
Asymptotic analysis of tracer diffusivity in nonadsorbing polymer solutions

Tai-Hsi Fan,1 Bin Xie,1 and Remco Tuinier2

1Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269-3139, USA
2Forschungszentrum Jülich, Institut für Festkörperforschung, Soft Matter, D-52425 Jülich, Germany

�Received 13 August 2007; revised manuscript received 18 October 2007; published 16 November 2007�

We present an asymptotic and scaling analysis of the long-time self-diffusivity of a Brownian spherical
particle in dilute polymer solutions with nonadsorbing chains. The polymer depletion zone near the particle
surface is described by a continuous polymer density profile. Hydrodynamics formulated by the modified
Stokes equation with nonuniform viscosity is solved by a regular perturbation approximation using the Green
function method. The asymptotes predict how polymer depletion alters the friction a spherical particle expe-
riences during translational and rotational motion within a quiescent fluid. The analysis agrees very well with
full numerical computation, which enables us to investigate the scaling law for the polymer-mediated retarda-
tion effect using a stretched exponential form that is commonly applied by experimentalists. The scaling
exponents revealed are consistent with the nominal values from collected experiment observations.
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I. INTRODUCTION

Self-diffusion is a transport process due to random mo-
lecular motions excited by thermal fluctuations �1–3�, which
plays an important role affecting mass transport in many bio-
logical and colloidal systems. Being able to predict self-
diffusivity is essential for advancing the fundamental under-
standing of particle transport in a microenvironment
containing biopolymers such as DNA, actin, polysaccharide,
globular protein, and macromolecular drugs. Self-diffusivity
in a crowded environment strongly affects diffusion-limited
reaction kinetics �4–6� and protein-protein association rates
�7,8�. The crowding effect also complicates the stability and
folding kinetics of proteins �9�, and therefore will further
influence proteins’ self-diffusivity. From an application point
of view, probing self-diffusivity is important for the devel-
opment of a variety of polymer characterization methods and
novel medical devices for diagnostic or therapeutic purposes
such as the delivery of quantum dots and molecular beacons
for cancer detection and microsurgery, and the use of bio-
chips for fast drug screening.

In the zero-frequency limit, the long-time self-diffusivity
of dilute Brownian particles can be accurately predicted by
Fick’s law. The translational mobility �inverse of the friction
coefficient� is defined by the particle’s moving velocity di-
vided by the fluid drag force as if the particle is pulled
through the fluid �2,10�. In a homogeneous fluid, the Brown-
ian particle’s self-diffusivity is characterized by the Stokes-
Einstein relation. Similarly, the resistant shear force and
torque are generated if the particle is rotating within the
fluid. For the no-slip case, Kirchoff obtained the formula for
the resulting torque already in 1876 �11�, and the connection
to rotational mobility and the rotational diffusivity was first
documented by Debye �12�. However, in polymer solutions,
such a prediction is not accurate because the particle’s dy-
namics is strongly affected by the background polymer
chains suspended in the medium or even more so by a fixed
polymer network �13�. A recent study revealed that the mul-
tiscale viscosity has a crossover regime depending on the
typical length scale in the crowded polymer environment

�14�. Clearly, the hydrodynamics is complicated by the spa-
tial and temporal scale involved, rendering both theoretical
and experimental analysis of self-diffusivity fairly difficult
and speculative.

To be able to explain how biomacromolecules such as
proteins move in cells and how the complex internal struc-
ture of cells hinders transport of solutes like proteins, mea-
surements for a broad range of biomolecules and colloidal
particles through a variety of polymer solutions were per-
formed extensively over the last few decades. Techniques
that were used are tracer diffusion, photobleaching recovery,
sedimentation, and dynamic light scattering; see, for ex-
ample, Refs. �15–25�. These experimental studies have
shown that when colloidal particles move through media
containing nonadsorbing chains, the particles’ mobility is ac-
tually larger than what would be expected based on the bulk
viscosity. An important reason for that is because polymer
chains tend to be away from the region surrounding the par-
ticle due to a loss of configuration entropy near the surface.
This region is called the depletion zone. Such a depletion
zone can reduce the viscous drag the particle experiences,
and thus alters the particle’s translational and rotational dif-
fusivity �26,27�. In a more complicated scenario, when par-
ticles interact with each other, the overlap of depletion zones
further introduces attraction between the particles due to the
asymmetric distribution of the osmotic pressure �28–31�. Un-
derstanding depletion forces is critical in modulating disper-
sion stability and coagulation kinetics of colloidal systems
and is relevant for several processes in food, pharmaceutical,
and cosmetic industries. In microrheology �32–35� it is pos-
sible that the polymer depletion affects the frequency-
dependent rheological properties of a complex fluid includ-
ing polymer chains.

Early theoretical work including Ogston et al. �36�,
Cukier �37�, and Ngai and Phillies �38� suggested an expo-
nential scaling relation to explain the deviation of the effec-
tive viscosity from the bulk viscosity. Odijk �39� estimated
protein transport in semidilute polymer solutions and pro-
posed a generalized stretched exponential function based on
many experimental studies. Experimentalists frequently use
such stretched exponential functions; see, for instance, �17�.
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The stretched exponential function is empirical and has not
been justified theoretically. Our theory presents a feasible
test for the applicability of the stretched exponential form
used in practice and serves as a reference for the design of
new experiments. All of the scaling parameters in this paper
are phenomenologically inferred. The dynamic similarity of
the retardation behavior for the decoupled translational and
rotational motion is controlled by the apparent depletion
thickness and the bulk polymer concentration. Details are
given in Sec. IV B.

Kang et al. �40,41� have studied translational diffusion of
dilute spheres through a network of freely suspended hard
rods. In their approach, the hydrodynamic interactions be-
tween the suspending polymer chains and the spherical par-
ticle are directly accounted for. An alternative route to tackle
our problem is to translate the presence of the polymer
chains in solutions surrounding the sphere into an effective
viscosity profile. Rather than simplifying the concentration
profile as we proposed recently �26,27�, here we use a real-
istic polymer chain concentration, and hence a continuous
viscosity profile near a spherical particle. We present a regu-
lar perturbation approximation for the resistance force the
sphere experiences based on the modified Stokes equation. In
the zero-frequency limit, the longest relaxation time in the
polymer solution is assumed to be very short to such a de-
gree that the depletion layer does not deform while the
sphere is moving. For small particles it can be shown that
this is a fair approximation �39�. Analytical solutions for
fluid flow problems with nonuniform viscosity are rarely
seen in the literature except for boundary layer problems that
have similarity solutions. A few relevant models, using the
series expansion method, were developed for quantifying ion
mobility in a viscous fluid �42–44�. Here we use a regular
perturbation technique and the Green function integral solu-
tion to resolve the local viscosity effect. Assisted by numeri-
cal verification, we found that the asymptotic solutions are
accurate for a broad range of depletion thicknesses. The nu-
merical results also confirmed that the asymptotic solutions
in the dilute limit well complement the results obtained by
the two-layer model we recently developed �27�, which is
applicable for particles with a thin depletion layer containing
relatively small polymer chains. The full numerical calcula-
tion is extended to the more practical semidilute regime, for
which we also analyze the scaling behavior of the retardation
function based on Odijk’s generalized form �39�, and finally
provide an approximation of the scaling law for the reduced
tracer diffusivity in semidilute polymer solutions.

