. Slopes
that are closer to the expected scaling of a polymerized membrane,
�f ��−1 �Eq. �D2��, are obtained for larger values of v0 and small
values of �.
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fluctuations of the solid membrane. Variations of � f �not
shown in Fig. 9� mainly affect the values of �f for large �
�Eq. �C3��. At very large values of �, the solid membrane
hardly fluctuates; the fluctuation free energy arises from the
fluctuations of the fluid membrane and is thus independent of
�. Since � f enters the free energy in the denominator �Eq.
�D1��, a larger value lowers the free energy difference �f
and, hence, the interactions.

APPENDIX E: COUPLED MEMBRANE MODEL vs
SINGLE EFFECTIVE MEMBRANE, CHOICE

OF EFFECTIVE BENDING RIGIDITY

For the RBC, the fluctuations of the spectrin cytoskeleton
at the wave vectors measured in the experimental data are in
a regime where the shear-bending renormalization of the
spectrin bending modulus is significant and Eq. �19� applies.
In addition, since the membrane of the RBC has an average
mean curvature of the order 4�10−4 nm−1, the confinement
potential term in Eq. �21� must be added to further constrain
the fluctuations.

We now compare the coupled membrane model in the two
regimes of self-consistent and perturbative shear-bending in-
teraction with the experimental data. The mean-squared fluc-
tuation amplitudes �	h�q�	2�=kBT / ���q�q4� of both experi-
ment and theory are normalized by the fluctuation
amplitudes of a noninteracting fluid membrane, �	h25�q�	2�
=1/ �25q4�, where the subscript 25 refers to our choice of
�=25kBT, which is a reasonable value for a lipid membrane
�18,62–64,90�. The normalization emphasizes the data at
large q and highlights a sudden increase of the fluctuation
amplitudes at q�0.008 nm−1 �25�. In the theory, we estimate
that because of the relatively large mesh size �compared with
the lipid spacing�, the constant bending rigidity of the spec-
trin network is small, �c�0.1kBT �25�. The average cell
shapes, needed to determine the potential strengths �, are
taken from Ref. �69�.

The theoretical estimate of the crossover wave vector for
the shear-bending renormalization of the spectrin network
alone is q*�0.07 nm−1, which is well above the wave vec-
tors of the experimental data, q�0.015 nm−1 �91�. We are
thus in a regime where the bending modulus of the spectrin
layer is strongly renormalized and use the effective bending
rigidity �rq

−1+�q−4 for the spectrin layer, and a constant
bending rigidity �b for the bilayer. From the fit with the
coupled membrane model to the experimental data at small
q, we obtain �b=4kBT and �=1.4�10−2kBT nm−2 �66�; see
Fig. 10. Both values of the fit parameters are subject to un-
certainties. The value of � depends on the shape of the cell
which is not exactly known for the cell under consideration
and the average over the entire cell area to obtain � is cer-
tainly approximate. More importantly, experimental mea-
surements of the fluctuation spectrum are usually based on a
rectangular section of the cell surface and not on the entire
area of the cell. The estimate of �b in our fit suffers from the
lack of data points at large q; the largest value of �b that still
fits the experiment up to the jump has been chosen �92�.

In Fig. 10, the fluctuation spectrum of the coupled mem-
brane model is compared with the spectrum of a single ef-

fective membrane, �h�q�2�=kBT / ��1�q�q4�, with bending ri-
gidity �1�q�=�b+�rq

−1+�q−4, using the same elastic
constants as derived from the fit discussed in the last para-
graph. In the range of the experimental data, the two models
�coupled membranes and single effective membrane� are in-
distinguishable, since the fluctuations of the bilayer and the
cytoskeleton are strongly coupled. Because of the strong
coupling, the fluctuation spectrum is insensitive to the exact
values of v0 and d. Thus, the finite spacing and individuality
of each membrane, bilayer and spectrin, cannot account for
the jump observed in the experimental data. Furthermore,
since the coupling by a homogeneous pressure that maintains
the average spacing of both layers is a smaller coupling com-
pared to coupling by real anchor proteins �which leads in a
continuum approach to the same value of d�, we conclude
that effects due to discrete, periodic coupling cannot explain
the sudden increase of the fluctuation amplitudes.

For strongly coupled membranes, the constant bending
rigidity that should now be used to calculate q* is the bend-
ing rigidity of the lipid bilayer, �b, instead of the bare spec-
trin bending modulus �c. When this is done, the value of q*

decreases significantly and the single effective membrane is
no longer in the regime where the shear modes strongly
renormalize the bending modes. Thus, the perturbative term
�pq−2 seems more appropriate for the renormalization of the
spectrin bending modulus than the �rq

−1 term used earlier.
Since we do not know a priori the value of the elastic con-
stants obtained with the perturbative term, we also fit the
experimental data using an effective, single membrane with
bending modulus �2�q�=�b+�pq−2+�q−4. We now obtain
�b=8kBT and �=1.2�10−2kBT nm−2. �The discrepancy be-
tween the small values of �b found in the fits and the value
�b=25kBT expected for a typical lipid membrane is dis-
cussed in Sec. V C in terms of ATP activity �93�.�
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FIG. 10. �Color online� Discocyte fluctuation data of Ref. �36�
and theoretical models. The experimental fluctuation amplitudes are
normalized by the fluctuation amplitudes of a free membrane with
�=25kBT, �h25

2 �. The coupled membrane model �dotted line�, a
single membrane with an effective bending rigidity �1�q�=�b

+�rq
−1+�q−4 �dashed line�, and a single membrane with an effec-

tive bending rigidity �2�q�=�b+�pq−2+�q−4 �solid line�. In the in-
set, our model of two membranes that fluctuate at fixed spacing d is
sketched.
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Both approaches, the self-consistent, �1�q�, as well as the
perturbative, �2�q�, agree with the low-q data, shown in Fig.
10. The values of the shear moduli found in both fits are
similar, but the fitted values of the bending moduli of the
lipid bilayer differ by a factor of 2. To decide which fit to
use, we compare the relative contributions to the effective
bending rigidities in both cases, shown in Figs. 11 and 12.
The strong dominance of the potential term �q−4 at small q
results in similar values of the shear moduli in the fits with
either �1�q� or �2�q�. Figure 11 shows the crossover between
�rq

−1 and �b in the range of the wave vectors of interest. We
see that the use of �rq

−1 is not justified, because for the
derivation of this contribution it has been assumed that the
renormalized bending rigidity �rq

−1 is much larger than the

constant contribution to the bending rigidity. This is not the
case in Fig. 11. In Fig. 12, it is shown that the perturbative
contribution to �2�q�, �pq−2, never accounts for more than
30% to the total bending modulus. This indicates that the
perturbation approach is consistent and that �2�q� is more
appropriate than �1�q�.

The perturbation theory �2�q� is consistent and appears
more appropriate than the self-consistent theory �1�q�. We
use the perturbation result to analyze the fluctuation data for
several cells in Secs. V B and V C. The perturbative term in
�2�q�, arising from the coupling of the shear and bending
modes, gives an alternative physical origin for the large sur-
face tension term used in the fits in Ref. �25� and is indeed
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