II. ASYMPTOTIC ANALYSIS

A. Modified Stokes system

The linearized equation of motion for the low Reynolds
number fluid flow is given by

� · � = 0, � = − p� + ���v + ��v�T� , �1�

where � is the total stress, p is the pressure, � is the Kro-
necker delta, � is the dynamic viscosity, superscript T de-
notes the transpose of a tensor, and �v+ ��v�T is two times

the strain rate tensor. The fluid density variation in the poly-
mer solution is negligible, and the velocity field is diver-
gence free. Expanding the divergence term in Eq. �1� and
taking into account the viscosity gradient and the continuity
equation, � ·v=0, we have

0 = − �p + ��2v + �� · ��v + ��v�T� , �2�

where � is now a function of the local polymer concentration
that varies with distance from the sphere surface. Next we
shall specify the bulk viscosity of polymer solutions and the
local viscosity near the particle surface. The bulk viscosity of
a polymer solution �p can be generally written as

�p = �s�1 + ���cb + ¯ � , �3�

where ��� is the intrinsic viscosity that equals the hydrody-
namic volume of a polymer chain in solution per unit mass
and is close to 1/cb

*, with cb
* the polymer overlap concentra-

tion. The higher concentration terms can be expressed in a
general fashion as a function of �= ���cb. The semiempirical
Martin equation can be used for correlating the bulk viscos-
ity of polymer solutions up to high polymer concentrations
�45�. This exponential form is consistent with the Huggins
equation in the dilute regime �Fig. 1�. For very dilute con-
centrations, a linear approximation is sufficient.

The local depletion effect is illustrated in Fig. 2. It is
assumed that the polymer relaxation time is much faster than
the particle motion time scale, and thus the depletion zone
does not distort while the sphere is moving, that is, the Péclet
number is small and the convective effect is negligible.
Based on the mean-field approximation, de Gennes �46� de-
rived an analytical concentration profile of polymer segments
near a nonadsorbing planar wall for a semidilute polymer
solution. The nonlinear concentration profile gradually in-
creases from a vanishing value at the particle surface to the
bulk value beyond the near-field regime �46,47�. The local

FIG. 1. Relative bulk viscosity �p with respect to the solvent
viscosity �s vs bulk polymer concentration cb following the Martin
equation, Huggins equation, and the exact linear result �p=�s�1
+ ���cb� in dilute polymer solutions. Here kH is the Huggins coef-
ficient, which we set at a value of 0.5 that is at variance with
experimental observations and ��� is the intrinsic viscosity.
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viscosity follows the polymer concentration distribution and
also gradually increases from the surface to the bulk �48�.
The one-dimensional nonlinear concentration profile is ex-
tended to a spherically symmetric surface �49�, and has a
general dimensionless form

��r� = �r − 1 + tanh� r − 1

d
��2	 r2 �4�

for the radial distance 1�r=r* /a�� �Fig. 2�, where ��r�
=c�r� /cb, the normalized segment concentration, is the ratio
of local polymer concentration c�r� and the bulk concentra-
tion cb, and d=d* /a is the dimensionless characteristic
depletion thickness. Note that r and d are scaled by the par-
ticle radius a.

In the dilute limit the depletion thickness d* is close to the
polymer’s radius of gyration �47�, whereas in semidilute con-
ditions, d* is close to the correlation length �49�. The local
viscosity ��r� for a spherically symmetric system connects to
the polymer concentration profile ��r� as �48�

��r� = �s
1 + ���cb��r�ekH���cb��r�� , �5�

and thus in the dilute regime,

��r� = �s
1 + ���cb��r� + kH����cb��r��2 + ¯ � . �6�

In the bulk, where �=1, Eqs. �5� and �6� are identical to the
Martin and Huggins equations, respectively.

Intuitively, it is expected the effective viscosity �eff lies in
between the viscosities of pure solvent �s and polymer solu-
tion �p, and the corresponding Stokes-Einstein and Stokes-
Einstein-Debye relations �22,25� can be modified by effec-
tive viscosities, formulated as Deff

t =kBT / �6��eff
t a� and Deff

r

=kBT / �8��eff
r a3�, where D is self-diffusivity, kBT is the ther-

mal energy, and �eff
t and �eff

r are effective viscosities for
translational and rotational motion, respectively. Our first
goal is to find the viscosity correction functions gt and gr,
defined as �eff

t =�sg
t and �eff

r =�sg
r, so that the modified

Stokes law and the decoupled translational and rotational
Stokes-Einstein relations can be resolved.

B. Translational mode

The small, positive, and fixed dimensionless number �,
defined by �= ���cb, is selected for a regular expansion in the
dilute limit. Substituting the continuous viscosity profile up
to second order in concentration, ���s�1+��+kH�2�2�, into
the momentum equation, the second-order approximation of
the Stokes equation can be written in a dimensionless form

0 � − �p + �2v + ����2v + �� · ��v + ��v�T��

+ �2�kH�2�2v + kH � �2 · ��v + ��v�T�� �7a�

for 1�r��, provided the characteristic scales for length,
velocity, stress field, and accordingly the total drag force F
as

length � a, v � U, � � �sU/a, F � �saU ,

where a is the particle radius, U=Uêz is the translational
velocity of the particle along the z axis, and �s is the solvent
viscosity corresponding to polymer concentration �=0. The
continuity equation is

� · v = 0. �7b�

In a quiescent fluid, the governing system is complemented
by the no-slip and vanishing far-field boundary conditions:

vr = cos 	, v	 = − sin 	 at r = 1, �8a�

vr, v	 → 0, and p → 0 as r → � . �8b�

The axisymmetric system can be simplified by the Stokes
stream function 
�r ,	� �10,50,51� using spherical polar co-
ordinates �r ,	 ,��, where 	 denotes the polar coordinate and
the flow pattern is symmetric in the azimuthal direction �.
The stream function 
�r ,	� is related to the velocity field v
=vrêr+v	ê	 by

vr =
− 1

r2 sin 	

�


�	
, v	 =

1

r sin 	

�


�r
.

We now look for the perturbation solution in terms of power
series in � by a regular expansion of pressure, velocity,
stream function, and vorticity, expressed as

p�r,	;�� � p0 + �p1 + �2p2,

vr�r,	;�� � vr0 + �vr1 + �2vr2,

v	�r,	;�� � v	0 + �v	1 + �2v	2,


�r,	;�� � 
0 + �
1 + �2
2,

��r,	;�� � �0 + ��1 + �2�2,

where �=��v denotes the vorticity. For an axisymmetric
system, it can be proven that the stream function 
 satisfies
the following relation �50,51�:

− � � � � � =
1

r sin 	
E4
ê�, �9�

where

FIG. 2. Schematic picture of a solution with nonadsorbing
chains around a spherical particle �left panel�, and normalized poly-
mer equilibrium concentration profiles � as a function of the radial
distance r for various values of the characteristic depletion thick-
ness d �right panel�. Both r* and d* in the left panel are the corre-
sponding dimensional values, respectively.
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E4 
 � �2

�r2 +
sin 	

r2

�

�	
� 1

sin 	

�

�	
��2

.

Substituting above expansions into Eqs. �7a�, �7b�, �8a�, and
�8b�, and then equating the coefficients of the like powers of
�, the leading-, first-, and second-order systems can be writ-
ten as

O��0�:

0 = � · v0,

0 = − �p0 + �2v0,

vr0 = cos 	, v	0 = − sin 	, at r = 1,

vr0,v	0 → 0, and p0 → 0 as r → � .

O��1�:

0 = � · v1,

0 = − �p1 + �2v1 + ��2v0 + �� · ��v0 + ��v0�T� ,

vr1 = v	1 = 0, at r = 1,

vr1,v	1,p1 → 0, as r → � .

O��2�:

0 = � · v2,

0 = − �p2 + �2v2 + ��2v1 + �� · ��v1 + ��v1�T�

+ kH�2�2v0 + kH � �2 · ��v0 + ��v0�T� ,

vr2 = v	2 = 0, at r = 1,

vr2,v	2,p2 → 0, as r → � .

By applying the trial solution 
�r ,	�= f�r�sin2 	�sin2 	�f0

+�f1+�f2� to the expansions and solving for the separated
radial function f�r�, the leading-order system leads to the
Stokes solution:


0 = � 1

4r
−

3r

4
�sin2 	 , �10a�

v0 = � 3

2r
−

1

2r3�cos�	�êr − � 3

4r
+

1

4r3�sin�	�ê	, �10b�

p0 =
3 cos 	

2r2 . �10c�

The total drag force F is calculated by the viscous dissipation
rate over the entire flow field induced by the moving particle,
or by the area integration of the pressure and shear stress
over the particle surface. The dimensionless result for the
Stokes law �10� states F=−6�êz, where the negative sign
shows that the force is opposite to the particle moving direc-
tion. We now proceed to resolve the first- and second-order
systems.

1. First-order approximation

By taking the curl of the momentum equation of the first-
order system and replacing ��2v0 by �� p0, we have

0 = � � �2v1 + �� � �p0 + � � 
�� · ��v0 + ��v0�T�� .

Applying the vector identity, �2v1=��� ·v1�−����v1,
the first term on the right-hand side of the above equation
can be replaced by −�����1, that equals E4
1 / �r sin 	�ê


in terms of the stream function. The second term reduces to
��� /r���p0 /�	�ê
. Because

êr · ��v0 + ��v0�T� = 2err0êr + 2e	r0ê	,

where err0 and e	r0 are the strain rate components from the
leading-order solution, the third term also has a component
in the 
 direction only. We thus simplify the momentum
equation to a scalar equation for the unknown function 
1,
expressed as

E4
1 = �� sin 	� �2vr0

�r�	
− r

�2v	0

�r2 −
�p0

�	
�

+ �� sin 	�v	0 − r
�v	0

�r
−

�vr0

�	
� , �11�

where the right-hand side is given by the leading-order solu-
tion, and �� and �� are the first- and second-order r deriva-
tives of the segment concentration profile defined by Eq. �4�.
Now substituting 
1�r ,	�=sin2�	�f1�r�, we obtain the sepa-
rated fourth-order ordinary differential equation �ODE�:

Lf1 = h1�r� , �12�

where

L 

d4

dr4 −
4

r2

d2

dr2 +
8

r3

d

dr
−

8

r4

is self-adjoint and has variable coefficients being continuous
in the interval 1�r��. The nonhomogeneous term is given
by

h1�r� = ��� 9

2r2 +
3

2r4� − ��� 3

2r3� . �13�

By taking 	 and r derivatives of the stream function 
1, the
first-order velocity field can be written as

v1 =
− 2 cos 	

r2 f1êr +
sin�	�

r
f1�ê	. �14�

From velocity boundary conditions we have

f1�r� = 0 at r = 1,

f1��r� = 0 at r = 1,

f1�r�/r2 → 0 as r → � ,

f1��r�/r → 0 as r → � . �15�

Because the associated homogeneous boundary-value prob-
lem of Eq. �12� admits only a trivial solution, implying the
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solution for f1 exists and is unique, we can now look for f1 in
terms of the Green function integration solution. Details of
the integral form and derivation of the Green function are
given in the Appendix. The radial function for the first-order
system can then be written as

f1��� = �
1

�

G1�r,��h1�r�dr + �
�

�

G2�r,��h1�r�dr , �16�

where h1�r� is given by Eq. �13� and the Green functions are

G1 =
− r4

30�
+

�

6
r2 +

1

12
� r

�
+

�

r
� −

�r

4
−

1

20�r
,

G2 =
− �4

30r
+

r

6
�2 +

1

12
� �

r
+

r

�
� −

r�

4
−

1

20r�
. �17�

Note that both integrands in Eq. �16� are smooth functions
within the corresponding interval.

2. Second-order approximation

By taking the curl of the second-order momentum equa-
tion and replacing the second-order velocity component by
the stream function 
2, after a lengthy simplification process,
the equation reduces to

Lf2 = h2�r� for 1 � r � � , �18�

where

h2�r� =
9���

r2 �kH −
1

2
� +

3���

r3 �1

2
− kH� −

3kH��2

r3 +
3���

r4

��kH −
1

2
� − �8��

r3 +
2��

r2 � f1 + �2��

r2 +
2��

r
� f1�

+ �2��

r
− ��� f1� − 2��f1�

depends on the lower-order solutions. Now considering the
second-order velocity field,

v2 =
− 2 cos 	

r2 f2êr +
sin�	�

r
f2�ê	, �19�

the corresponding boundary conditions for f2 are

f2�r� = 0 at r = 1,

f2��r� = 0 at r = 1,

f2�r�/r2 → 0 as r → � ,

f2��r�/r → 0 as r → � . �20�

Therefore the unique solution for f2 can be expressed as

f2��� = �
1

�

G1�r,��h2�r�dr + �
�

�

G2�r,��h2�r�dr �21�

for 1�r, ���, where the Green function is given by Eq.
�17�.

In summary, the perturbation approximation for the modi-
fied Stokes stream function and the velocity components are


�r,	;�� = 
0 + �
1 + �2
2 + ¯

� sin2 	�f0�r� + �f1�r� + �2f2�r�� ,

vr�r,	,�� �
− 2 cos 	

r2 �f0�r� + �f1�r� + �2f2�r�� ,

v	�r,	,�� �
sin 	

r
�f0��r� + �f1��r� + �2f2��r�� ,

where f0�r�=1/4r−3r /4, f1�r� and f2�r� are given by Eqs.
�16� and �21�. We note that Leibniz’s rule must be applied
when taking differentiation of f1 and f2 with respect to r, and
in the final results, the variables � and r have been switched
to comply the expression using r as an independent variable.

3. Stress field and total drag force

Based on the second-order approximation described
above, we further integrate the first- and second-order mo-
mentum equations and obtain the higher-order correction for
the pressure field:

p1�r,	� = cos 	� 3�

2r2 −
3��

2r3 −
4

r3 f1 +
2

r2 f1� − f1�� ,

and

p2�r,	� = cos 	�3kH�

r2 ��

2
−

��

r
� −

2

r2��� +
2�

r
� f1

+
2

r
��� +

�

r
� f1� − ��f1� − �f1� −

4

r3 f2 +
2

r2 f2� − f2�� .

At r=1, �, ��, G, and G� vanish. The corrected surface pres-
sure can then be simplified to

p�1,	;�� =
3

2
cos 	�1 −

2

3
��

1

�

G2���,1�h1���d�

−
2

3
�2�

1

�

G2���,1�h2���d�� ,

where the integration kernel

G2���,1� = −
1

2�
−

�

2
.

It can be proven that the normal stress �rr vanishes at r=1,
and the shear stress �r	 at the particle surface reduces to

�r	�1,	;�� =
3

2
sin 	�1 +

2

3
��

1

�

G2���,1�h1���d�

+
2

3
�2�

1

�

G2���,1�h2���d�� ,

where
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G2���,1� = −
1

2�
+

�

2
.

Surface integration of the local pressure and shear stress
fields yields the dimensionless drag force, F= �F�=6�gt. Fi-
nally we can express the correction function gt in terms of
the Green function integral solution:

gt =
1

3�1 −
2

3
��

1

�

G2�h1d� −
2

3
�2�

1

�

G2�h2d��
+

2

3�1 +
2

3
��

1

�

G2�h1d� +
2

3
�2�

1

�

G2�h2d�� . �22�

It is clear that the leading-order solution is consistent with
the Stokes law, in which the pressure contributes 1 /3 and the
shear force contributes another 2 /3 to the total drag force.
Because G2��� ,1��0 and G2��� ,1��0, both pressure �terms
in the first bracket� and shear stress �terms in the second
bracket� contributions to the total drag force increases as the
polymer concentration increases; that is, the correction func-
tion gt�1. Although analytical integration of Eq. �22� does
not exist except limiting cases, all integrands are smooth
functions so that the full integration can be easily calculated
by the standard quadrature method.

In the protein limit where the depletion thickness d�1,
the leading-order approximation of Eq. �4� reduces to

��r� � � r − 1

r
�2�1 +

2

d
� . �23�

Substituting into h1�r� and h2�r�, and then completing the
integrations in Eq. �22�, the closed-form second-order ap-
proximation for gt leads to a simple algebraic form:

gt � 1 +
89

210
��1 +

2

d
� +

103 600kH − 26 617

44 100
�2�1 +

2

d
�2

�24�

for ��1 and d�1. This resulting simple analytical expres-
sion provides the concentration dependence of the effective
viscosity a small sphere experiences in a polymer solution.
For 1 /d→0, �eff

t /�s=gt approaches 1+89� /210 up to first
order in polymer concentration. This means that in the very
dilute limit the effective viscosity the small sphere experi-
ences, �eff

t , is significantly smaller than the macroscopic vis-
cosity �p=�s�1+��, whereas �eff

t is still larger than �s in the
protein limit. Later in this paper we will show that the pro-
tein limit consists a different scaling behavior compared to
the colloidal limit. This protein limit result is, as will be
shown in Sec. IV B, also important for rescaling the expo-
nential retardation factor in order to establish the scaling
laws to be discussed in the results section.

C. Rotational mode

When a sphere is rotating in a quiescent fluid, the low
Reynolds number flow is solely driven by the shear stress
�12,27�. The second-order approximation of the dimension-
less Stokes system is governed by Eqs. �7a� and �7b� except

the vanishing pressure term. We have applied characteristic
scales for length, velocity, shear stress and torque as follows:

length � a, v � �a, � � �s�, T � �s�a3,

where �=�êz is the angular velocity with êz indicating the
rotating axis, and T is the shear-induced torque on the
sphere. The governing system, in terms of the spherical polar
coordinates �r ,	 ,��, is complemented by the no-slip and
vanishing far-field boundary conditions: v�=sin 	 at r=1,
and v�=0 as r→�, where � is the azimuthal direction cor-
responding to the rotating axis. We now look for straightfor-
ward expansion of the velocity component v� in terms of a
power series in �, expressed as v��r ,	 ;���v�0+�v�1

+�2v�2. The resulting leading-, first-, and second-order solu-
tions are listed below.

The leading-order system is

�2v�0 −
v�0

r2 sin2 	
= 0,

v�0 = sin 	 at r = 1,

v�0 → 0 as r → � .

Substituting the trial solution, v�0�r ,	�=sin�	�w0�r�, the
leading-order system reduces to an ODE for the unknown
radial function w0, written as w0�+ �2/r�w0�− �2/r2�w0=0, for
which the corresponding boundary conditions are w0=1 at
r=1, and w0=0 as r→�. The solution for the leading-order
system �Stokes approximation� is w0=1/r2 and v�0
=sin�	� /r2. Following the leading-order result, the first-order
system reduces to

�2v�1 −
v�1

r2 sin2 	
=

3�� sin 	

r3 ,

v�1 = 0 at r = 1,

v�1 → 0 as r → � .

By substituting v�1=sin�	�w1�r� we obtain a nonhomoge-
neous self-adjoint second-order ODE,

r2w1� + 2rw1� − 2w1 =
3��

r
, �25�

with homogeneous boundary conditions: w1=0 at r=1 and
w1→0 as r→�. The unique Green function integral solution
for w1 is

w1��� = �
1

�

G1�r,��h1�r�dr + �
�

�

G2�r,��h1�r�dr �26�

for 1�r, ���, where

h1�r� = 3���r�/r , �27�

and the Green functions for the corresponding domains be-
come

G1�r,�� =
− r

3�2 +
1

3�2r2 for 1 � r � � ,
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G2�r,�� =
− �

3r2 +
1

3�2r2 for � � r � � . �28�

The following derivatives for the radial function w�r� are
required for solving the second-order system:

w1��r� = �
1

r

G1���,r�h1���d� + �
r

�

G2���,r�h1���d� ,

and

w1��r� = �
1

r

G1���,r�h1���d� + �
r

�

G2���,r�h1���d� +
h1�r�

r2 .

Note that the field and source points are switched, and the
h1 /r2 term comes from the discontinuous property of the first
derivative of the Green function at �=r. After a few algebraic
operations, the second-order system reduces to

r2w2� + 2rw2� − 2w2 = h2�r� ,

w2 = 0 at r = 1,

w2 → 0 as r → � ,

where the differential operator and the Green function are the
same as the first-order system. The nonhomogeneous term is

h2�r� =
6kH���

r
− �h1 + �2� + ��r��

1

�

G��,r�h1���d�

− �2�r + ��r2��
1

�

G�h1d� − �r2�
1

�

G�h1d� .

�29�

Clearly,

w2�r� = �
1

r

G1��,r�h2���d� + �
r

�

G2��,r�h2���d� .

The only nonzero shear stress ��r can be derived by the
approximated velocity field. At the particle surface, the shear
stress becomes

��r�1,	;�� = sin�	��− 3 + ��
1

�

G2���,1�h1���d�

+ �2�
1

�

G2���,1�h2���d�� ,

where G2��� ,1�=−1/�2, and h1 and h2 are given by Eqs. �27�
and �29�. We conclude that the shear-induced torque on the
rotating sphere is calculated by

T = �
��

r � �� · n�dA = − 8�grêz,

where the correction factor for the rotational motion is

gr = 1 +
1

3
��

1

� h1���
�2 d� +

1

3
�2�

1

� h2���
�2 d� . �30�

In the protein limit, the segment concentration profile is
given by Eq. �23� and the closed-form second-order approxi-
mation for gr attains the simple form

gr � 1 +
�

10
�1 +

2

d
� +

20kH − 13

700
�2�1 +

2

d
�2

�31�

for ��1 and d�1. For 1/d→0, �eff
r /�s=gr approaches 1

+� /10 in the very dilute limit. The effective viscosity the
small rotating sphere experiences, �eff

r , is only perceptibly
larger than the pure solvent viscosity and much smaller than
the macroscopic viscosity �p=�s�1+��.

III. NUMERICAL ANALYSIS

In this section we present a concise way to resolve the
depletion effect on particle transport numerically in order to
verify the asymptotic solution and to cover the calculation of
the effective viscosity for a broader concentration range in-
cluding the semidilute regime. Though a complete numerical
simulation using any domain discretization method for a low
Reynolds number flow seems doable for problems with non-
uniform viscosity, the implementation is not trivial because
the particle-induced fluid flow has long-range effects that
require a computational domain of at least two orders of
magnitude larger than the particle size. The numerical stiff-
ness raised by the viscosity gradient across a thin depletion
layer causes major difficulties in generating a well-
converged solution. However, having an axisymmetric con-
figuration one can avoid the full simulation by using the
stream function formulation as follows.

A. Translational mode

Starting from taking the curl of the modified momentum
equation, the pressure term is eliminated, and the second and
third terms on the right-hand side of Eq. �2� reduce to

� � ���2v� = − � � � � � � + ���2v	ê�

+
��

r2 �2
�vr

�	
−

v	

sin2 	
�ê�,

and

� � ��� · ��v + ��v�T�� = ��� �2v	

�r2 −
1

r

�2vr

�r�	
�ê�

+ ��� �v	

�r
−

v	

r
+

1

r

�vr

�	
�ê�,

provided the system is spherically symmetric, which is the
case with respect to the problem we focus on here. Recalling
the useful relationship for the vorticity, Eq. �9�, also has a
component in the � direction, we can simplify Eq. �2� to the
following scalar form:
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0 =
�

r sin 	
E4� + ���2v	 +

��

r2 �2
�vr

�	
−

v	

sin2 	
�

+ ��� �2v	

�r2 −
1

r

�2vr

�r�	
� + ��� �v	

�r
−

v	

r
+

1

r

�vr

�	
� .

�32�

The local viscosity and the corresponding derivatives are
given by the Martin equation, Eq. �5�, and the local concen-
tration profile is defined by Eq. �4� �53�. Replacing the ve-
locity components by �= f�r�sin2 	, we obtain a fourth-order
ODE for the unknown radial function f�r�:

0 = f �4� +
2��

�
f� − � 4

r2 +
2��

r�
−

��

�
� f� + � 8

r3 −
2��

r2�
−

2��

r�
� f�

− � 8

r4 −
8��

r3�
−

2��

r2�
� f �33�

for 1�r��. The corresponding no-slip and vanishing far-
field boundary conditions are f�1�=−1/2, f��1�=−1, f /r2

→0, and f� /r→0 as r→�. Equation �33� was solved by the
Runge-Kutta integration method complemented by the
shooting algorithm in order to obtain the unknown boundary
conditions f� and f� at r=1. From direct integration of the
momentum equation, the pressure field can be expressed as

p�r,	�
cos 	

= − �f� − ��f� + �2�

r2 +
2��

r
� f� − �4�

r3 +
2��

r2 � f .

At the particle surface the pressure field reduces to p�1,	�
=−f��1�cos 	. The normal stress

�rr�r,	� = − 4� f�

r2 −
2f

r3 �cos 	

vanishes at the particle surface, and the shear stress,

�r	�r,	� = � f�

r
−

2f�

r2 +
2f

r3 �sin 	 ,

yields �r	�1,	�= �1+ f��1��sin 	. Finally by calculating the
surface traction integration we conclude the translational cor-
rection factor gt in the following compact form:

gt =
4

9
+

4

9
f��1� −

2

9
f��1� . �34�

The numerical procedure for finding gt is straightforward.
Given a characteristic depletion thickness d and the dimen-
sionless bulk polymer concentration ���cb, shooting for the
far-field boundary conditions to estimate f��1� and f��1�
gives one data point for gt.

B. Rotational mode

The momentum equation for the shear-driven motion can
be simplified to ��2v+�� · ��v+ ��v�T�=0, and be reduced
to a scalar form without using the stream function:

0 =
1

r2

�

�r
�r2�v�

�r
� +

1

r2 sin�	�
�

�	
�sin�	�

�v�

�	
�

−
v�

r2 sin2 	
+

��

�
�r

�

�r
�v�

r
�� . �35�

By substituting v�=w�r�sin 	 into Eq. �35�, we obtain the
second-order ODE for the radial function w�r�:

0 = w� + �2

r
+

��

�
�w� − � 2

r2 +
��

�r
�w , �36�

where the corresponding no-slip and vanishing boundary
conditions are w�1�=1 and w→0 as r→�. The final result
for the surface shear stress is

��r�1,	� = �w��1� − 1�sin 	 . �37�

From torque resistance we found the correction function

gr =
1

3
�1 − w��1�� . �38�

Similar to the translational case, w��1� can be solved by the
Runge-Kutta method and a shooting algorithm.

IV. RESULTS AND DISCUSSION

A. Model comparison

The numerical results from Eqs. �34� and �38� are com-
puted over a wide range of polymer-to-sphere size for vari-
ous concentrations including dilute and semidilute condi-
tions, and are first used here to test the asymptotic solution in
the dilute limit. In the dilute regime we apply the Huggins
equation and choose �=0.5 and kH=0.5. In that case �p /�s
�13/8, so for d→0, the hydrodynamic resistance is deter-
mined by the bulk viscosity of polymer solutions and 1/g
�0.615. In Fig. 3 numerical results are compared for this
condition with the asymptotic solution as a function of the
relative depletion thickness d. The second-order asymptote
coincides with the numerical prediction for the drag force

FIG. 3. Asymptotic �first order: dashed curve; second order:
solid curve� solutions for the correction function gt vs dimension-
less depletion thickness d for �=0.5 and kH=0.5. Results are com-
pared with numerical results �circles� proposed in Sec. III and the
two-layer �dash-dotted line� model �27�.
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and thus the long-time diffusivity for a translating sphere
with a relatively large depletion thickness ranging from 0.03
up to an order of 100. The second-order approximation is
almost indistinguishable from the “exact” numerical solu-
tion. However, the perturbation approximation is not appli-
cable when the depletion layer is thinner than 0.03 for the
case shown because the higher-order terms in Eq. �7a� are no
longer uniform due to the large concentration gradient across
the depletion layer.

Figure 3 includes a comparison with the two-layer ap-
proximation �26,27�, which uses a step function to simplify
the viscosity profile. The two-layer model well complements
the perturbation analysis in the limit of very thin depletion
layer, but starts to deviate from the current prediction when
the depletion thickness approaches the particle size. There-
fore a step function is only sufficient for predicting the resis-
tance in the thin depletion layer regime. Beyond this regime,
the two-layer model underpredicts the resistance signifi-
cantly. An important aspect of the asymptotic analysis is to
show that the retardation effect does not vanish even for
values of d up to 100. The correction function g is always
less than unity, implying the particle senses the increase of
viscosity due to dissolved polymer chains even in case its
size is much smaller than the suspending polymer chains.
This fact is not captured by the two-layer model.

Similarly, the results are compared for the torque a rotat-
ing sphere experiences, shown in Fig. 4. The first-order ap-
proximation now already provides an excellent approxima-
tion when d�0.2, implying that, unlike translational motion,
rotational motion has a strong local effect and is less sensi-
tive to the bulk viscosity. In the limit of thin depletion layers,
the approximation for gr is again better presented by the
two-layer model �27�. When d→0, �eff→�p, both 1/gt and
1/gr→�s /�p�0.615, and the hydrodynamic resistance is
determined by the bulk viscosity of polymer solutions. Note
that the numerical prediction has provided a trustable verifi-
cation of the asymptotic model, but is not limited to dilute
conditions. In Sec. IV B we will apply the same numerical
procedure to reveal scaling behaviors for particle retardation
in dilute and semidilute polymer solutions. Note that the nu-
merical model here is limited to a spherical case when the
convective effect is negligible so that the momentum equa-
tion can be simplified to an ODE.

We inspect the velocity and stress fields and observe the
local effect near the particle surface in the semidilute regime,
shown in Fig. 5. The bulk viscosity follows the Martin equa-
tion. Away from the depletion layer, the fluid is dragged by
the moving particle and the velocity vanishes at the far field.
In the representative case shown we compare current result
with that from the two-layer model. By applying a continu-
ous polymer concentration profile, the smooth streamlines
�top� replace the kinky ones �bottom� and the circulation
pattern is relatively weak and confined within the depletion
layer, revealing an immediate effect corresponding to the
continuous change of viscosity near the particle. The velocity
profile shown �bottom left� is located at 	=� /2. Near the
particle surface the velocity gradient based on the numerical
prediction �solid line� is larger than the two-layer approxima-
tion �dashed line�, implying that the two-layer model previ-
ously developed �27� underestimates the shear resistance the
sphere experiences. Combining with the total normal stress
shown by contours, we confirm that the two-layer model
underestimates the total resistance as mentioned above. For
thin depletion layers the two-layer approach is, however,
very accurate and it has the advantage that analytical expres-
sions are available for the frictional coefficients. The velocity
decaying rate is closely proportional to 1/r for both numeri-
cal and two-layer models. In the limit of very small d, the
flow pattern is of course consistent with the pattern for the
particle-driven Stokes flow in a homogeneous fluid.

FIG. 4. Similar plot as in previous figure but for rotational
motion.

FIG. 5. Comparison of velocity vectors, streamlines, and normal
stress fields for a translating sphere in a polymer solution based on
numerical �top� and two-layer �bottom� models. Parameters used:
d=1, �=�s /�p=0.01, ���cb=5.72, and kH=0.5. The velocity pro-
file v	 at 1�r�4 and 	=� /2 reveals the flow field across the
circulation region �solid curve: numerical model; dashed-curve:
two-layer model�.
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B. Scaling behavior

Two most important factors that determine particle retar-
dation effect are the apparent depletion thickness and the
bulk polymer concentration, which are related to the polymer
molar mass, particle size, polymer correlation length, solvent
condition, and the intrinsic viscosity in many practical situ-
ations. To elaborate both asymptotic and numerical analyses
we have proposed, it is important to connect these models to
a useful correlation and scaling law. For this reason we at-
tempt to describe our data using a generalized retardation
factor �39�:

R = exp��a�cb
�� �39�

which is used often in the literature to interpret experimental
data. Here R is an empirical retardation factor commonly
used for determining an apparent transport property such as
diffusivity or viscosity of polymer solutions, often linked to
experimental data as R=Ds /D=� /�s. Subscript s stands for
pure solvent. In Eq. �39�, � is the retardation coefficient, a is
the particle radius, and cb is the bulk polymer concentration.
Coefficient � and exponential exponents � and � are empiri-
cal parameters. In dimensionless form, the stretched expo-
nential function can be written as

1

R
= exp�− ��� a

d*���
�cb������� , �40�

where d* is the dimensional depletion thickness appearing in
this paper, and ��, ��, and �� are yet unknown parameters,
which can be converted back to the original retardation co-
efficient � and the scaling exponents � and �, respectively. If
the depletion thickness d* is independent of cb, the exponen-
tial exponents �=�� and �=��, and �=���d*�−������� ab-
sorbs the rest of the transformation. If d* depends on poly-
mer concentration, the scaling exponent ����. Note that the
inverse form of R is used later on because it fixes all 1 /R
values between 0 and 1, making it easier to present the scal-
ing results.

The empirical retardation factor R has the same physical
meaning as the correction function gt or gr, but mathemati-
cally they are not identical. This is because the upper and
lower limits of the stretched exponential function are not
bounded by the correct values while considering the deple-
tion thickness influence �Fig. 6�. The stretched exponential
correlation can not be obtained directly from the theoretical
results for the correction function due to the obvious mis-
match in the limits. We thus propose a rescaling scheme to
relate g to R in order to extract the useful R values from the
numerical experiments. Without such a rescaling procedure,
the dynamic similarity that predicts the particle retardation
behaviors is unlikely to be established. This was done by
comparing the limiting values of the theoretical results and
the empirical form that covers a full range of particle size
and polymer concentration. The proportional relation in Fig.
6 yields the rescaling scheme �54�:

1

g
=

1

R
�� − �� + � , �41�

where the correction function g represents gt and gr for the
decoupled translational and rotational motion. The lower
bound � corresponds to the colloid limit �d→0�,

� = lim
d→0

1

g
=

�s

�p
,

where the particle size is much larger than the polymer
depletion thickness and the chain size or polymer correlation
length. In fact, the correction function g in the colloid limit
modifies the Stokes friction coefficient by converting the sol-
vent viscosity �s to the bulk viscosity �p, an extreme case
where the hydrodynamic resistance �retardation� reaches a
maximum value at a given polymer concentration. On the
other hand, the upper bound

� = lim
d→�

1

g

corresponds to the protein limit, where the statistically mean
depletion layer extends over a much longer range and the
particle is almost nonretarded �in which case, g=1�. The
quantity � has a value very close to but less than unity. In the
dilute limit, � values corresponding to translational and ro-
tational motion are given by the asymptotic solutions, Eqs.
�24� and �31�, respectively, with d approaching infinity.

Following the rescaling procedure, we found that the
asymptotic results express an interesting self-similar retarda-
tion effect. Given ���cb=0.1, 0.3, 0.5, and 0.8, and a broad
range of d from 0.03 to 300, we plot a number of points by
calculating gt and gr from the second-order asymptotic solu-
tion, calculating the protein limit � and colloid limit �, and
then substitute these values into R and finally introduce a
global fit using Eq. �40�.

We first focus on results for translational motion. A global
fit of all results for gt as a function of d for various concen-
trations using Eqs. �41� and �40� gives ��=0.818, ��=0.55,
and ��=0.076. The latter two indicate how strongly the re-
tardation depends on depletion thickness and polymer con-
centration, respectively. Obviously the retardation effect is
more sensitive to the apparent depletion thickness. Next we

FIG. 6. A schematic plot showing the difference between the
theoretical correction function g �with the correct upper and lower
limits� and the empirical retardation factor R. The simple propor-
tional relationship is used as the rescaling scheme.
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plot all data points as a function of X= �a /d*����cb������. As
shown in Fig. 7 almost all data points fall onto a single
curve. The solid curve follows the general expression for the
retardation function 1/R=exp�−��X�. The agreement is ex-
cellent except for the regime close to the colloid limit where
d→0. Such disagreement posts a question mark on using a
universal stretched exponential function to describe experi-
mental results under certain experimental conditions. Clearly,
the exponential scaling well represents a global fit that can
be used to quantify the retardation effect in the dilute regime.
We emphasize that the rescaling step is essential in order to
connect the numerically obtained g values to R, otherwise
the data points will not fall onto a single curve. Many ex-
perimental works were in general designed for obtaining the
correction function g by measuring the apparent transport
property, we suggest that such data need to be rescaled be-
fore fitting the scaling exponents of the general retardation
factor R.

Following the same procedure, we found that for rota-
tional motion the retardation effect also fits into a stretched
exponential scaling law with different coefficient and expo-
nents. The best fit yields ��=0.30076, ��=0.71, and ��
=0.046. The obtained data for R for rotational motion are
also plotted as a function of X in Fig. 7. It follows the change
of the scaling exponents �� and �� has less impact on the
retardation value R for given polymer conditions a /d* and
cb���. Actually, it turns out the parameter �� is the primary
factor to accommodate the change of flow pattern that influ-
ences the retardation effect. For rotational motion �� has a
value of 0.3 which is relatively small compared with the
value for translational motion, ��=0.818, implying the rota-
tional motion is much less retarded by the surrounding poly-
mer chains. Physically this is because, unlike translational
motion which has long-range effects, fluid flow induced by
rotational motion decays quickly, and is confined within a
much smaller space in which the particle does not fully sense
the bulk viscosity. Therefore at the same polymer concentra-
tion the rotational motion is less sensitive to the bulk con-

centration and is less retarded than translational motion. We
observed this already by comparing the first-order coeffi-
cients given by Eqs. �24� and �31�. In the dilute limit, d* is
nearly independent of cb, we can thus resume the corre-
sponding scaling exponents �=�� and �=�� in the general
retardation function.

In the semidilute regime, i.e., where the polymer concen-
tration is beyond the overlap concentration cb

* ��1/ ���� and
��1, we use the Martin equation for obtaining the bulk vis-
cosity and the viscosity profile around a sphere. The upper
bound for effective viscosity � now needs to be calculated
numerically by using the concentration profile:

��r� = � r − 1

r
�2

, �42�

which follows from Eq. �23� with d→�. Here we separate
the scaling law from the dilute regime because the apparent
depletion thickness d* is fundamentally different in both re-
gimes. In the limit of dilute concentration, d* is close to the
polymer’s gyration radius whereas in the semidilute regime
d* equals the polymer correlation length. Figure 8 shows the
numerical results and best fits for �. Using the upper bound �
and the numerical values of gt and gr we found the retarda-
tion factor R using Eq. �41�.

In Fig. 9 we plot the resulting retardation function R as a
function of X. A number of numerical data points are plotted
for a broad range of polymer concentrations from ���cb=2 to
10, corresponding to a viscosity ratio �s /�p=0.155–6.734
�10−4, respectively, as follows from the Martin equation.
For translational motion the best fit for the scaling law fol-
lows the solid line 1/R=exp�−0.69�a /d*�0.77����cb�0.44�. Un-
der good solvent conditions where d* scales as d*�cb

−3/4

�46�, �=�� and �= �3/4���+���1.02. These exponents re-
semble the nominal values of experimental observations col-
lected in Ref. �39�. The dashed line that correlates the rota-
tional retardation effect under the same polymer conditions
follows 1/R=exp�−0.325�a /d*�0.67����cb�0.16�. The numeri-
cal results agree well with the scaling law when d�1.

With respect to our earlier two-layer approximation �27�
we have now used a realistic polymer concentration profile.
We have thus obtained a more accurate description of the

FIG. 7. A semilog plot of inverse retardation factor 1 /R vs X
= �a /d*����cb������ in the dilute limit. Data points are from the
second-order perturbation approximation. The solid lines are the
best fits using Eq. �40� with ��=0.818, ��=0.55, ��=0.076 for the
translational motion, and ��=0.30076, ��=0.71, ��=0.046 for the
rotational motion.

FIG. 8. Numerical evaluation of � vs dimensionless concentra-
tion ���cb. The best fits for the translational and rotational motion
follow 1/�=gt=1+ �89/210����cb+0.047���2cb

2 and 1/�=gr=1
+0.1334����cb�0.714, respectively.
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frictional coefficient a sphere feels as it moves through a
polymer solution. However, we have not yet considered the
influence of convective effects; we assume a fixed depletion
layer instead. Further experimental and analytical works are
now in progress on resolving this problem.

V. SUMMARY

In this paper we presented an asymptotic and numerical
analysis of tracer diffusivity in dilute and semidilute polymer
solutions. Through straightforward hydrodynamic analysis
including the dynamic depletion effect we found that retar-
dation of particle diffusion is weakened by the depletion
zone around the particle, implying a very small particle is
allowed to diffuse almost freely through semidilute solutions
of macromolecules, which is of great importance for many
biophysical and biochemical applications. Our model pro-
vides a theoretical treatment of the semi-empirical stretched
exponential retardation factor commonly employed in prac-
tice, and we propose a rescaling procedure to evaluate the
retardation factor including the scaling exponents, which are
consistent with the nominal values found in literature.
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APPENDIX

The integral form of Eq. �12� can be derived by multiply-
ing a weighting function G to both sides of the equation and
integrate them over the interval �1,��, i.e.,

�
1

�

GLf1dr = �
1

�

Gh�r�dr .

Applying the Green identity the left-hand side of above
equation becomes

�
1

�

GLf1dr = �
1

�

f1L*Gdr + �Gf1� − G�f1� + �G� −
4

r2G� f1�

− �G� − � 4

r2G��
−

8

r3G� f1�
1

�

, �A1�

where L
L*. Clearly, the integral solution can be obtained
by defining the weighting function as the Green function
G�r ,��, which satisfies the singularly forced adjoint differen-
tial equation:

L*�G� = ��r − �� ,

where � is the Dirac delta function with field point located at
the position r and the source point at �. We are interested in
obtaining the Green function that satisfies the homogeneous
boundary conditions:

G = 0 at r = 1,

G� = 0 at r = 1,

G/r2 → 0 as r → � ,

G�/r → 0 as r → � . �A2�

From Eqs. �15� and �A2�, one can assure that all of boundary
terms on the right-hand side of Eq. �A1� vanish. Therefore
the Green function integral solution for f1 is

f1��� = �
1

�

G�r,��h1�r�dr

for 1�r, ���. The remaining problem is to find the Green
function. For the fourth-order system, G�r ,�� has continuous
zeroth, first, and second derivatives with respect to the field
parameter r, and has a discontinuity in the third derivative at
r=�. The finite jump for the third derivative is determined by
the forward and backward limits. By letting

G�r,�� = �G1�r,�� for 1 � r � �

G2�r,�� for � � r � �
� ,

the Green function has the following properties:

G2�r,�� − G1�r,�� = 0 at r = � ,

G2��r,�� − G1��r,�� = 0 at r = � ,

G2��r,�� − G1��r,�� = 0 at r = � ,

G2��r → �+,�� − G1��r → �−,�� = 1. �A3�

To find G1 and G2 we apply the technique of variation of
parameters �52�. First we express G1 and G2 as

FIG. 9. Stretched exponential scaling laws for translational
and rotational retardation factor R as a function of
X= �a /d*����cb������ in the semidilute regime. Data points are
numerical results. The solid lines are the best fits using ��=0.69,
��=0.77, ��=0.44 for the translational motion, and ��=0.325,
��=0.67, ��=0.16 for the rotational motion.
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G1�r,�� = �
i=1

4

�i���yi�r�, G2�r,�� = �
i=1

4

�i���yi�r�

with y1=r4, y2=r2, y3=r, and y4=1/r being the bases of the
general solution for the operator L. And then substituting

G1 and G2 into Eqs. �A2� and �A3�, the eight unde-
termined coefficient functions, �1–�4 and �1–�4, can be
solved by a system of algebraic equations. After few matrix
operations, we obtain G1 and G2 �Eq. �17�� in a symmetric
form.
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